
Adaptive Carving Method for Live FLV
Streaming

Haidong Ge1, Ning Zheng1, Lin Cai1, Ming Xu1(B), Tong Qiao2,
Tao Yang3(B), Jinkai Sun1, and Sudeng Hu4

1 Internet and Network Security Laboratory, School of Computer Science
and Technology, Hangzhou Dianzi University, Hangzhou, China

{151050149,nzheng,mxu,152050160}@hdu.edu.cn, cail@zj.gov.cn
2 School of Cyberspace, Hangzhou Dianzi University, Hangzhou, China

tong.qiao@hdu.edu.cn
3 Key Lab of the Third Research Institute of the Ministry

of Public Security, Shanghai, China
yangtao@stars.org.cn

4 Ming Hsieh Department of Electrical Engineering,
University of Southern California, Los Angeles, CA, USA

sudenghu@usc.edu

Abstract. Currently, most video carving methods are to recover video
files from disk file system, but these methods often do not work well
for video form network streams, especially for live streaming video. In
this paper, an adaptive video carving method is proposed to recover the
live FLV (Flash Video) streaming video from network traffic. Firstly,
to recover videos when there is no packet loss during data capture, a
method based on network data structure is proposed. Secondly, to solve
the problem of packet loss or corruption during data capture, another
video carving method is proposed based on both the FLV structure and
network data structure. Finally, to achieve good balance between com-
putational complexity and recovery accuracy, an adaptive method based
above two methods is proposed. The experimental results show that the
proposed methods achieve good performance both in consuming time
and recovery rate.

Keywords: Live streaming video · Recovery · Forensic
Network traffic

1 Introduction

Digital forensics is the process of preserving, acquiring, checking, analyzing and
presenting digital evidence from any digital devices. Recovering videos from dig-
ital data fragments is an important work in digital forensics. With the rapid
development of computer network, live streaming videos have been popular in
our daily life. Meanwhile live video related crimes have occurred more and more
frequently and it has aroused great concerns in society [1–4]. In addition, since
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

I. Romdhani et al. (Eds.): CollaborateCom 2017, LNICST 252, pp. 554–566, 2018.

https://doi.org/10.1007/978-3-030-00916-8_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_51&domain=pdf


Adaptive Carving for FLV Based Live Streaming Video 555

criminal evidence in storage media can be easily accessed by criminals and suf-
fer irreversible damages, the traditional digital forensics based on storage media
becomes less reliable in the case of providing direct and effective evidence in
criminal investigations [5–7]. Criminal evidence [8] sent to networks with live
streaming video could be hardly damaged by criminals. Therefore live streaming
video is safer to store criminal scenes and evidence, and carving methods for live
streaming videos are highly desired.

In the literature, most video carving methods use file structures to restore
video files from disk file system, but such methods do not perform well for
videos from network packet data. A few number of carving methods can restore
videos from network streams, like the open source FLV download tool FLVCD,
which downloads the FLV video from servers. However FLVCD does not work
for live streaming videos, because it requires source’s IP addresses, which are
often encrypted or hidden to prevent video stealing. Wireshark [9] is one of the
excellent network security and monitoring tools, which can extract parts of the
video in the network stream. The Flash Video (FLV) format is widely used in
live streaming video and usually transmitted with Hypertext Transfer Protocol
(HTTP)[10] chunked transfer encoding method. Inspired by the working princi-
ple of Wireshark and structure of FLV, the HTTP chunk based carving (HCBC)
is proposed to extract video data.

Furthermore, network data used for live streaming video recovering is usually
captured at certain gateways, where video data flows through with large volume
of other data. Sometimes we cannot capture all the needed video data, but
inevitably have some video packets lost, corrupted or disordered during capture
process [11,12]. Recovering from partial live streaming data is quite challenge
work. For example, HCBC does not perform well in such cases. To solve this
problem, we propose the FLV tag based carving (FTBC) method, which is based
on both FLV tag structure and network data structure, rather than network data
structure only. Since FLV data is only the subset of network data, we can recover
videos in the absence of some irrelevant network data. Moreover, the redundancy
in FLV data can be used to further recover videos precisely.

