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Abstract. Protocol fingerprinting (PF) focuses on the capability to
derive a series of distinguishable features for recognizing which proto-
col or application generated the network traffic. Unfortunately, deep
packet inspection (DPI), a widely adopted method for PF, requires sig-
nificant expert effort to develop and maintain protocol signatures. Addi-
tionally, the new solution paradigm, deep flow inspection (DFI) using
machine learning for PF, also relies on hand-designed features. In this
paper, we present ProNet, a payload based approach to protocol finger-
printing, which overcomes the limitation of artificial feature engineering.
The key novelty of ProNet is two-fold: (i) it takes generic, raw short
packet payloads as input, instead of the typical flow-statistical-features
(e.g., port, packet size, packet-interval); (ii) it learns to simultaneously
extract features via convolutional operations on the byte-level embed-
dings and ngram-level embeddings. We implement and evaluate ProNet
on real-world traces, including DNS, QQLive, PPLive, PPStream, Sop-
Cast, DHCP, NBNS, HTTP, SMTP and SMB. Our experiment results
show that ProNet achieves over 99% precision and recall with low false-
positives (less than 1%) and nearly no false-negatives.
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1 Introduction

Motivation: Last years witnessed a very fast-paced deployment of new Inter-
net applications, ignited by the introduction of the successful Peer-to-Peer (P2P)
paradigm and fueled by the growth of Internet access rates. This undermined the
reliability of the L7-layer protocol identification mechanisms. Protocol identifica-
tion (PI for short in this paper), associating traffic flows/packets with the appli-
cations/protocols, is a fundamental and crucial component for network monitor-
ing, traffic billing, Quality of Service (QoS), security services (such as IDS/IPS),
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and so on. The existing PI methods can roughly be divided into two categories:
DPI and DFI. The core of DPI is to match the content of the traffic payload
with the pre-constructed literal fingerprints, also called signatures, typically in
form of regular expression. DFI is to define common flow statistical fingerprints
(features) such as per-flow duration and volume, mean packet size, inter-packet
times of a flow. Note that the key of both DPI and DFI is the protocol finger-
prints for PI task. Thus, how to systematically and efficiently automated extract
these fingerprints from network payloads remains a challenging issue. We refer
to Protocol Fingerprinting (PF for short in this paper) as the process that a
distinguishable unique pattern is extracted in the absence of the formal protocol
specification (including parameters, format, and semantics).

Limitations of Prior Art: The problem PF has received wide research interests
in the past decades. However, existing studies including DPI and DFI fingerprints
rely heavily on hand-designed features by artificial experience and prior knowl-
edge. The manual feature engineering is a laborious, time-consuming process.
Specifically, DPI fingerprints inference falls into some drawbacks. (i) A majority
of proprietary protocols lack publicly available documentations, although there
are standard RFCs for the public-domain protocols. (ii) The labor-intensive
manual protocol fingerprints extraction process has to be repeated from time
to time so as to maintain the latest signature repository. DFI statistical finger-
prints also face some limitations. (i) They require an in-depth exploration of the
feature representation of a given traffic flow type, and an exploration of what
machine learning detection approaches yield the best accuracy given those rep-
resentations. (ii) These features were proposed based on intuition and heuristic
arguments on why these features are supposed to identify a protocol category.
Therefore, The key challenge we address is that protocol fingerprints cannot be
automatically generated for traffic identification. Deep learning, a subfield of
machine learning, promises to change this by operating on raw input signals and
automating the process of feature design and extraction.

Our Research: We present ProNet, a deep learning approach to extract proto-
col fingerprints and perform PI task. Our goal is to directly work on raw traffic
payload inputs, which does not require the syntactical understanding of the pro-
tocol message, such as field boundaries and delimiters. Specifically, ProNet first
directly models raw traffic payload data with byte-level and ngram-level embed-
dings; then automatically learns fingerprints (signatures/features) by convolu-
tion and pool operations on these embeddings; last ProNet resorts to a dense
softmax neural network to assign a protocol class to every traffic payload.

ProNet has several advantages over classical DPI and DFI fingerprints (sig-
natures/features):

– It considers the process of protocol fingerprinting as part of a holistic opti-
mization objective of protocol identification task; (Typically PF is based on
local optimization, i.e, protocol feature extraction and identification are two
separate parts.)

– It automatically derives protocol fingerprints i.e., no cumbersome and tedious
reverse engineering is required;
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– The fingerprints learned from traffic payloads are fine-grained comparing with
DFI statistical features; (This is helpful for improving classification accuracy.)

