
High Performance Regular Expression
Matching on FPGA

Jiajia Yang, Lei Jiang(B), Xu Bai, and Qiong Dai

School of Cyber Security, Institute of Information Engineering,
University of Chinese Academy of Sciences, UCAS,

Beijing, People’s Republic of China
{yangjiajia,jianglei,baixu,daiqiong}@iie.ac.cn

Abstract. Deep Packet Inspection (DPI) technology has been widely
deployed in Network Intrusion Detection System (NIDS) to detect
attacks and viruses. State-of-the-art NIDS uses Deterministic Finite
Automata (DFA) to perform regular expression matching for its sta-
ble matching speed. However, traditional DFA algorithm’s throughput
is limited by the input character’s width (usually one character per time).
In this paper, we present an architecture named Parallel-DFA to accel-
erate regular expression matching by scanning multiple characters per
time. Experimental results show that, our architecture can achieve as
high as 1200Gbps (1.17 Tbps) rate on current single Field-Programmable
Gate Array (FPGA) chip. This makes it a very practical solution for
NIDS in 100G Ethernet standard network, which is currently the fastest
approved standard of Ethernet. To the best of our knowledge, this is
the fastest matching performance architecture on a single FPGA chip.
Besides, the throughput is nearly 3 orders of magnitude (916×) than
that of original DFA implemented on software. Our architecture is about
183.2× efficiency than that of original DFA.

Keywords: Deep Packet Inspection · Regular expression matching
DFA · FPGA · Network security

1 Introduction

Networking security in collaborative networks is becoming crucial with the var-
ious attacks networks are being exposed to [1]. In order to protect networking
devices and computer systems from such attacks, Signature-based DPI tech-
nologies have taken root as a dominant security mechanism to detect and neu-
tralize potential threats by discarding malicious traffic. Most of the attacks are
described by regular expressions (REs) for its powerful and flexible expressive
ability. There has been a lot of recent works on implementing REs for use in high-
speed networking environment, particularly with representations based on DFA
[2]. However, DFA suffers from huge memory consumption. Moreover, match-
ing network traffic against a DFA is inherently a serial activity. These existing

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

I. Romdhani et al. (Eds.): CollaborateCom 2017, LNICST 252, pp. 541–553, 2018.

https://doi.org/10.1007/978-3-030-00916-8_50

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_50&domain=pdf


542 J. Yang et al.

problems make DFA a challenge to be implemented in current limited resources
network devices.

In order to accelerate DFA matching, many accelerated methods on dif-
ferent platforms have been proposed. These methods have already achieved
high throughput theoretically but still suffer their drawbacks respectively. Some
schemes achieve high throughput at the expense of consuming huge memory,
making them impractical in current dedicated hardware with limited resources.
Thus, satisfying low memory consumption and high throughput requirement in
high-speed network environment simultaneously is difficult and challenging.

In this paper, we present Parallel-DFA, a high-throughput DFA acceler-
ated architecture. Using tight integration of logic resources available on-chip on
FPGA, we can achieve a throughput as high as 1200 Gbps. With the requirements
of high performance in high-speed network and the advancements in memory
technology, coping with the acceleration problem has become a firstly concern
while the memory efficiency is a secondly concern. Thus, Parallel-DFA mainly
focuses on the acceleration of DFA. We summarize our contributions as follows:

(1) A high-speed DFA accelerated architecture on a single chip. It’s throughput
can achieve as high as 1200 Gbps.

(2) Theoretical analysis of time and space consumption of our proposed architec-
ture. We also compare the time and space consumption of our architecture
with that of original DFA and multi-stride DFA.

(3) Detailed performance analysis wrt throughput, resource usage and the num-
ber of supported rules under various configurations.

The rest of this paper is organized as follows. Section 2 discusses the previ-
ous work related to RE matching. Section 3 describes the detail of Parallel-DFA
architecture. Section 4 describes the performance evaluation. Finally, Sect. 5 con-
cludes this paper.

