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Abstract. With Android6.0, users can decide whether to grant an app
runtime permission. However, users may not understand the potential
negative consequences of granting app permissions. In this paper, we
investigate the feasibility of using an app’s requested permissions and
the intent-filters, app’s category and permissions requested by other apps
in the same category to better inform users about whether to install
a given app and the risk scores associated with granting each of the
app’s required permissions. In an evaluation with 10,979 benign and
3,205 malicious apps, we demonstrate the effectiveness of the proposal
approach.
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1 Introduction

More than seven million malicious mobile apps were identified in 2016 [10].
However, smartphones remain vulnerable to malware. Nevertheless, there is an
increasing number of advanced benign apps that provide intelligent and person-
alised services, such as location-based services and social sharing services, even
though such apps may have potential security and privacy risks. For instance,
users may not expect their locations (e.g. home locations, workplaces) and other
privacy information (e.g. contact lists, SMS records) to be spied by the third
party apps [19].

The Android platform provides several security measures such as the Android
permission system, that reduce security and privacy risks. The Android operating
system requires apps to request permissions before they can use certain system
data and features [7]. Users must decide whether to grant such permissions.
However, this approach has been proven ineffective. Studies have shown that
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more than 70% of smartphone apps request permission to collect data that is
not directly required by the app’s primary functionality. However, typically, users
rush through the installation process and tend to grant all permissions [6]. In
addition, even if users pay attention to the permission request, most do not
have sufficient knowledge to understand permissions and their possible harm.
Effective permission recommendations can provide additional information that
can help users grant permissions appropriately to prevent privacy breaches [14].

Recent studies about Android permission recommendations can be found in
the literature. Several studies have focused on expert recommendations based
on crowdsourcing [9,13,14], utilising an app’s runtime behaviour to evaluate the
risks associated with granting permissions [12] and learning user behaviour to
propose rules with different levels of abstractions [11]. Prior to Android 6.0, all
permissions had to be accepted in order to install an app; therefore, these studies
proposed modifying an Android source code to modify its permission system.
They also could not consider the permission group mechanism in Android6.0.

With Android 6.0, the system permissions in Android are divided into two
categories, normal and dangerous (runtime). Normal permissions do not directly
risk the user’s privacy. If an app lists a normal permission in its manifest, the
system grants the permission automatically. Apps request runtime permissions
as required at runtime. Android 6.0 has nine runtime permission groups with
24 runtime permissions related to personal user information and critical system
resources. If a permission associated with a permission group has been granted,
future permission requests in the same group are granted automatically for the
given app. For example, if an app had previously requested and been granted the
READ_CONTACTS permission, the WRITE_.CONTACTS permission will be
granted automatically because they are both in the Contacts permission group.

In this study, we consider the intended functionality of the app, i.e. what
the app is expected to do, and which runtime permissions are requested by apps
with a similar functionality to create an effective permission risk score. Currently,
Google Play divides apps into 49 categories. Apps in the same category provide
similar functionalities. The risk score measures whether a risk is commensurate
with the benefit when granting runtime permission to an app in a given category.
The higher the risk score, the greater the risk. Conversely, a low risk score
indicates that granting permission would be beneficial and the associated risk is
not significant.

We also utilise intent-filter to assess the risks with installing an app. Intent
is a complex messaging system in the Android platform, and is considered as a
security mechanism to hinder apps from gaining access to other apps directly.
To receive intents, apps must define what type of intent they accept in the
AndroidManifest.xml file, as intent-filter.

Therefore, we have designed an automatic analysis framework that does not
require modifying the Android permission system to provide users with addi-
tional information prior to installation of an app. The proposed framework con-
sists of malicious app detection and permission recommendation. Malicious app
detection assesses the risks associated with installing an app, and permission
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recommendation assesses the risk score of each requested permission. First, we
collect permissions and intent-filters from AndroidManifest.xml and then feed
this extracted data to a Random-Forest-based classifier [8]. After the classifier
has been trained using a training set, it can classify apps as benign or malicious.
Utilising the frequency of occurrence of a runtime permission in different cate-
gories, the framework provides risk scores for the requested runtime permissions
of benign apps relative to the app’s category.
The contributions of this study can be summarised as follows.

1. To provide users with additional information prior to installing an app, we
propose an automatic framework that combines Android malware detection
and permission recommendations.