FTBC is better than HCBC in terms of video recovery rate, however it
consumes much more time than HCBC due to the complicated retrieving scheme
it adopts. In the case of losing no packet or a few packet, HCBC could also
achieves good performance in recovery rate. To make a good balance between
consuming time and recovery rate, an adaptive method based on FTBC and
HCBC is finally proposed in this paper.

The remainder of the paper is structured as follows: In Sect. 2, related video
carving work is described; In Sect. 3, the adaptive video carving method is intro-
duced; in Sect. 4, the experimental results are given to compare the performance
of the proposed methods and other benchmarks. Finally, Sect. 5 concludes this
paper.



556 H. Ge et al.

2 Related Work

The traditional recovery technique recover the video files from the storage device,
we recover video from the captured network traffic based on the network data
structures and video structure. Basic video recovery technique for video file
restoration use the meta-information [13] of the file system to recover a video file
stored in a storage medium. New attempts have been made to recover the files
depending on the file structure or file content instead of the file system informa-
tion. The Scalpel [14] is one of the file carving tools which do not rely on the
file system meta-information to restore a video file. This carver uses header and
footer of video files to restore the video file in a whole disc. Pal and Memon pro-
posed [15] a general framework to restore a file. This method identifies fragments
and reorders the fragments by uses three main steps: preprocessing, collation and
reassembly. These files in the storage medium which was not allocated. Park and
Lee proposed a procedure for use on video data fragments forensics related to
DVRs [16]. They present a way to sort the extracted video frames based on the
above properties. These frames will be converted to images and these images
is used to construct a playable video file. Yang et al. [17] proposed a technique
in their paper is an AVI carving method based on frame size and index. This
method extracts video data from a storage medium using signatures and statis-
tic information rather than file system information. However, to the best of our
knowledge, there is only a little research of network flow solution that is available
for video craving.

Most of the previous works focused on MPEG4 or some other formats and
not much work has been proposed in video carving for network flows. With the
consideration of wide use of the FLV format in live streaming videos, recovering
FLV data in network flows remains important.

3 The Proposed Methods

In this section, two carving methods based on network data structure and FLV
structure are developed to handle different packet loss rate. In order to handle
various network situations, an adaptive carving method is proposed based on
these two methods. These proposed carving methods mainly include three stage:

Fig. 1. Processing steps of the proposed video file restoration technique



Adaptive Carving for FLV Based Live Streaming Video 557

preprocessing, extraction and connection, as shown in Fig. 1. Due to the huge
amount of data flowing on the network, directly recovering video files this data
may not be efficient. In the preprocessing stage, network work data is screened
based on the source IP, destination IP and port and playloads of selected TCP
packets are extracted. In the extraction stage, the FLV header data and the
video data is extracted in the data blocks based on the characteristics of the
network flow or the structural features of the FLV file. Finally, in the reordering
stage, extracted data is sorted and merged into video files.

3.1 FLV File Structure

The FLV file consists of a file header and a number of tags that could be classified
into three categories including audio tags, video tags and script tags based on the
types of streams they represent. The overview structure of a FLV file is shown
in Fig. 2. The FLV file starts with a file header consisting of 9 bytes, while the
first three bytes are the signature of the FLV file “46 4C 56”. 4 bytes followed
by the 9 bytes are the first tag size which is always 0. After that, the FLV file is
splitted into different tags. The first eleven bytes of a tag is tag header, where
first byte indicates tag types, followed by three bytes indicating playload size of a
tag. Other information like timestamp is indicated in the remaining bytes. Since
we are only interested in video and audio files in this work, our discussion on
FLV tags is limited to these two types. Table 1 shows typical values of different
types of FLV tags, where we can see each type of FLV tag has a unique value
in the first byte. For example, ‘0x08’ represent audio, ‘0x09’ for video, ‘0x12’
for metadata which contains codec specifications. Furthermore, the first byte
of tag playload, which indicates its type, should be restricted to certain values
according to tag types. For instance, as shown in Table 2, inside a ‘video’ tag,
the first byte of tag playload is either’0x17’ denoting a keyframe of video data
or ‘0x27’ denoting interframe of video data. Other values are invalid.