2 Related Work

With the widespread use of REs, RE matching has become research interests
and a hot topic in academic and industries area. Many works have been exten-
sively studied to promote RE matching, especially DFA algorithms’ practical
application in NIDS. Currently, researches on RE matching mainly focus on two
aspects: One is to reduce the memory consumption of RE automaton, the other
is to improve the throughput of RE matching.

Many compression strategies have been proposed to reduce the memory con-
sumption of RE transition tables. Most of the strategies relate to compress
techniques based on the characteristic of RE transition tables. Kumar et al.
[3] propose D2FA based on observing the similarity of transitions between two
states and applying default transitions to compress DFA transition table. At the
expense of accessing memory multiple times per input character, D2FA achieves
more than 95% compression ratio than the original DFA transition table. Moti-
vated by the idea of D2FA, Becchi et al. in [4] propose A-DFA, which is also



High Performance Regular Expression Matching on FPGA 543

a novel DFA compression algorithm. A-DFA quantifies a state’s distance from
the initial state, and results in at most 2N state traversals when processing an
input string of length N . In comparison with the D2FA method, A-DFA yields
a comparable compression ratio and has lower complexity. Jiang et al. [5] use
the clustering algorithms to cluster the similar states together. In this way, they
achieves memory consumption by more than 95%.

Besides, some strategies focus on improving the performance of RE match-
ing. For example, Brodie et al. [6] use multi-stride DFAs to increase the through-
put. Specially, a stride-k DFA consumes k characters per state transition, thus
yielding a k-fold performance increase. However, multi-stride DFAs lead to an
exponentially increased memory requirement. Jan et al. [7] present a pattern-
matching engine built on an extended version of the B-FSM scheme that pro-
vides a substantially more compact data structure on DFA. Experimental results
show the B-FSM implemented on FPGA can achieve scan rates on 16 Gb/s per
B-FSM. Chad [8] et al. use dedicated TCAM to accelerate RE matching. In order
to reduce TCAM space and improve matching speed, three novel techniques are
proposed: transition sharing, table consolidation, and variable striding. Their
method can achieve potential matching throughput of 10 to 19 Gbps using only
a single 2.36 Mb TCAM chip. But it is challenging to implement RE on TCAM
for its expensive and not scalable with respect to clock rates and power con-
sumption.

3 The Detail of Our Architecture

This section includes 3 subsections. Subsection 3.1 introduces original DFA
and multi-stride DFA. Subsection 3.2 gives the description of our algorithm. In
Subsect. 3.3, we design and analyze our hardware architecture.

3.1 The Introduction of Original DFA and Multi-stride DFA

We introduce the basic original DFA by an example. Figure 1 (I) shows a stan-
dard DFA defined on the alphabet a, b. In this DFA, state 0, 1 (in white cycle)
are normal states, while state 2 (in grey cycle) is match state. We define a graph
G = <V,E>, where V is a set of vertices (states) and E is a set of edges
(transitions). In this example, V = {v0, v1, v1} = {0, 1, 2}, where vi is a ver-
tex. E = {e0, e1, e2, e3, e4, e5}, where ei denotes a transition (edge). A transition
denotes a state (vertex) jumps to another state. Its additional information is an
alphabet, such as a, b. If the initial state is state 0 and a input string is ‘abab’,
the traversal path will be: (0) a−→ (1) b−→ (2) a−→ (0) b−→ (0).

Suppose the length of input string is n and the number of DFA states is S. As
the number of ASCII characters is 256, original DFA graph’s space consumption
is: 256×S×�log2S�, where �log2S� denotes the bit-width of an edge (transition).
The processing time of original DFA is O(n).

Because the processing time is too large for DFA, Becchi et al. [9] introduce
classical multi-striding technique, which is used to increase throughput of a sys-
tem for matching strings against a set of REs. An example is given in Fig. 1 (II).