Our results show that this approach can achieve the desired performance
results, which proves that deep learning is a novel applicable technique to pro-
tocol fingerprinting that does not require the explicit definition of the features.
Through experiments over a real network trace for protocol identification task,
we obtain over 99% precision and recall with low false-positives (less than 1%)
and nearly no false-negatives. The rest of this paper is organized as follows:
Sect. 3 describes the design and implementation of our proposal. In Sect. 4,
we provide experimental results to evaluate the designed approache. Section 2
reviews related work. Finally, conclusions are drawn in Sect. 5.

2 Related Work

Several network security and management tasks require automatic PF technol-
ogy or fine-grained traffic classification. Here we review selected work related to
payload-based PF. Park et al. proposed LASER [8] approach which tries to find
the longest common subsequence (LCS) among given packet payloads under
three constraints: number of packets per flow, minimum substring length and
packet size. The LASER is susceptive to the noises and the comparison of the
order in the packet payload samples. Ye et al. presented a system with a cer-
tain tolerance for noises, AutoSig [11], which extracts multiple common substring
sequences from sample flows as protocol fingerprints. Some ngram-based pro-
posals [2,9,10,12] try to extract fields by parsing keywords by utilizing a series
of stages such as payload segmentation, payload clustering, payload sequence
alignment. For example, keywords such as “GET” and “POST” in HTTP have
specific delimiters or a similar interval. Notably, keyword parsing methods from
the kind of textual protocol analysis, and clearly ineffective for binary protocols
since they ignore the fine-grained fingerprints (less than one byte and even mul-
tiple bytes). This situation calls for a new paradigm using statistical features to
PF problem.

In contrast, the statistical fingerprint methods usually employ machine learn-
ing algorithms on the protocol fingerprints (a feature vector with real val-
ues). Haffner et al. provided the first statistical fingerprint based work called
ACAS [4] that explores automatically extracting protocol signatures from packet
payload content. And they directly take the values of the first payload con-
tent bytes as features for three machine learning classifiers. Different from the
ACAS, Finamore et al. proposed a system named KISS [3] for UDP traffic,
which first extracted the randomness of the first payload bytes, in form of a 24-
dimensional feature vector, by using Chi-Square test, then created and evaluated
geometric-distance-based and SVM-based traffic classifier in a conventional man-
ner. The KISS leverages the observation that application-layer protocols running
over UDP must carry a protocol-specific information header. Afterwards, they
extended this idea to support TCP traffic classification [6]. Alas, the limitation
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of KISS is its high dependency on the number of packet payloads for the online
PI task. A more detailed survey of PI and PF studies may be found in [7,9].

3 ProNet

In this section, we describe how we architected our neural network to operate
directly on raw payload input, and the intuition behind our decisions. Figure 1
gives an intuitive overview of our approach, showing that our neural network is
divided into three notional components: Byte/Ngram embedding, feature detec-
tion, and an identifier. It is important to note, however, that the entire model
is simultaneously optimized, end-to-end, and thus all components are optimized
for the singular classification task. The byte embedding component embeds the
alphabet of single-byte values into a multi-dimensional feature space; Addition-
ally, the ngram embedding component embeds the alphabet of ngrams into a
multi-dimensional feature space; Thus encoding an input payload’s sequence
of bytes/ngrams as two two-dimensional tensors from different views. Using the
two tensors, the feature detection component respectively detects important local
sequence patterns within the full byte sequence and ngram sequence, and then
aggregates this information into a fixed-length feature vector. Finally, the identi-
fication component classifies the detected features using a dense neural network.
All of these components are optimized jointly using stochastic gradient descent.
After we construct a neural network model for the given target protocols from
ProNet, we can use it to classify traffic.

Fig. 1. The architecture of ProNet

3.1 Embedding: A Multi-view Representation of Payload

The input of ProNet includes multi-view feature maps of a considered packet
payload, each is a matrix initialized by a different embedding version. We use
two different payload chunkings and the corresponding embeddings (i.e., views),
Byte Embedding and Ngram Embedding. Let s be payload length, ms dimension
of byte embeddings, mg dimension of n-gram embeddings. Hence, the whole ini-
tialized input of ProNet consists of a two-dimensional array of size s × ms and
a two-dimensional array of size (s − n + 1) × mg. In implementation, payloads
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in a mini-batch will be padded to the same length, and unknown chunks for the
corresponding channel are randomly initialized or can acquire good initialization
from the mutual-learning phase described in next section. Multi-view initializa-
tion brings two advantages: (i) a payload (different payload chunking tactics)
can have multiple representations in the beginning (instead of only one), which
means it has more available information to leverage; (ii) different granularity
chunk captures are helpful for handling the variant-length message fields, which
enhance the robustness of ProNet targeting textual and binary protocols.