2. We introduce an effective risk score for each requested app permission relative
to the given app’s category.

3. For efficiency, we utilise lightweight features that enable extracting features
in reasonable time.

The remainder of this paper is organised as follows. Related work is discussed
in Sect. 2. Section 3 describes the datasets, and our methodology is presented in
Sect. 4. We describe experiments in Sect.5, and conclusions are presented in
Sect. 6.

2 Related Work

In this section, we outline the state-of-the-art studies that focus on Android
malware detection, Android app recommendation and Android permission rec-
ommendation.

2.1 Android Malware Detection

DREBIN [5] is notable among early machine-learning-based malware detection
approaches. It performs a broad static analysis, gathering features including
permissions, intent-filters, API calls, strings, etc., and then utilises support vec-
tor machines to classify apps. It also provides explainable detection. However,
DREBIN does not consider the benefit of granting a permission to an app in
a specific category. For example, the permission SENS_SMS has the same risk
value in the Communication and Sport app categories.

Sokolova et al. [16] modelled permission-based decision support systems to
classify apps. They modelled permission requests by different categories using
graphs, obtained patterns for each category and verified the performance of
different patterns in order to select the most descriptive patterns. Their results
demonstrate that they could detect 80% of the malware with a low false-positive
rate (FPR).

Sarma et al. [15] proposed a risk warning system based on the occurrence of
24 overall permissions (manually identified as dangerous) in each app category. A
risk signal is triggered if an app requires critical permissions that are used by less
than a given percentage of apps in the corresponding category. Understanding
the reason for a risk signal helps the user determine whether to install an app.
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2.2 Android Permission Recommendation

DroidNet [14], Rashidi et al. [13] and Jha et al. [9] utilised crowdsourcing tech-
nology to recommend whether to grant permissions. An evaluation of DroidNet
demonstrated that, given a sufficient number of experts in the network, it can
provide accurate recommendations and cover most app requests given a small
coverage from a small set of initial experts.

Oglaza et al. [11] learned user behaviours to propose rules with different levels
of abstractions. Such rules can help users protect their privacy more easily.

Rashidi et al. [12] proposed XDroid, an Android app resource access risk esti-
mation framework that employs a hidden Markov model. XDroid utilises an app’s
runtime behaviors to evaluate risks associated with granting an app’s permis-
sions. However, XDroid cannot provide additional information about requested
permissions prior to app installation.

2.3 Android App Recommendation

Taylor et al. [17] proposed SecuRank, a contextual permission analysis frame-
work, to recommend functionally-similar alternative apps that require less sensi-
tive access to the device. They discovered that up to 50% of apps can be replaced
by a preferable alternative. They noted that alternatives are more likely to be
available for free and popular apps.

Zhu et al. [19] proposed a recommendation system that considers app ratings
and app-related privacy issues, such as required permissions. They developed an
app risk score based on the number of required permissions and the occurrence
of such permissions in a given app category, i.e. a lower penalty is incurred if a
permission is used more frequently in a given category, and as more permissions
are required by an app, its associated risks increase.

3 Datasets

In this section, we describe the datasets used in our study. In our experiments,
we used two datasets consisting of 14,184 and 6,400 apps. The number of app
categories in each dataset was 32. The former dataset included 10,979 benign
and 3,205 malicious apps. The latter dataset contained 6,400 benign apps (200
apps per category). All apps in the datasets were from Androzoo [4], which is
a growing collection of Android apps collected from several sources, including
the official Google Play app market. We determined the app categories in our
datasets from Google Play. To prepare reliable ground truth data, each app was
uploaded to VirusTotal [3] and scanned by tens of different Antivirus product. If
no malicious content was detected, the app was considered benign. If more than
four VirusTotal scanners detected a malicious content, the app was considered
malicious. This procedure ensures that our data is (almost) correctly split into
benign and malicious apps, even if several scanners falsely labels a benign app
as malicious.
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4 Methodology

The proposed framework involves three main steps: (1) extracting features from
apps, (2) classifying apps using machine learning and (3) assessing the risk score
of runtime permissions requested by apps classified as benign and recommending
permissions by providing the risk score. Here, the overall objective is to provide
users with additional information to help them make decisions.