3.2 Video Carving with HCBC

In China, the technique of HTTP-FLV is widely used in live video streaming.
Due to the real-time nature of live video, the size of the transmitted content

Fig. 2. The structure of video file



558 H. Ge et al.

Table 1. FLV tag type. ‘x’ is hexadecimal data.

Tag code Name Description

0x08xxxxxxxxxxxxxxxxxxxx Audio Contains a audio packet similar to a
SWF SoundStreamBlock plus codec
information

0x09xxxxxxxxxxxxxxxxxxxx Video Contains a video packet similar to a
SWF VideoFrame plus codec information

0x12xxxxxxxxxxxxxxxxxxxx Meta Contains two AMF packet, the name of
the event and the data to gowith it

could not be determined when HTTP is used to transmit video data. Therefore
most websites adopt HTTP chunked transfer encoding. HCBC is developed to
recover video data from such network data.

Table 2. Tag data type.

Tag type First byte of playload Description

Meta 0x02 Metadata

Audio 0xAF Audio data

Video 0x17 Keyframe data

0x27 Interframe data

Firstly, HTTP chunks is scanned byte by byte to search for the FLV file
signature “46 4C 56”. When the signature is identified, the data after it is
extracted. Secondly, the header and data portion of the HTTP chunks are
extracted. Finally, we stop scanning when meeting the end tag. In the reordering
process, the fragments are merged into videos based on the extraction order of
the chunk data.

In our experiments, it was found that the performance of HCBC is close to
that of the file-based transfer method when no packet is missing or corrupted
during the capture at gateways. This method can be realized on network data
structure, referencing to as HTTP chunked data, without handling complicated
file structures, it consumes less time as comparing to FTBC. But as the packet
missing rate during capture goes high, it could not extract valid video data as
effectively as FTBC.

3.3 Video Carving with FTBC

In HCBC, video files are extracted from network streams in a coarse way that
it requires the completeness of whole HTTP chunks. However due to the huge
mount of data passing through gateways, sometimes it is impossible to capture



Adaptive Carving for FLV Based Live Streaming Video 559

all the related packets. When captured IP datagrams are incomplete or corrupted
[11], HTTP chunks are more likely to become incomplete, and thus the possibility
of successfully extracting data will be reduced significantly. Therefore instead of
extracting at HTTP chunk level, we extract video at a lower and finer level: FLV
file level.

Firstly, video or audio tags are detected and verified in the captured network
data. We obtain data parts of HTTP chucks by removing headers. In this way, no
header information from HTTP chunks is utilized. Then FLV header is located
in the data parts of HTTP chunks by searching for the FLV signature. Video
and audio FLV tags could be identified by searching for tag signatures in Table 1
after the FLV header. For instance, if a tag starts with ‘08’, it is audio tag and
the following bit stream is audio stream; if it starts with ‘09’, it is a video tag; if
it starts with ‘12’, it is a metadata tag. Moreover, according to the FLV structure
described in Sect. 3.1, we could access the first byte of tag playload and use it
to validate the detected tags. As discussed in Sect. 3.1 and shown in Table 2, for
a video tag, the first byte should be either ‘0x17’ or ‘0x27’, for a audio tag, it
should be ‘AF’ and for a metadata tag, it should be ‘02’, otherwise the detected
tags are invalid. For clarity, an example of video tag is given in Fig. 3, which is
highlighted in the red box. It starts with video tag signature ‘09’ and the first
eleven bytes within the red box is the tag header. The first byte following the
tag header is ‘17’, which confirms the validity of the video tag.

Secondly, video and audio file information is extracted from tag header. It is
straightforward to access the size of tag playload once tag is found. For example,
as shown in Fig. 3, the three bytes right after the tag signature, i.e.,“00 00 1E”
indicates the size of tag playload, which is 30 in decimal. Timestamps, which is
another important information that will be used in the reordering stage, could
be extracted from the four bytes after size bytes of tag data. It is “6F 8D A8
01” in this example.