544 J. Yang et al.

0 1 2 0 1 2aa,ba

ab

aa
ab
ba

ab,bb

ba,bb
bb

traversal path

match state
transition (edge)

state (vertex)

(I) ori-DFA (II) multi-stride DFA

Fig. 1. The DFA algorithms. (I) the original DFA. (II) a multi-stride DFA that con-
sumes 2 characters per time.

In this 2-DFA, it can consume 2 characters per time. If processing n characters,
it just consumes n

2 times. In another words, it can achieve 2× speedup of original

DFA. The traversal path is: (0) ab−→ (2) ab−→ (0).
As for multi-stride DFA, its space consumption is about S × �log2S� × 256n.

This is a huge memory consumption. Although the time complexity is only 1
2

of original DFA’s, the space consumption is too huge to make it practical on
current limited resource device.

3.2 The Description of Our Algorithm

Now, we give an example to show the process of our algorithm in Fig. 2. In
Fig. 2, our algorithm can be divided into four stages: (1) we split original DFA
into 4 subgraphs based on the input string ‘abab’. The additional information of

Fig. 2. An example to show the whole process.



High Performance Regular Expression Matching on FPGA 545

Algorithm 1. MergeSubGraph(Gj , Gk)
Input: Gj , Gk

Output: G
Procedures:
1: G.V ← ∅, G.E ← ∅

2: for all v, v′, (v ∈ Gj .V , v′ ∈ Gk.V ) do in parallel
3: if ∃ vmid, satisfy <v,vmid> ∈ Gj .E, <vmid,v

′> ∈ Gk.E then
4: if these states v,vmid,v

′ has one in grey then
5: v′ is in grey
6: end if
7: G.V ← v′

8: end if
9: end for

Algorithm 2. MergeNodeGroup(GRx, GRy)
Input: GRx, GRy

Output: GRz

Procedures:
1: GRz.V ← ∅, GRz.E ← ∅

2: for all v
′′
i , v

′′′
j , (v

′′
i ∈ GRx.V , v

′′′
j ∈ GRy.V ) do in parallel

3: if ∃ i,j, satisfy j == v
′′
i then

4: GRz ← v
′′′
j

5: end if
6: end for

transitions of each subgraphs is only an alphabet. (2) We merge these subgraphs
to GRs (i.e. a group of state nodes). (3) We merge GRs into the last GR. (4) If
given the current state, we confirm the next state, and justify whether the input
string ‘abab’ is accepted by this DFA.

The pseudo-code of stage (2) is shown in Algorithm 1. By Algorithm 1, we
can merge two subgraphs Gj , Gk into a GR, which only contains state nodes.
The pseudo-code of stage (3) is shown in Algorithm 2. By Algorithm 2, we can
merge two GRs into one GR.

We give an example to explain the Algorithm 2. In Fig. 2, GR1 =
{v′′

0 , v
′′
1 , v

′′
2 } = (2, 2, 0), where v

′′
0 = 2, v

′′
1 = 2, v

′′
2 = 0. GR2 = {v′′′

0 , v
′′′
1 , v

′′′
2 } =

(2, 2, 0), where v
′′′
0 = 2, v

′′′
1 = 2, v

′′′
2 = 0. Because v

′′
0 = 2, then GR3.V ←

v
′′′
2 ; v

′′
1 = 2, then GR3.V ← v

′′′
2 ; v

′′
2 = 0, then GR3.V ← v

′′′
0 . In summary,

GR3 = {v′′′
2 , v

′′′
2 , v

′′′
0 } = (0, 0, 2).

