l‘)

Check for
updates

Formal Verification of Authorization
Policies for Enterprise Social Networks
Using PlusCal-2

Sabina Akhtar'(®) Ehtesham Zahoor?, and Olivier Perrin®

! Bahria University, Islamabad, Pakistan
sabina.buic@bahria.edu.pk
2 Secure Networks and Distributed Systems Lab (SENDS), National University
of Computer and Emerging Sciences, Islamabad, Pakistan
ehtesham.zahoor@nu.edu.pk
3 Université de Lorraine, LORIA, BP 239, 54506 Vandoeuvre-leés-Nancy Cedex,
France
olivier.perrin@loria.fr

Abstract. Information security research has been a highly active and
widely studied research direction. In the domain of Enterprise Social Net-
works (ESNs), the security challenges are amplified as they aim to incor-
porate the social technologies in an enterprise setup and thus asserting
greater control on information security. Further, the security challenges
may not be limited to the boundaries of a single enterprise and need
to be catered for a federated environment where users from different
ESNs can collaborate. In this paper, we address the problem of feder-
ated authorization for the ESNs and present an approach for combining
user level policies with the enterprise policies. We present the formal
verification technique for ESNs and how it can be used to identify the
conflicts in the policies. It allows us to bridge the gap between user-
centric or enterprise-centric approaches as required by the domain of
ESN. We apply our specification of ESNs on a scenario and discuss the
model checking results.

Keywords: Enterprise social network + Formal verification
Model checking - PLusCAL-2, TLAT, TLC

1 Introduction

Information security research has been a highly active and widely studied
research direction. In the last decade, the widespread usage of social networks
has further amplified the need to protect user information. Recently, a number of
organizations have started to use social networks as a tool for enhancing collabo-
ration amongst their employees. Social network in an enterprise setting is termed
as Enterprise Social Network (ESN). Implementations can be either homegrown
systems built internally or tailoring existing social network implementations for
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

I. Romdhani et al. (Eds.): CollaborateCom 2017, LNICST 252, pp. 530-540, 2018.
https://doi.org/10.1007/978-3-030-00916-8_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_49&domain=pdf

Formal Verification of Authorization Policies for Enterprise Social Networks 531

an enterprise setting. One such implementation is Yammer' and one example
of ESN usage for increase in productivity is Yammer usage within Boral Lim-
ited, a building and construction materials company. One important aspect to
emphasize here is that an ESN is not just deployment of a social network in an
enterprise environment. It may not be limited to the boundaries of a single enter-
prise and users from different ESNs can collaborate in a federated environment.
For instance, Yammer has a concept of external groups, where external partners
can collaborate with members of an organization. Addressing ESN security and
privacy issues is a challenging domain as it requires to consider the perspective
of both federated enterprises and the ESN users.

The security policy of an organization helps to better prepare for and address
these security challenges. It specifies a high level specification of how to imple-
ment security principles and technologies. For instance, the Authentication pol-
icy of an organization specifies which users are allowed to use its services. Once a
user has been authenticated, the authorization process allows to determine who
can access what resources, under what conditions, and for what purpose. The
authorization process can be based on temporal aspects and may involve delega-
tion. An authorization policy is a high level description of access rules that will
determine what rights an authenticated user has. While the federated authen-
tication has been an active area of research with approaches such as SAML
providing SSO for federated environments, the authorization capabilities, chal-
lenges and solutions are not thoroughly explored. The challenges are amplified
in the case of ESN as authorization policies are not limited to the case of a single
enterprise. We need to cater for authorization policies for each enterprise within
the federation as well as user policies, as and ESN is essentially a social network
allowing users to share and collaborate.