Finally, the size of tag data is verified. The last four bytes before the next
tag denotes the size of whole tag, denoted by LH. At the same time, the size
of tag is recorded. Sometimes, video tags could cross multiple network packets
as shown in Fig. 4, where block X is the first network packet that a new tag
comes up, and block X+n is the last packet it ends with. L1 and Ln are the
bytes that the tag takes in the first block and the last block, respectively. Li,

Tag header(11byte) Tag data length(3byte)

Timestamp

Tag data

Tag length(4byte)

Fig. 3. The structure of video tag



560 H. Ge et al.

i = 2, · · · , n − 1 is the size of block i between the first and last blocks. if
∑

Li

equals LH, the detected tag data is correct. Otherwise, the data is corrupted
and should be dropped.

When a network packet containing a tag header is lost, two nearby tag data
streams could be incorrectly concatenate into a single tag in FTBC. To deal with
that case, M is set as the maximum size of a tag. If the size of the inspected
tags exceed M , we will drop them. M is critical to the performance of our
algorithm. If M is too small, it could falsely drop valid tags. If M is too large,
it could be ineffective in detecting invalid tags. Through intensive experiments,
our algorithm FTBC could achieve the optimal results when it is set as

M = 19 × L̄TCP (1)

where L̄TCP is the average size of TCP packets.

Fig. 4. Calculate the length of tag

In the extraction phase, timestamp is extracted for each video and audio
tag. Since according to the timestamp format in FLV file, the first three bytes
are low, the fourth byte is high, the correct timestamp could be calculated by
recording these four bytes. In the case of Fig. 3, the right order of the timestamp
information is “01 6E 8D A8”. A packet may contains multiple tags and these
tags within the same packet is in sequential order. Therefore instead of sorting
tags, it is convenient to sort packets. For the packets containing multiple tags,
only the timestamp from the first tag is used for sorting. Finally, tags and the
fragments that contain these tags could be sorted according to the value of
converted timestamp.

3.4 Adaptive Carving

Both HCBC and FTBC have their advantages and disadvantages. HCBC takes
less time, but suffers less recovery rate, while FTBC can still achieve large recov-
ery rate even at large packet loss rate, but consumes more time. That encourage
us to take these two methods adaptively to achieve the balance between time
and accuracy. A cost function is defined as

J = F + λT (2)

where F is failure rate that indicates the percentage of tags with failing to
recover; T denotes the average time to process a packet. The algorithm that



Adaptive Carving for FLV Based Live Streaming Video 561

gives the lowest cost in Eq. (2), is the optimal solution we want to adopt. λ is
a balance parameter to set the priority between accuracy and time. If λ is 0,
accuracy is the only factor we care about when choosing between HCBC and
FTBC. Based on our experimental results in Sect. 4, we assume failure rate of
both method could be approximated by a linear model to packet loss rate as

FH = αR, FF = βR (3)

where FH and FF is failure rate of HCBC and FTBC, respectively; R is the loss
rate of the packets captured at gateways; α and β are the slopes of the linear
models and α > β.

Decision is made based on the cost of each method, and HCBC should be
adopted when its cost is less than that of FTBC as

FH + λTH < FF + λTF (4)

where TH and TF are the average processing time of a packet in HCBC and
FTBC, respectively. By substituting Eq. (3) into Eq. (4), decision could be made
based on

R < φ(TH − TF ) (5)

where φ = λ
α−β is a pre-setting parameter that sets preference between accuracy

and consuming time. When Eq. (5) occurs, HCBC is adopted, otherwise FTBC
is adopted. To calculate Eq. (5), R needs to be estimated. TCP packet could be
sorted according to their sequence number and then a sliding window with size
of n can be used to estimate R.