The pseudo-code of the whole process is shown in Algorithm 3. Line 1–11
show how to split original DFA. The ori-DFA is split into several subgraphs
based on input string str. {G} denotes a set of subgraphs. Line 6–8 show all
the edges that their additional information equals to the input character will be
extracted to form a subgraph. Line 12–17 show how to merge these subgraphs.
Each two adjacent subgraphs are merged into a GR. All the GR

′
s will be put

into the set {GR}. Line 18–26 show how to merge these GRs. Line 21–23 show



546 J. Yang et al.

Algorithm 3. The whole process
Input: G, str, the current state
Output: accepted
Procedures:
1: // 1.split DFA based on input string str
2: i ← 0
3: {G} ← ∅

4: for all character ch ∈ str do in parallel
5: ∀ e ∈ DFA //e := edge
6: if (e.character == ch) then
7: Copy e and its vertices to Gi // form the ith subgraph
8: end if
9: {G} ← {G} ⋃

Gi

10: i++
11: end for
12: // 2.merge subgraphs
13: {GR} ← ∅

14: for all G2i,G2i+1 (G2i,G2i+1 ∈ {G}) do in parallel

15: GR
′ ← MergeSubGraph(G2i,G2i+1)

16: {GR} ← {GR} ⋃
GR

′

17: end for
18: // 3.merge GRs
19: while ({GR} only has a group) do
20: for all GR2i,GR2i+1 (GR2i,GR2i+1 ∈ {GR}) do
21: GRnew ← MergeNodeGroup(GR2i,GR2i+1)
22: { } ← { } ⋃

GRnew

23: end for
24: {GR} ← ∅

25: {GR} ← { }
26: end while
27: // 4. justify whether the input string is accepted
28: GRlast ← {GR}
29: if current state == i then
30: next state = GRlast.vi
31: if (GRlast.vi is in grey) then
32: accepted = Y // Y := yes
33: else
34: accepted = N // N := no
35: end if
36: end if

we merge each two adjacent GRs into a GR, then put it into a new set { }. After
merging, all the GRnews in { } are put into previous {GR}, which has been clear
out (Line 24–25). Finally, we only has a GR in {GR} (line 19). Line 27–36 show
whether the input string str is accepted. As {GR} only has a group (i.e. GR),
we set GRlast = GR. If GRlast.vi is in grey cycle, then str is accepted (line 32).
Otherwise, it’s not accepted (line 34).



High Performance Regular Expression Matching on FPGA 547

Engine0 Engine1 EngineM

N Y N

(N, Y, , N)

input string

Fig. 3. Each rule is compiled into an engine. Our architecture consists of multiple
engines.

The space consumption of these subgraphs is: n × S × �log2S�. The space
consumption of GRs is: S×�log2S�×(n−1). Space consumption mainly includes
the consumption of DFA, subgraphs and GRs. So our algorithm’s total memory
consumption is: (2n− 1 + 256) ×S × �log2S�. In general, S is a constant, so the
space complexity of algorithm 3 is O(n). If algorithm 3 is implemented by non-
pipelined technique, it takes (�log2(n)� + 1) clock cycles to process n characters.
If accelerated by the pipelined technique, it only takes 1 clock cycles to process
n characters.

3.3 Hardware Architecture

(1) design our hardware architecture
Suppose each rule is compiled into an engine, which performs RE matching
by Algorithm 3. Since a ruleset may include many rules, we make these
engines in parallel. An example is given in Fig. 3. In Fig. 3, the Enginei
denotes the ith engine. The lookup process is fairly simple. The input string
is sent into these engines. At last, each engine shows whether the input string
is accepted.

(2) the analysis of space and time consumption
Suppose there are m rules. The ith rule is compiled into Si states. The length
of input string is n. So the total space consumption of our architecture is:∑m

i=1[(2n − 1) + 256] × Si × �log2Si�. If we use original DFA as baseline,
the ratio of space consumption between our architecture and original DFA
is shown in Eq. (1):

MA =
∑m

i=1[(2n − 1) + 256] × Si × �log2Si�∑m
i=1 256 × Si × �log2Si� =

2n + 255
256

(1)

Suppose m = 4, Si = 16, n = 8, then MA = 1.06. That means we only
consume additional 6% space consumption than the original DFA’s, while we
can achieve 8× speedup acceleration than that of original DFA.