In this paper we address the challenges related to one important class of
security policies, called the access control or authorization policies in a feder-
ated ESN setting. From an enterprise point of view, authorization policies are
very important to express the access on resources. Their need is even more evi-
dent in the context of enterprise federation, where different enterprises trust each
other. With the advent of Web 2.0, information sharing allowed users to collab-
orate more easily, thanks for the use of the social technologies. In this context,
approaches such as OAuth and Lockr are based on the user perspective, rather
than the classical enterprise point of view. In an ESN, the users share and access
resources and at the same time, the enterprise imposes some polices to be taken
care of. We address the problem of federated authorization for the ESNs and
present an approach for combining user level policies with the enterprise poli-
cies. We present the formal verification approach for ESNs and detail how it can
be used to identify the conflicts in the policies. It allows us to bridge the gap
between user-centric or enterprise-centric approaches as required by the domain
of ESN. We use PLUSCAL-2 [1,12] as a formal modeling language for specifying
the authorization policies. Formal methods are being used extensively at large
scale distributed systems, for instance Amazon uses TLAT and PLUSCAL to

! https://www.yammer.com.

https://www.yammer.com

532 S. Akhtar et al.

model and verify AWS services such as S3, DynamoDB and EBS. The proposed
specification approach is generic and expressive and is also based on TLAT.

2 Related Work

In this work, we address the challenges associated with authorization policies
in the context of enterprise federation within an Enterprise Social Network [17].
Two major research directions in this domain have been to investigate the autho-
rization from the enterprise or federation point of view, using approaches such
as XACML, and the other is to address the challenge from a user point of view,
with approaches such as OAuth and Lockr. Authorization issues in ESN is a
relatively unexplored domain.

Access control and authorization in general has been an active research areas
since decades. In this context, the focus of traditional research approaches has
been the RBAC model [15] and its variations. Task based access control (TBAC)
considers task based contextual information [18]. Team based access control
[8,19] introduces the concept of team to accomplish collaborative activities. Even
though RBAC is a well defined model, it suffers from role explosion as too many
rules (may even surpass the number of users) may need to be managed. In
distributed environment (more precisely in an enterprise federation), RBAC may
also introduce interoperability concerns as the semantics of different roles may
be inconsistent across domains. Some approaches have investigated the use and
challenges for RBAC in a distributed environment [6,16]. One such approach is
D-Role [14] in which authors propose extensions to XACML for distributed roles.
In contrast to RBAC models, the Attribute based access control (ABAC) model
is based on the attributes [10]. The resources, subjects and environment have
attributes, and the policy rule is a boolean function on these attributes. ABAC
provide more flexibility and expressiveness than RBAC in term of rules definition
as a role itself can be an attribute in an ABAC model. For ESN authorization
decisions, ABAC is thus the preferred model and it subsumes RBAC model.

XACML (eXtensible Access Control Markup Language) is a declarative,
XML-based access control policy language for managing access to resources,
based on ABAC model. As XACML is verbose and based on XML, a number of
approaches to provide formal semantics of XACML using formal logic have been
proposed [7,11]. Further, a number of approaches have been proposed that build
upon XACML for its usage in collaborative and distributed environments [23].
These include [5] in which the authors propose a distributed device access con-
trol architecture called MPABAC. In [21] authors have developed a formal policy
language BelLog that can express both delegation and composition operators.

The second class of authorization policies specification is when the user deter-
mines the access for their resources. The most prominent approach being the
OAuth [9] which allows users to share their personal resources, such as images,
hosted on one Website with other sites without giving them their username and
password. User-Managed Access (UMA)? is another user centric and it provides

2 http://docs. kantarainitiative.org/uma/draft-uma-core.html.

http://docs.kantarainitiative.org/uma/draft-uma-core.html

Formal Verification of Authorization Policies for Enterprise Social Networks 533

services for authorization, monitoring and changing data sharing. Lockr [20] is
an access control system based on social relationships. Users can base ACLs
for applications based on social relationships as defined in some social network.
When it comes to specifying authorization policies within a social network, in
[2] authors presented Persona, a system that promotes data privacy by allow-
ing users to use attribute encryption for specifying policies themselves and not
relying on the social network.