4.1 Feature Extraction

Every Android app must include a manifest file called AndroidManifest.xml
which contains information of package, including requested permissions and com-
ponents of the app such as activities, services, intents, intent-filters, content
providers etc.

To obtain permissions and intent-filters, we first used Androgurad [1], which
is an open-source project for the static analysis of Android apps, to obtain
the AndroidManifest.xml file. Then, we utilised the Python Beautiful Soup [2]
library to extract features from the obtained file. In this study, we use permis-
sions and broadcast receivers, a type of intent-filter, as features. A broadcast
receiver is used to receive broadcast intent sent by an Android system. Finally,
the extracted features including normal permissions, runtime permissions and
broadcast receivers are embedded in feature vectors that are used to classify the
apps, and runtime permissions are used to assess the permission risk scores.

4.2 App Classification Using Machine Learning

We used a machine learning method to automatically train a model to distinguish
between benign and malicious apps. The feature vectors were used to train a
classifier. Thus, manual analysis was not required to construct corresponding
malware detection rules. We selected a Random-Forest-based [8] classifier to
classify apps.

4.3 Permission Risk Assessment

In this section, we present our methodology for assessing the risk score of run-
time permissions requested by a given app that is classified as benign. We focus
on creating an effective risk score. An effective risk score should have a simple
semantic meaning that is easy to understand. Understanding the risk score will
help users determine whether to grant each requested permission. Most malware
might be simply repackaged versions of official apps. Evidence of the widespread
use of repackaging by malware writers is provided in MalGenome [18], a dataset
in the Android security community, where 80% of the malicious samples are
known to be built via repackaging other apps. If the malicious code interacts
with more sensitive resources than the original app, new permissions must be
requested in the Manifest file. Therefore, malicious apps request more permis-
sions with high risk scores than benign apps. When a user sets a threshold
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to filter out permissions with high risk scores (e.g. greater than 0.75), a small
percentage of permissions requested by benign apps will be denied, and many
permissions requested by malicious apps will be denied.

We are inspired by the observation described in the literature [15,19]. The
observation states that, if a permission is used more frequently in a given cate-
gory, the penalty incurred by this permission in this category will be lower. [15]
use this observation to detect malware, a risk signal is triggered by an app if it
requests critical permissions used by less than a certain percentage of apps in
the given app category. [19] employ this observation to calculate the risk score
of an app and recommend apps by considering both an app’s popularity and
the user’s security preferences. [15,19] prove the validity of this observation in
malicious and benign apps, respectively.

We calculate a permission’s risk score for apps that belong to different cat-
egories according to the frequency of occurrence of the permission in these cat-
egories. A smaller permission risk score indicates that the permission is likely
required and the risks associated with allowing the app are smaller. We used a
dataset that contains 6,400 benign apps (200 apps in each category) to calculate
the risk score. RiskScore;; denotes the risk score of granting permission j to an
app in category i. RiskScore;; is defined as follows.

ZcGCi fcj
ZCEC fcj

Here, f; is the number of apps in category c that request permission j. C' is
the category set (32 categories), and C; is a subset of C. All the categories that
the number of apps request permission j greater than f;; are in C;. Note that
a permission’s risk score decreases as it is used more frequently in the apps
of a given category. RiskScore;; has a simple semantic meaning, i.e. the risk
score of permission j requested by apps in category ¢ is less than or equal to
1 — RiskScore;; percent of risk scores of permission j requested by apps that
request this permission in the category balance dataset.

In terms of the permission group mechanism in Android 6.0, we show users
all of the risk scores of an app’s permissions requests and use the highest risk
score of requested permissions in a permissions group to represent the risk score
of the given group.

RiskScore;; =

5 Experiments

Here, we evaluate the performance of the proposed approach. All experiments
were conducted on a 4.2-GHZ four-core CPU, 32 GB main memory personal
computer. These experiments were conducted to evaluate the performance of
the malware detection and permission recommendation system in the proposed
approach.
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5.1 Evaluation of Malware Detection

In our first experiment, we evaluated malware detection performance. A dataset
with 10,979 benign and 3,205 malicious apps was used in this experiment. We
used 10-fold cross validation, which randomly selects parts of the data for train-
ing and the rest for testing. This was repeated 10 times to obtain a reasonable
result. The two criteria utilised in our experiments were the true-positive rate
(TPR) and FPR. The TPR is the proportion of actual positives correctly identi-
fied as such, and the FPR is the proportion of actual negatives falsely identified
as positive. Here, positive indicates a malicious app, and negative indicates a
benign app. The TPR and FPR values of the proposed approach were 86.8%
and 0.99%, respectively. The results demonstrate that our machine-learning-
based malware detection can detect 86.8% of the malicious apps with only a few
false detections.