4 Experimental Results

4.1 Experimental Settings

To evaluate the performance of the proposed methods, an experimental network
is set up to simulate the real environment as shown in Fig. 5, 10 virtual machines
as users are linked to the Internet via the same gateway. The user machines
are running on Microsoft Windows 10 (64-Bit) with IPs from 192.168.1.1 to
192.168.1.10 and the gateway is on Linux (CentOS 6.7) with IP 192.168.1.254.
FengYunlive, which is one of the most popular live streaming video website in
China, is used as our dataset source and video files from Google Chrome cache is
used as original data. The network bandwidth at the gateway is set to 10 Mbps.
The network packets use for video carving are captured at the gateway with
open source software tcpdump while 3 user machines are watching live videos
from FengYunlive, and the rest are browsing random websites. To simulate the
packet loss during data capture, the captured network data are randomly deleted
in 0%, 10%, 30% and 50% for different experiments. In order to estimate R in
this paper, n is set to 1000. By extracting the sequence numbers of the first and
the last TCP packets in the window, we are able to calculate the total number of
TCP packets m between them if no packet is missing. Finally, the R is calculated



562 H. Ge et al.

Fig. 5. The environment of experiment

as m−n
m . In our experiments, we found TH and TF are very stable and thus right

side of Eq. (5), i.e., φ(TH −TF ) is set as a constant value, 0.07 in our experiments.
The performance of proposed methods was compared with one of similar

video carving tools: Wireshark. It extracts video data in a way similar to HCBC.
However when a IP datagram is lost or corrupted, it could only recover video
data before the lost or corrupted network data and is unable to extract data
after that.

4.2 Evaluation Metrics

The performance of the proposed methods are evaluated in three metrics: pre-
cision, recall and F-Measure calculate as

P (Precision) =
A

A + B
∗ 100% (6)

R(Recall) =
A

A + C
∗ 100% (7)

F − value =
2 ∗ P ∗ R

P + R
∗ 100% (8)

where A represents the number of true recovered FLV tags, B is the number
of false recovered FLV tags, and C is the number of unrecovered FLV tags. F-
value is the weighted average of precision and recall. To check if the tag data is
restored, the hash values of the restored video tags and the original video tags
is compared through the MD5 function.

4.3 Performance Comparison

Three FLV files are tested in our experiments, where each file contains 63991,
23678 and 31231 tags, respectively. Table 3 shows the recall of different methods
when there is no packet missing or corrupted in the captured data. HCBC con-
sumes less time than FTBC as expected and they achieves similar performance
in recall, 93.73% and 95.66% on average by HCBC and FTBC, respectively. The
performance of adaptive carving is exactly the same as HCBC, because HCBC is



Adaptive Carving for FLV Based Live Streaming Video 563

Table 3. Experiment results of no packet losing or corrupted

Method Recovered tags count Average
recall
(%)

Time taken
(hh:mm:ss)

test1.flv
(63991)

Recall test2.flv
(23678)

Recall
(%)

test3.flv
(31231)

Recall
(%)

Wireshark 63991 100.00 23678 100.00 31231 100.00 100.00 00:13:25

HCBC 61021 95.36 22054 93.14 28971 92.76 93.75 00:19:24

FTBC 61821 96.61 22354 94.41 29971 95.97 95.66 00:49:48

Adaptive 61021 95.36 22054 93.14 28971 92.76 93.75 00:19:24

Table 4. Experiment results of deleting 10% related IP datagrams

Method
(Del-10%)

Recovered tags count Average
recall
(%)

Time taken
(hh:mm:ss)

test1.flv
(60191)

Recall
(%)

test2.flv
(21308)

Recall
(%)

test3.flv
(27893)

Recall
(%)

Wireshark 33915 56.35 16131 75.70 19231 68.95 67.00 00:13:25

HCBC 54637 90.77 18904 88.72 24601 88.20 89.23 00:18:34

FTBC 58318 96.89 20138 94.51 26971 96.69 96.03 00:48:18

Adaptive 57492 95.52 19904 93.41 26108 93.60 94.18 00:22:59

always preferred in the adaptive method when there is no packet loss. Wireshark
achieves the highest recall 100% and consumes the least time.