In the context of ESN, neither XACML nor User centric authorization mech-
anisms are sufficient on their own. Using XACML, an enterprise can easily define
a set of policies for subjects within the enterprise, but it is more difficult for a
user to define its own policy for managing access to its own data. User centric
authorization mechanisms are well adapted for user defined access controls. How-
ever, in the context of ESN; it is not just about users, it is also about enterprises,
and even more complex, enterprises federation. In this context, it is mandatory
to allow the users to define their own policies, and to combine them with the
enterprise ones, and to be able to decide if an access is granted or not. Our
work builds upon our previous work in handling temporal, trust and delegation
aspects in distributed environments [3,24]. In this work we provide an approach
that combines user level policies with the enterprise policies to bridge the gap
between traditional federated authorization approaches.

3 Motivating Example

For the motivating example, we consider the case of a large municipality (we
will call it a commune as in France) that is willing to take benefit from the rise
of ESNs3. We consider a situation such as child protection case, where the rele-
vant information could be scattered across different departments such as social
services, education, healthcare, and police agencies. The information sharing
between these different departments in an ESN would allow timely decisions
to be made but comes with the challenge for managing such collaboration in a
secure manner. We consider that each department has its own associated security
policy and belong to a federation where they trust each other.

We further consider that a new child protection case has been forwarded to
an employee at the commune, Alice, and she needs to create a case file and gather
information from different departments to reach a decision about the case. As a
standard practice she wants to give permissions to another person in her team,
Genny, working on the case in another department. We assume that the case
requires access to some database, thus Alice would grant permission to access it.
However, there might be another policy already in the enterprise policies or user
defined policies that doesn’t allow Genny to access that particular database.
These conflicts effect the overall performance and reliability of an enterprise
social network where it is a major concern for the users. Our idea is to formally

3 Idea is based on real world example as briefly discussed in Social Networking In The
Enterprise: Benefits And Inhibitors, a commissioned study conducted by Forrester
Consulting on behalf of Cisco Systems.

534 S. Akhtar et al.

verify the set of policies before actually deploying the ESNs or anytime during
the scheduled update of the network. This would reduce the need for the decision
making algorithms to be invoked at the time of the request.

4 Proposed Approach

Our approach combines the two major classes of authorization policies; user
level and enterprise level, in a federated environment and provides a federation-
level authorization process. We use finite-state model checking [4] technique,
used for formal verification of distributed systems, to address the challenges
raised by the different enterprises in a federation. It allows to decide automati-
cally whether the invariants and properties hold for the specified system or not.
They are verified for finite instances of systems, described in a formal model-
ing language. We use PLUSCAL-2 [1,12] as a formal modeling language for the
formally specifying the enterprises in a federated environment. It is intended to
provide the programmers the platform where they can specify their systems and
generate the TLAY specifications. TLA™T is a formal specification designed by
Leslie Lamport provides a method for specifying the systems. It is supported
by the model checker TLC [22] that verifies the system for the specified set of
properties and invariants. PLUSCAL-2 features non-determinism, mathematical
abstractions, and user-specified grain of atomicity. It emphasizes on the abstract
model of the system instead of focusing on its efficient execution. Compared to
PLUsCAL algorithm language [13] by Leslie Lamport, it introduces several other
statements and flexibility for the programmer and reduces the dependency on
TLA*. They will be used in the specification of enterprise social networks to
demonstrate their need in system specification. In the proposed architecture,
policies are specified using ABAC model. As an ESN builds upon the notion of
sharing and collaboration, the users can access authorization policies with the
resources they are in control of (such as the ones they have created or the con-
trol has been delegated to them). This user level policy specification approach is
consistent with the user-controlled authorization schemes that aim to put user
in the control of authorization process.