All the features we used in our experiments are lightweight features that can
extracted from AndroidManifest.xml. It took 127 min to extract permissions and
intent-filters from 14,184 apps. The average time required to extract features was
0.5s. From this evaluation, we conclude that the proposed framework is capable
of performing this task in practical time.

5.2 Evaluation of Permission Recommendation

In our second experiment, we evaluated the performance of permission recom-
mendation based on the risk score. Note that apps classified as benign are used
in the proposed approach’s permission recommendation system. Here, 10,870
benign and 422 malicious apps were considered. We focus on the following per-
mission groups: Phone, SMS, Location and Contacts. Permissions in the Loca-
tion group are used to obtain the user’s location information. Permissions in the
Phone group are used to obtain the state of the device, IMEI, the call log and
the ability to initiate a phone call. Permissions in the Contacts group are used
to access the list of accounts in the Accounts Service and read/write contact
information. Permissions in the SMS group are used to receive, read and send
text messages.

We evaluated the performance of the risk score by setting a threshold
range from 0.05 to 0.9. If the risk score of a permission group is greater than
1 —threshold, the permissions in this group will be denied. This evaluation was
configured as follows. The deny ratio of a permission group is defined as the num-
ber of permissions denied in the given permission group divided by the number of
permission requests by apps in the same group. The overall deny ratio is defined
as the number of permissions denied in the four permission groups divided by
the number of permission requests by apps in these groups.

The performance of the proposed approach is shown in Table 1. We list the
performance of the four permission groups and overall performance. Here, ‘B’
denotes benign, and ‘M’ denotes malicious. For example, Contacts B indicates
the deny ratio of the Contacts group for benign apps. The results show that the
deny ratio of each permission group for benign apps was less than the deny ratio
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for malicious apps. When the threshold for each permission group is less than or
equal to 0.25, the deny ratio shown an obvious distinction. We recommend that
users deny a permission if the risk score of the permission group it belongs to is
greater than 0.75. If the user denies permissions for which the risk scores of the
corresponding permission groups are greater than 0.75, the overall deny ratio for
benign and malicious apps are 27.3% and 56.7%, respectively. The results show
that the risk score we provide is effectiveness.

On the basis of user preferences, users can also deny a permission according to
the risk score of the corresponding permission group, and users can set different
threshold values to filter out permissions in different permission groups. For
example, a user is very concerned about leaking their location information; thus,
they can deny permissions in the LOCATION group for which the Location risk
score is greater than 6 (e.g., 0.3).

Table 1. Deny ratio of the proposed approach

Threshold|Contacts |Contacts |Location Location/ Phone |[Phone [SMS |SMS |Overall Overall
B M B M B M B M B M
0.05 3.5% 9.3% 1.9% 14.2% 7.9% [16.7% | 8.4% |35.5% | 4.2% |16.3%
0.1 11.0% 26% 5.5% [24.6% |13.5% |17.7% |16.9% |45.5% | 9.8% |25.1%
0.15 16.7% 34.9% 7.5% [35.8% |24.6% |29.2% (25.6% |56.4% |15.6% |35.8%
0.2 18.3% 42.8% 18.2%  |45.8% 128.8% 40.7% |37.1% |74.5% [22.0% |46.8%
0.25 23.6% 55.3% 24.1% 159.2% |32.7% |46.9% |43.8% |78.2% |27.3% |56.7%
0.3 28% 60.5% 30.6% 64.2% |41.1% |55.7% 48.1% |78.2% |33.4% 62.3%
0.4 42.3% 68.4% 44.3% [80.2% 50.3% [64.3% |56.9% [82.7% |45.9% |72.9%
0.5 52.3% 79.1% 48.8% |81% 54.7% |71.8% |63% |84.5% |52.2% |78.1%
0.6 65.5% 83.3% 64.5% |88.8% |54.7% |71.8% [69.3% |85.5% [62.7% [82.0%
0.7 70.1% 85.1% 72.5% [89.4% |75.6% |80.7% (82.3% |91.8% |73.2% [86.0%
0.8 81.8% 90.7% 78.3% [93.6% |80.6% |83% 84.2% (91.8% 80.3% 89.5%
0.9 93.2% 96.3% 80.8% 196.1% [90.5% [93.8% 84.2% |91.8% |87.1% 94.9%