548 J. Yang et al.

The ratio of space consumption between multi-stride DFA and original DFA
is shown in Eq. (2):

MA ≈
∑m

i=1 ×Si × �log2Si� × 256n
∑m

i=1 256 × Si × �log2Si� = 256n−1 (2)

The ratio of time consumption between our pipelined architecture and origi-
nal DFA is shown in Eq. (3). The ratio of time consumption between multi-stride
DFA and original DFA is also same as Eq. (3):

TA =
1
n

(3)

From Eq. (3), our architecture’s time consumption is equal to the multi-
stride DFA. However, the multi-stride DFA’s space consumption is too huge to
be implemented practically. Suppose n = 8, the MA = 2567 = 256 � 1.06.

Theoretically, we have the following inequation (4), where C denotes the
available resource and k denotes coefficient of utilization.

m∑

i=1

[(2n − 1) + 256] × Si × �log2Si� ≤ k × C. (4)

We change the expression form of inequation (4)–(5).

n ≤ 1
2

× (
k × C

∑m
i=1 Si × �log2Si� − 255) (5)

We use freq to denote the evaluated frequency of FPGA. As for pipelined
architecture, the throughput is shown in Eq. (6), while the throughput of non-
pipelined architecture is shown in Eq. (7).

THpipelined = freq × n × 8 (6)

THnon−pipelined =
freq × n × 8
�log2(n)� + 1

(7)

We plug Eqs. (5)–(6) and get Eq. (8). Meanwhile, we plug Eqs. (5)–(7) and
get Eq. (9).

THpipelined ≤ 4 × freq × (
k × C

∑m
i=1 Si × �log2Si� − 255) (8)

THnon−pipelined ≤ 4 × freq × (
k × C

∑m
i=1 Si × �log2Si� − 255) × 1

�log2(n)� + 1
(9)

Now, we set k = 0.7, which is the (maximum) average value of Fig. 5 calcu-
lated by inequation (4). Also, we set freq = 300 MHz depended on our exper-
imental synthetical frequency. We set C = 712000, which equals to the total
available resource of our experimental FPGA chip.



High Performance Regular Expression Matching on FPGA 549

9.38 18.75 37.50
75.00

150.00

300.00

600.00

1200.00

3.13 4.69 7.50 12.50 21.43
37.5 66.67

120

0.00

200.00

400.00

600.00

800.00

1000.00

1200.00

1400.00

4 8 16 32 64 128 256 512

Th
ro
ug

hp
ut

(G
b/
s)

Input width n (byte)

pipelined non-pipelined

Fig. 4. The throughput of pipelined and non-pipelined architecture.

Suppose each Si is the same. In the case of m = 1, Si = 32, we get n ≤
1430 (byte). The THpipelined ≤ 3.27 (Tb/s), THnon−pipelined ≤ 272.75 (Gb/s).
In another words, we can get the maximum throughout MAX(THpipelined) ≈
3.27 (Tb/s), MAX(THnon−pipelined) ≈ 272.75 (Gb/s). However, the throughput
of 3.27 Tb/s is hard to achieve by the place-and-route of Xilinx tool.

4 Performance Evaluation

In this section, we provide a detailed analysis of our architecture on a state-of-
the-art Xilinx chip XC7VX1140t. This considered chip has 712000 LUTs. The
RE rules are all publicly available in real-life rulesets, such as Bro [11], Snort
[12]. The performance is measured in throughput, resource consumption and
efficiency. However, since these rules are finally compiled into DFA states, we
use states as a measurement standard but not the rules themselves.

4.1 Throughput

Synthesis was performed by using the Xilinx tool. From the synthetical result,
we use 300 MHz to evaluate the throughput. We can deduce the throughput
based on the considered frequency. The input widths (i.e. the lengths of input
string) are rounded up to be a power of two.