Enterprise E1 { Enterprise E1] | Enterprise E2

‘/Authz Provider\J< 2 .){Authz Provider}

!:Authz Provider:\ 5 B
A g

i 1 4
1 2 H | : |
| subject | | [Sublect j——©—r(_ Subject |
(a) Within an Enterprise (b) Within a Federation of Enterprise E1 and E2

Fig. 1. Policies evaluation

Formal Verification of Authorization Policies for Enterprise Social Networks 535

However in an ESN setting, the collaboration is under the control of an enter-
prise and it has its own policies about the access to resources, for instance the
enterprise policy that some critical resources can be accessed within some time
frame. Thus the proposed approach allows to specify the policies also at the
enterprise level. Indeed the two set of policies may be inconsistent and a set of
decision algorithms can decide the resolution scheme in case of conflict. The pol-
icy evaluation at an enterprise level is shown in the Fig. 1-a. Inside an enterprise,
when a user, user, tries to access a resource, res, its request, R, along with, its
attributes and the attributes of the resource, composed formally as (user, res),
is sent to the Authorization Provider (AzP). The task of Authorization Provider
(AzP) is to gather the user defined policies, UP and the enterprise policies, EP
for the resource in order to process the request. Formally, we define a policy,
P, as

P = (user, res, action)

where an action can be to allow or deny the resource, res, for the user. Once,
the Authorization Provider (AzP) has gathered all the policies, it filters out a
subset of policies, SP, concerning the request, R, (user, res, X) from the set of
policies for user defined policies, UP and enterprise policies, EP

SP2 RN (UPUEP)

X in the request R allows to ignore all the actions in the set of policies and
selects only the policies from entire set of policies related to the user and the
resource. If the set SP is empty this means their is no policy written for that
specific user and resource in the set of policies. In this case the request will be
denied by the Authorization Provider (AzP). If there is only a single policy in
the set SP, then in that case Authorization Provider (AzP) can take a decision
immediately by applying the action mentioned in the policy. However, if there
are more than one policies in the set then there might be conflict and the AzP
will have to resolve it. AzP will deny the request if one of the policies in the set
denies the resource formally written as

Jp e SP :p.action = “deny” — Deny request

The Authorization Provider (AzP) will allow the resource access if all of
policies allow the resource for the user. It can be formally specified as

V p e SP : p.action = “allow” — Allow access

When a user wants to access a resource that is not within the enterprise
but belongs to another enterprise within the same federation, the request is first
validated by the local AzP of the enterprise to which the user belongs. The
enterprise checks if the request conforms to the enterprise policy, for instance
to enforce that the request might be not allowed for the users with a specific
set of attributes. The request is then forwarded to the AzP of the enterprise to
which the resource belongs and the AzP checks if the request conforms to the
user specified resource policies and the enterprise policies, Fig. 1b.

536 S. Akhtar et al.

5 ESNs Specification in PlusCal-2

Our specification? of enterprises in a federation allows us to identify the
inter enterprise or intra enterprise level conflicts in the policies. Figure 2 shows
the specification of a federation with two ESNs. The specification can be used
for one or more than one enterprises. It only requires to add the information
about the new enterprise along with the set of policies for each one added in the
federation. In PLUSCAL-2, the specification starts with the keyword algorithm
followed by the name of the specification. Then we have standard modules for
specific constructs used from TLA™ that are required by the TLC model checker.

algorithm ESNSpec

extends Naturals, Sequences , TLC, FiniteSets

variable EP1Users = {"Alice”, "Tim”}, EP2Users = {"Bob”, "Genny”},
AllUsers = EP1Users U EP2Users,

5 EP1Res = {"R1”, "R2"}, EP2Res = {"R3", "R4"},

6 AllIRes = EP1Res U EP2Res,

7 ReqPool = [u € AllUsers, r € AllRes — [status — {}]]

8

9

IR S

process Enterprise1[1]
variable rules =0, status = 0, statusRecord = 0,

10 Policies = [u € AllUsers —

11 CASE (u = "Alice”) — {[res — "R2”, act — “deny”], [res — "R3”, act — "allow”]}
12 O (u="Tim") — {[res — "R4", act — "deny”], [res — "R3", act — "allow”]}
13 O (u = "Bob”) — {[res — "R3", act — "allow”], [res — "R2”, act — "deny”]}
14 O (u ="Genny") — {[res — "R4”, act — "deny”], [res — "R4", act — "deny’]}]
15 | begin