However when parts of the captured packets are missing, as shown in Tables 4,
5 and 6, the performance of Wireshark decreases dramatically. It only achieves
67.00%, 39.95% and 22.16% on average in recall when packet loss rate is 10%,
30%, 50%, respectively. HCBC also suffers less recovery rate, but its performance

Table 5. Experiment results of deleting 30% related IP datagrams

Method
(Del-30%)

Recovered tags count Average
recall
(%)

Time taken
(hh:mm:ss)

test1.flv
(46703)

Recall
(%)

test2.flv
(18537)

Recall
(%)

test3.flv
(22501)

Recall
(%)

Wireshark 13815 29.58 9131 49.26 19231 41.02 39.95 00:13:25

HCBC 36021 77.13 12054 65.03 17083 75.92 72.69 00:16:43

FTBC 45802 98.07 17913 96.63 21285 94.60 96.43 00:42:57

Adaptive 42827 91.70 17231 92.95 20231 89.91 91.52 00:33:43



564 H. Ge et al.

Table 6. Experiment results of deleting 50% related IP datagrams

Method
(Del-50%)

Recovered tags count Average
recall
(%)

Time taken
(hh:mm:ss)

test1.flv
(38095)

Recall
(%)

test2.flv
(13349)

Recall
(%)

test3.flv
(17839)

Recall
(%)

Wireshark 5917 15.53 5131 38.44 2231 12.51 22.16 00:13:25

HCBC 25917 68.03 8019 60.07 10971 61.50 63.20 00:15:02

FTBC 37021 97.18 13054 97.79 17202 96.43 97.13 00:38:08

Adaptive 36561 95.97 12563 94.11 16941 94.97 95.02 00:28:54

in recall is still better than that of Wireshark. Even though FTBC consumes the
most time among all the methods, it could achieve recall higher than 95% in
all conditions, because FTBC has traversed all the data as much as possible to
extract the video data based on network data structure and FLV structure. As
for the adaptive carving, benefiting from adaptively switching between HCBC
and FTBC, it could always achieve comparable performance to FTBC in term
of recall, but consumes less time, especially at low packet loss rate, e.g. 10%.

As measured in precision P in Eq. (6), all methods in all cases achieve 100%,
which means there is no false recovery. This is because the redundant information
in both network packet header and FLV tag header could effectively prevent false
recovery.

Figure 6 shows the curves of recall and F-value versus packet loss rate for all
methods, where we can see both FTBC and adaptive methods could maintain
high recall and F-value in various the packet loss rates, while recall and F-value of
HCBC and Wireshark sharply decrease as packet loss rate increases. In addition,

Pe
rc

en
ta

ge
(%

)

The rate of deleting IP datagrams

The recall

(a) Recall.

Pe
rc

en
ta

ge
(%

)

The rate of deleting IP datagrams

The F-value

(b) F-Value.

Fig. 6. Recall and F-Value of different methods in various packet loss rate.



Adaptive Carving for FLV Based Live Streaming Video 565

in Fig. 6(a), the relation between packet loss and recall of HCBC and FTBC can
be both modeled linearly, which verifies our assumption of linear model on the
failure rate in Eq. (3).

5 Conclusion

This paper presents a recovery technology for live streaming videos. FLV is a
popular video container widely used in live streaming videos and the proposed
carving methods target at recovering data from FLV based video network data.
First, two different carving approaches are proposed to process network data
captured at gateways in different situations. When captured data is complete or
with a small scale of data loss, HCBC is able to recover video quickly and accu-
rately. When captured data suffers severe packet loss, FTBC could obtain high
recovery rate at cost of high consuming time. To achieve the balance between
recovery rate and consuming time, an adaptive method is proposed based FTBC
and HCBC. The experimental results verify the effectiveness of the proposed
methods as comparing with the prior such as Wireshark.

Acknowledgment. This work is supported by the National Key R&D Plan of China
under grant no. 2016YFB0800201, the Natural Science Foundation of China under
grant no. 61070212, 61572165 and 61702150, the State Key Program of Zhejiang
Province Natural Science Foundation of China under grant no. LZ15F020003, the
Key research and development plan project of Zhejiang Province under grant no.
2017C01065, the Key Lab of Information Network Security, Ministry of Public Security,
under grant no C16603.