Our architecture can be implemented on two forms: pipelined-architecture
and non-pipelined-architecture. Figure 4 shows the throughput variation with
the size for various input width. n denotes the input width. It can be observed
that our proposed pipelined-architecture can sustains 1200 Gbps, while the non-
pipelined-architecture only sustains 120 Gbps at the best case. It can be seen



550 J. Yang et al.

4 8 16 32 64 128 256 512
S=32 1079 3310 13781 28435 57992 67752 136719 275717
S=16 407 962 2046 4305 13396 27020 55147 110092
S=8 193 388 802 1609 3249 10910 22581 44608
S=4 83 167 327 650 1291 2585 12823 24200

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

LU
Ts

Input width n (byte)

S=4 S=8 S=16 S=32

Fig. 5. Under the conditions of different number of states Ss, the LUT’s consumption
vs. the input width n.

that on the average, using a larger input width size if desirable from a through-
put point of view. With the increasing of input width, the throughput is also
increasing. Apparently, our architecture is practical for 100G Ethernet standard
that is currently the fastest approved standard of Ethernet. Noted that because
of stable performance, the throughput is independent of tested data.

4.2 Resource Consumption

The resource consumptions of pipelined and non-pipelined architecture are
almost the same. In this work, only logic resources are utilized. Figure 5 illus-
trates the LUT’s consumption of each rule. Suppose S denotes the number of
states each rule generated. We can observer that: (1) under the conditions of the
same number of states, with the increasing of input width, the consumption of
LUT is increasing. (2) under the conditions of the same input widths, with the
increasing of the number of states, the consumption of LUT is also increasing. (3)
the larger value of the number of states S and input width n, the much more con-
sumption of LUTs. In the case of n = 512 and S = 32, almost 275717/712000 =
38.72% of the logic resources available on this considered FPGA are consumed.

Besides, that how many rules can be implemented in parallel is shown in
Fig. 6. In the best case of n = 4 and S = 4, our single chip can support 8578
rules. In the case of n = 512 and S = 32, this chip only supports 2 rules.

4.3 Comparison with Existing Approaches

In order to make a fair comparison, we set S = 32. The evaluated frequency
of FPGA is 300 MHz. We compare throughput and space consumption between



High Performance Regular Expression Matching on FPGA 551

4 8 16 32 64 128 256 512
S=4 8578 4263 2177 1095 551 275 55 29
S=8 3689 1835 887 442 219 65 31 15
S=16 1749 740 347 165 53 26 12 6
S=32 659 215 51 25 12 10 5 2

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000

RU
LE
s

Input width n (byte)

S=4 S=8 S=16 S=32

Fig. 6. The number of rules supported by our current chip under the conditions of
various Ss and ns.

Table 1. Comparison between different algorithms and platforms.

Approach Throughput
(Gbps)

Space
consumption
(byte/trans.)

Efficiency
(Gbps *
trans./byte)

Platform Stable

Software DFA 1.31 1.63 0.80 Intel CPU No

TCAM [8] 10–19 N/A N/A TCAM No

B-FSM [7] 18.4 1.38 13.33 PowerEn No

GregEx [13] 25.6 1.63 15.71 GPU No

Multi-DFA 4.69 417.28 0.01 FPGA Yes

Ours 1200 8.80 136.36 FPGA Yes
∗Software-based DFA was carried out on a dual core, 2.93 GHz Intel(R) Core(TM)
matchine with 8 GB of RAM and running Ubuntu Linux 12.4.

different DFA algorithms or platforms. Multi-stride DFA’s stride is equal to 2 for
resource of this chip is limited. Although compression algorithms lead to memory
efficiency, they result in low throughput. So we doesn’t implement compression
algorithms on it.