16 atomic

17 for u € AllUsers forr € AllRes

18 rules := Policies[u];

19 for rule € rules

20 if rule.res = r then

21 statusRecord := ReqPool[u,r];

22 statusRecord.status := statusRecord.status U {rule.act};

23 ReqgPool[u,r] := statusRecord;

24 end if; end for; end for; end for;

25 end atomic;

26 | end process
27 | process Enterprise2[1]
28 | variable rules = 0, status = 0, statusRecord = 0,

®

29 Policies = [u € AllUsers —

30 CASE (u = "Alice”) — {[res — "R2", act — "deny"], [res — "R1”, act — "allow”]}
31 O (u="Tim") — {[res — "R1”, act — "deny”], [res — "R2”", act — "allow”]}
32 O (u ="Bob") — {[res — "R1”, act — "deny”], [res — "R4”, act — "deny”]}
33 O (u ="Genny”) — {[res — "R1”, act — "deny”], [res — "R4”, act — "allow”]}]
34| begin

35 atomic

36 for u € AllUsers forr € AllRes

37 rules := Policies[u];

38 for rule € rules

39 if rule.res = r then

40 statusRecord := RegPool[u,r];

41 statusRecord.status := statusRecord.status U {rule.act};

42 ReqgPool[u,r] := statusRecord;

43 end if; end for; end for; end for;

44 end atomic;

45 | end process end algorithm
46| invariant v u, € AllUsers, r € AllRes : (ReqPool[u,r].status N {"allow”, "deny”}) # {"allow”, "deny”}

Fig. 2. Specification of a federation with two enterprises in PLUSCAL-2.

* Available at https://github.com/sabinaakhtar/ESNSpecs.

https://github.com/sabinaakhtar/ESNSpecs

Formal Verification of Authorization Policies for Enterprise Social Networks 537

The global variables are defined at line 3. In our specifications, we assume that we
have two enterprises Enterprisel, Enterprise2 representing Alice’s and Genny’s
departments respectively. Then we specify their users globally as EP1Users and
EP2Users. AllUsers is the union of all the users in all the enterprises. Each
enterprise owns its own set of resources, specified in our specification as FP1Res
and EP2Res. Similarly, we have AllRes as a union of all the resources. The two
processes Enterprisel and Enterprise2 will represent Authorization providers
in our specifications. To keep the specification at an abstract level, we removed
the role of a user that sends the request for the resources and replaced it with
a pool of requests that includes all possible requests that can be made by any
user in a federation. At line 7, we define ReqPool as function whose domain is in
AllUsers and AllRes specifies the pool of requests that can be made by the users.
Its range is represented by a record with a field status that is initially an empty
set. Its purpose is to contain all the actions that can be applied to a request
by any policy in an enterprise/federation. The functionality of the enterprises
remains same except for the policies that they have defined at their own level.
The policies are specified at line 10 for Enterprisel as a function whose domain
is in AllUsers and range represents a set of rules for each users corresponding
to the resources. For example, user 7%m has an access to some resource RS but
does not have an access to resource R/ specified a line 12.

The specification of the enterprise is at line 15 till line 25. For each possible
request, it consults its own set of policies and if it finds a policy it updates the
field status of the ReqPool with action specified in the policy. This role of an
enterprise is enclosed in a construct atomic to avoid the interleavings with the
other process. This makes our specification more coarse grained to avoid the
state space explosion problem. The specification ends with an invariant at line
46 of Fig.2. The TLC model checker verifies the invariant at each state and if
the invariant is violated, it stops the execution and shows the counter example.
The invariant specifies that for each user, u € AllUsers, and for each resource,
r € AllRes, the specified formula must hold and the intra or inter enterprise
policies must never allow and deny the access at the same time.