To the best of our knowledge, no related study has examined permission rec-
ommendation in order to automatically provide a risk score relative to granting
an app’s permission prior to installation of the app. We compared the pro-
posed approach to a previously reported approach [15] that related to malware
detection. For each app category, the existing approach refers to any critical
permission (i.e. a runtime permission in Android 6.0) requested by less than 6%
of the apps in this category as a #-Rare Critical Permission (§ — RC'P) for this
category. Here, CRCP () denotes the Category-based Rare Critical Permission
signal. Any app that requests one of the §# — RC'P’s in its category triggers
CRCP(0). On the basis of the permission group mechanism, we set the  range
from 5% to 30% to evaluate the performance of denying permissions that trigger
CRCP(6). The CRCP performance is shown in Table 2.

The frequency of occurrence of permissions shown an obvious differ-
ence for benign apps. For example, the average frequency of occurrence of
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Table 2. Deny ratio of CRCP

6 Contacts|Contacts |Location |Location |Phone |Phone |[SMS |SMS |Overall |Overall
B M B M B M B M B M

5% [12.4%  19.5% 1% 8.4% 12.8% |22%  66.7% |84.5% |11.5% |23.5%
10%/26.9% |35.8% |2.4% 19.0% 16.2% (26.6% 86.2% |95.5% (18.5% |33.5%
15%|31.6%  |46% 7.5% 35.8% |26.0% |28.5% [87.1% |95.5% |24.3% |42.4%
20%(39.8% 58.6% (8.0% 36.9%  |43.0% |34.4% [95.8% |100% |31.6% |47.9%
25%(48.4%  |74.4% |21.8% |57.3%  [49.4% |42.0% [98.7% |100% |41.4% |61%

30%(63.5% |86.0% |34.1% |70.1%  63.0% (66.2% [100% |100% |54.1% |75.7%

ACCESS_FINE_LOCATION in all categories is 26.4%; however, the frequency of
occurrence of READ_SMS in Communication is 18%, and the frequency of occur-
rence of READ_SMS in Communication is greatest in all categories. Therefore,
when setting 0 to deny permissions, it may perform well for some permission
groups and not perform well for other permission groups. For example, when 6
is 10%, the deny ratios of the Location group for benign and malicious apps are
2.4% and 19.0%, respectively; however, the deny ratios of the SMS group for
benign and malicious apps are 86.2% and 95.5%, respectively. Even though the
frequency of occurrence of permissions has an obvious difference in a permis-
sion group. As a result, this may not perform well for some permission groups.
For example, when 6 is 25%, the deny ratios of Phone for benign and mali-
cious apps are 49.4% and 42.0%, respectively. There are two permissions in the
Location group, and the average frequencies of occurrence are 26.4% and 27.6%.
Therefore, in the Location group, the CPCR performance is comparable to the
proposed approach. Thus, owing to the obvious difference relative to the fre-
quency of occurrence of different permissions, the user cannot understand the
risk of granting a permission using the frequency of occurrence of this permission
for the given app category. The results show that the CRCP perform not well in
permission recommendation.

6 Conclusion

We have proposed a method that combines Android malware detection and
Android permission recommendation to provide users with additional infor-
mation about apps to help make appropriate decisions about app installation
and usage. We investigated the feasibility of using app permission requests, the
intent-filters, the app’s category and which permissions are requested by other
apps in the same category to better inform users about whether to install a given
app and the risk scores of granting each required permission. This risk score has
a simple semantic meaning that is easily understood. The results of a malware
detection experiment indicate that the proposed approach can extract features
that we used from an Android app in 1s and that our malware detection can
detect 86.8% of malicious apps with only a few alarms (less than 1%). The results
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of a permission recommendation experiment show that, when a user denies a per-
mission for which the risk score of the corresponding permission group is greater
than 0.75, 27.3% and 56.7% of permissions for benign and malicious apps will
be denied, respectively.
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