We compare space consumption between different platforms. Table 1 summa-
rizes these comparisons. The throughput of our architecture is about 1200 Gbps,
which is 916 times than that of original software-based DFA. Though space con-
sumption is not the best, our architecture’s efficiency can achieve as high as
136.36.



552 J. Yang et al.

5 Conclusion

We propose an algorithm to accelerate regular expression matching. Based on
this algorithm, we present Parallel-DFA, a regular expression matching archi-
tecture. It supports 1200 Gbps throughput in our experiment on current Xilinx
Virtex-7 chip. What’s more, its performance is stable. It must be pointed that our
architecture’s throughput is independent of any tested data. These advantages
make it suitable for modern high-speed collaborative network security environ-
ment. In the future, with more resources available on FPGA, we can enlarge the
value of input width easily to support higher throughput.

Acknowledgment. Supported by the National Science and Technology Major Project
under Grant No. 2017YFB0803003, the National Science Foundation of China (NSFC)
under grant No. 61402475.

References

1. Dubrawsky, I.: Firewall evolution-deep packet inspection. In: Security Focus, vol.
29 (2003)

2. Hopcroft, J.E.: Introduction to Automata Theory, Languages, and Computation.
Pearson Education India (1979)

3. Kumar, S., Dharmapurikar, S., Yu, F., Crowley, P., Turner, J.: Algorithms to
accelerate multiple regular expressions matching for deep packet inspection. ACM
SIGCOMM Comput. Commun. Rev. 36(4), 339–350 (2006)

4. Becchi, M., Crowley, P.: A-DFA: a time-and space-efficient DFA compression algo-
rithm for fast regular expression evaluation. ACM Trans. Arch. Code Optim.
(TACO) 10(1), 4 (2013)

5. Jiang, L., Dai, Q., Tang, Q., Tan, J., Fang, B.: A fast regular expression matching
engine for NIDS applying prediction scheme. In: IEEE Symposium on Computers
and Communication (ISCC), pp. 1–7. IEEE (2014)

6. Brodie, B.C., Taylor, D.E., Cytron, R.K.: A scalable architecture for high-
throughput regular-expression pattern matching. ACM SIGARCH Comput. Arch.
News 34(2), 191–202 (2006)

7. Van Lunteren, J., Rohrer, J., Atasu, K., Hagleitner, C.: Regular expression accel-
eration at multiple tens of Gb/s. In: 1st Workshop on Accelerators for High-
performance Architectures in conjunction with ICS 2009 (2009)

8. Meiners, C.R., Patel, J., Norige, E., Liu, A.X., Torng, E.: Fast regular expression
matching using small TCAM. IEEE/ACM Trans. Netw. (TON) 22(1), 94–109
(2014)

9. Becchi, M., Crowley, P.: Efficient regular expression evaluation: theory to practice.
In: Proceedings of the 4th ACM/IEEE Symposium on Architectures for Networking
and Communications Systems, pp. 50–59. ACM (2008)

10. Prithi, S.. Sumathi, S.: Review on grouping algorithms for finite state automata
(2016)

11. The Bro Network Security Monitor. http://www.bro.org

http://www.bro.org


High Performance Regular Expression Matching on FPGA 553

12. Roesch, M.: Snort: lightweight intrusion detection for networks. LISA 99(1), 229–
238 (1999)

13. Wang, L., Chen, S., Tang, Y., Su, J.: Gregex: GPU based high speed regular
expression matching engine. In: 2011 Fifth International Conference on Innovative
Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 366–370. IEEE
(2011)


	High Performance Regular Expression Matching on FPGA
	1 Introduction
	2 Related Work
	3 The Detail of Our Architecture
	3.1 The Introduction of Original DFA and Multi-stride DFA
	3.2 The Description of Our Algorithm
	3.3 Hardware Architecture

	4 Performance Evaluation
	4.1 Throughput
	4.2 Resource Consumption
	4.3 Comparison with Existing Approaches

	5 Conclusion
	References