As per our motivating example introduced a scenario where an employee,
Alice, was working on a case from a department, in collaboration with another
employee, Genny, of another department. They had to access a database, lets
call it R4, to complete the processing of the case. Now, even if Alice grants
access of this resource to Genny, there might be a possibility that she cannot
access this resource. We can formally verify this scenario through our specifi-
cations and identify the policies with the conflict using the counter example.
In Fig.2, we have modeled such a scenario to find out that counter example.
PLUSCAL-2 compiler translates our specifications to TLA™ specifications. Then
we model checked those specifications using TLC model checker and it stops with
the following message

Error: Invariant InvO is violated. The behavior up to this point is:...

Inv0 is the name of the invariant used in the TLA™T specifications for the
invariant at line 46 of Fig.2. The TLC model checker gives a counter example

538 S. Akhtar et al.

that clearly shows where it was voilated. In the last state of the counter example,
it shows the state of the variable ReqPool.

... /\ RegPool = (<<"Alice", "R1">> :> [status [|-> {"allow"}] @@ ...
<<"Tim", "R1">> :> [status |-> {"deny"}] @@ ...
<<"Bob", "R1">> :> [status |-> {"deny"}] @@ ...
<<"Genny", "R4">> :> [status |-> {"deny", "allow"}]) ...

The output clearly show that the policies had conflict for request by user
Genny for the resource R4. However, if there will be no such conflict in the
policies, then this specific invariant will never be violated. Similarly, we can use
formal verification techniques for identifying various other issues in the federated
environment as well. The PLUSCAL-2 compiler has not been released yet as it is
in testing phase and it will be released in few months time. The current version
of PLUSCAL-2 compiler along with the TLC model checker are also available at
InriaForge®.

6 Conclusion

In this paper, we have presented a formal specification of federated environ-
ment and how formal verification can be used for the authorization challenges
associated with Enterprise Social Networks (ESNs). The traditional approaches
for authorization are either user-centric or enterprise-centric and we have advo-
cated to bridge the gap between them. In contrast to traditional XML based
authorization policy specification languages, our approach is formal and pro-
vides a precise, expressive, flexible and non-ambiguous representation. It also
allows for reasoning about authorization policies (e.g. to find inconsistencies or
hard constraints). We have also presented the model checking results for our
specifications and discussed how these tools can be used to identify conflicts by
stating invariants and properties. In future, we plan to automate the translation
of actual user defined and enterprise level policies to PLUSCAL-2 so that we
can formally verify them and identify conflicts in the policies. We also plan to
investigate other challenges and issues in Enterprise Social Networks from the
perspective of formal verification techniques.

References

1. Akhtar, S., Merz, S., Quinson, M.: A high-level language for modeling algorithms
and their properties. In: Davies, J., Silva, L., Simao, A. (eds.) SBMF 2010. LNCS,
vol. 6527, pp. 49-63. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19829-8 4

2. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. In: SIGCOMM (2009)

5 https://gforge.inria.fr /projects/pcal2-0/.

https://doi.org/10.1007/978-3-642-19829-8_4
https://doi.org/10.1007/978-3-642-19829-8_4
https://gforge.inria.fr/projects/pcal2-0/

Formal Verification of Authorization Policies for Enterprise Social Networks 539

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Bouchami, A., Perrin, O., Zahoor, E.: Trust-based formal delegation framework for
enterprise social networks. In: 2015 IEEE Trust-Com/BigDataSE/ISPA, Helsinki,
Finland (2015)

Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

Liang, F., Guo, H., Yi, S., Zhang, X., Ma, S.: An attributes-based access control
architecture within large-scale device collaboration systems using XACML. In:
Yang Y., Ma M. (eds.) Green Communications and Networks. LNEE, vol 113.
Springer, Dordrecht (2012). https://doi.org/10.1007/978-94-007-2169-2_124