References

1. Zhu, X., Chen, C.W.: A joint source-channel adaptive scheme for wireless H.264
video authentication. In: IEEE International Conference on Multimedia and Expo,
pp. 13–18 (2010)

2. Dong, Y.N., Zhao, J.J., Jin, J.: Novel feature selection and classification of internet
video traffic based on a hierarchical scheme. Comput. Netw. 119, 102–111 (2017)

3. Li, J., Bhattacharyya, R., Paul, S., Shakkottai, S.: Incentivizing sharing in realtime
D2D streaming networks: a mean field game perspective. In: Computer Commu-
nications, pp. 2119–2127 (2016)

4. Espina, F., Morato, D., Izal, M., Magaña, E.: Analytical model for MPEG video
frame loss rates and playback interruptions on packet networks. Multimed. Tools
Appl. 72(1), 361–383 (2014)

5. Na, G.H., Shim, K.S., Moon, K.W., Kong, S.G., Kim, E.S., Lee, J.: Frame-based
recovery of corrupted video files using video codec specifications. IEEE Trans.
Image Process. Publ. IEEE Signal Process. Soc. 23(2), 517–26 (2014)

6. Zheng, X., Liu, Y., Mei, L., Chuanping, H., Chen, L.: Semantic based representing
and organizing surveillance big data using video structural description technology.
J. Syst. Softw. 102(C), 217–225 (2015)

7. Uzun, E., Sencar, H.T.: Carving orphaned JPEG file fragments. IEEE Trans. Inf.
Forensics Secur. 10(8), 1549–1563 (2015)



566 H. Ge et al.

8. Chen, S., Pande, A., Zeng, K., Mohapatra, P.: Live video forensics: source identi-
fication in lossy wireless networks. IEEE Trans. Inf. Forensics Secur. 10(1), 28–39
(2015)

9. Laing, S., Locasto, M.E., Aycock, J.: An experience report on extracting and view-
ing memory events via Wireshark. In: USENIX Conference on Offensive Technolo-
gies (2014)

10. Wu, T., Petrangeli, S., Huysegems, R., Bostoen, T., De Turck, F.: Network-based
video freeze detection and prediction in HTTP adaptive streaming. Comput. Com-
mun. 99, 37–47 (2016)

11. Matoušek, P., et al.: Advanced techniques for reconstruction of incomplete network
data. In: James, J.I., Breitinger, F. (eds.) ICDF2C 2015. LNICST, vol. 157, pp.
69–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25512-5 6

12. Ning, J., Singh, S., Pelechrinis, K., Liu, B., Krishnamurthy, S.V., Govindan, R.:
Forensic analysis of packet losses in wireless networks. IEEE/ACM Trans. Netw.
24(4), 1975–1988 (2016)

13. Sommer, P.: File system forensic analysis, B. carrier. Addison Wesley, ISBN 0-321-
26817-2. Digit. Investig. 3(2), 103 (2006)

14. Richard III, G.G., Roussev, V.: Scalpel: a frugal, high performance file carver. In:
Refereed Proceedings of the Digital Forensic Research Workshop, DFRWS 2005,
Astor Crowne Plaza, New Orleans, Louisiana, USA, August 2005

15. Pal, A., Memon, N.: The evolution of file carving. IEEE Signal Process. Mag.
26(2), 59–71 (2009)

16. Park, J., Lee, S.: Data fragment forensics for embedded DVR systems. Digit. Inves-
tig. 11(3), 187–200 (2014)

17. Yang, Y., Zheng, X., Liu, L., Sun, G.: A security carving approach for AVI video
based on frame size and index. Multimedia Tools Appl. 76, 3293–3312 (2016)

https://doi.org/10.1007/978-3-319-25512-5_6

	Adaptive Carving Method for Live FLV Streaming
	1 Introduction
	2 Related Work
	3 The Proposed Methods
	3.1 FLV File Structure
	3.2 Video Carving with HCBC
	3.3 Video Carving with FTBC
	3.4 Adaptive Carving

	4 Experimental Results
	4.1 Experimental Settings
	4.2 Evaluation Metrics
	4.3 Performance Comparison

	5 Conclusion
	References