Wu, T.: A distributed collaborative product design environment based on semantic
norm model and role-based access control. J. Netw. Comput. Appl. 36(6), 1431—
1440 (2013)

Nguyen, T.N., et al.: Towards a flexible framework to support a generalized exten-
sion of xacml for spatio-temporal rbac model with reasoning ability. In: ICCSA,
no. (5) (2013)

Georgiadis, C. K., Mavridis, 1., Pangalos, G., Thomas, R.K.: Flexible team-based
access control using contexts, In: SACMAT (2001)

Hardt, D.: The OAuth 2.0 authorization framework (2012)

. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and

considerations. NIST Special Publication, 800:162 (2014)

Kolovski, V., Hendler, J., Parsia, B.: Analyzing web access control policies. In:
WWW, pp. 677-686 (2007)

Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

Lamport, L.: The PlusCal algorithm language. In: Leucker, M., Morgan, C. (eds.)
ICTAC 2009. LNCS, vol. 5684, pp. 36-60. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03466-4_2

Lee, H.K., Luedemann, H.: Lightweight decentralized authorization model for inter-
domain collaborations. In: SWS (2007)

Park, J.S., Sandhu, R.S., Ahn, G.-J.: Role-based access control on the web. ACM
Trans. Inf. Syst. Secur. 4(1), 37-71 (2001)

Ruan, C., Varadharajan, V.: Dynamic delegation framework for role based access
control in distributed data management systems. Distrib. Parallel Databases 32,
245-269 (2014)

Stei, G., Sprenger, S., Rossmann, A.: Enterprise social networks: status quo of cur-
rent research and future research directions. In: Abramowicz, W., Alt, R., Franczyk,
B. (eds.) BIS 2016. LNBIP, vol. 255, pp. 371-382. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39426-8_29

Thomas, R.K., Sandhu, R.S.: Task-based authorization controls (TBAC): a family
of models for active and enterprise-oriented authorization management. In: Lin,
T.Y., Qian, S. (eds.) Database Security XI. IFIP Advances in Information and
Communication Technology, pp. 166-181. Springer, Boston (1998). https://doi.
org/10.1007/978-0-387-35285-5_10

Thomas, R.K.: Team-based access control (TMAC): a primitive for applying role-
based access controls in collaborative environments. In: ACM Workshop on Role-
Based Access Control, pp. 13-19 (1997)

Tootoonchian, A., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: better privacy for
social networks. In: CoNEXT (2009)

Tsankov, P., Marinovic, S., Dashti, M.T., Basin, D.A.: Decentralized composite
access control. In: POST (2014)

https://doi.org/10.1007/978-94-007-2169-2_124
https://doi.org/10.1007/978-3-642-03466-4_2
https://doi.org/10.1007/978-3-642-03466-4_2
https://doi.org/10.1007/978-3-319-39426-8_29
https://doi.org/10.1007/978-3-319-39426-8_29
https://doi.org/10.1007/978-0-387-35285-5_10
https://doi.org/10.1007/978-0-387-35285-5_10

540 S. Akhtar et al.

22. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA™ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54-66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2_6

23. Zahoor, E., Asma, Z., Perrin, O.: A formal approach for the verification of AWS
IAM access control policies. In: De Paoli, F., Schulte, S., Broch Johnsen, E. (eds.)
ESOCC 2017. LNCS, vol. 10465, pp. 59-74. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67262-5_5

24. Zahoor, E., Perrin, O., Bouchami, A.: CATT: a cloud based authorization frame-
work with trust and temporal aspects. In: CollaborateCom 2014, Miami, Florida,
USA (2014)

https://doi.org/10.1007/3-540-48153-2_6
https://doi.org/10.1007/978-3-319-67262-5_5
https://doi.org/10.1007/978-3-319-67262-5_5

	Formal Verification of Authorization Policies for Enterprise Social Networks Using [-2]
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 Proposed Approach
	5 ESNs Specification in [-2]
	6 Conclusion
	References