View 1: Byte Embedding. The first input view of our model is the raw length
s sequence of bytes and embeds them into an s×ms floating point matrix. This
operation is a simple dictionary lookup, where each byte, irrespective of the bytes
that came before it or after it, is mapped to its corresponding vector, and then
these vectors are concatenated into this matrix. The matrix’s rows represent the
sequence of bytes in the original payload, and the matrix’s columns represent
the dimensions of the embedding space.

Formally, we denote xi ∈ R
ms as the ms-dimensional byte representation for

the i-th byte in a payload. A payload with s bytes is denoted as

X1:s = x1 ⊕ x2 ⊕ · · · ⊕ xs (1)

where ⊕ is the concatenation operator. By this, each input payload (a sequence
of bytes) is represented as a s×ms matrix. In practice, short payload sequences
are padded with zeros to the same length, such that, each matrix shares the
same size. In our implementation we set s = 16 and ms = 50.

View 2: Ngram Embedding. The another input view of ProNet is the length
g sequence of ngrams and embeds them into a g×mg floating point matrix. Note
that different n will produce different ngram sequences and ngram vocabulary.
Hence, each special ngram by varying n value, we will obtain an input view. In
our implementation we only use 3-grams and mg = 50 (i.e., 3-gram embedding).
Notice that for a given n value and s bytes, we have g = s − n + 1.

Formally, we denote zj ∈ R
mg as the mg-dimensional ngram representation

for the j-th ngram in a payload with g ngrams. A payload with g ngrams is
denoted as

Z1:g = z1 ⊕ z2 ⊕ · · · ⊕ zg (2)

where ⊕ is the concatenation operator. By this, each input payload (a sequence
of ngrams) is represented as a g × mg matrix. In practice, short sentences are
padded with zeros to same length, such that, each matrix shares the same size.

3.2 Feature Detection

Once we embed our payload input into an s×ms matrix and an g ×mg matrix,
the next step is extracting and aggregating locally detected features. This is
done in three stages: 1© ByteConv(t, h) and NgramConv(t, h) - we detect local
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features by applying multiple kernel convolutions (t) with h-length; 2© ByteMax-
Pool and NgramMaxPool - we aggregate the results across the entire sequence
by maximizing the kernels’ activations; 3© AggreateView - we aggregate the
extracted features from two different embedding views by means of convolution
and pool operations. Notice that the first two steps are done separately for each
h ∈ {3, 4, 5}. For example, we empirically set t = 30, the three results for each
h tower are then concatenated together into a 90 length vector. The t filters
in our ProNet spans the entire length of the byte embedding ms, and can be
thought of as sliding of convolution kernels (or masks) over the sequence of byte
embeddings. More details about these feature learning operations as follows.

ByteConv(t, h): A convolution filter w ∈ R
h×ms , which is applied to a window

of h bytes of ms-dimensional embeddings, produces a new feature. For instance,
given a window of bytes Xi:i+h−1 and a bias term b ∈ R, a new feature ci is
generated by

ci = f(w · Xi:i+h−1 + b), (3)

where f is a non-linear function. In our case, we apply the element-wise function
Rectified Linear Unit (ReLU) to the input matrices:

ReLU(x) =

{
x, if x > 0
0, otherwise

(4)

Each filter produces a feature map c = [c1, c2, · · · , cs−h+1] from every possible
window X1:h,X2:h+1, · · · ,Xs−h+1:s of a sentence of length s.

ByteMaxPool(t): There are several pooling (sub-sampling) methods, such as
average pooling, median pooling and max pooling. In this case, we apply max
pooling over each feature map produced by the convolution layer and take the
maximum element ĉ = max{c}. Let’s denote features generated by this max
pooling layer as

ĉ = ĉ1 ⊕ ĉ2 ⊕ · · · ⊕ ĉt (5)

where t is the number of feature maps.

NgramConv(·) and NgramMaxPool(·). For ngram embedding, we also exe-
cute the similar two operations to extract and aggregate locally detected features.
Formally, for a given payload p, we will obtain the convolved and pooled features

d̂ = d̂1 ⊕ d̂2 ⊕ · · · ⊕ d̂t. (6)

After convolution and pools operations, we focus on the problem of learning to
aggregate multiple views in order to synthesize the information from all views
into a single payload features. In our implementation, we simply concatenate the
extracted features from two different embedding versions.
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AggreateView: In this case, we simply concatenate the extracted features
from two different embedding views. Let’s denote features generated by this
view pooling layer as

ê = ĉ ⊕ d̂. (7)

3.3 Identification Algorithm

Once we extract the features from packet payload, we use a standard dense
neural network to predict the protocol class of the packet. The neural network
only has one layers with l = 10 units (10 classes). Formally, given ê as the input,
the fully connected layer produces

P (Y = j|ê, θ) = softmaxj(W · (ê ◦ r) + b), (8)

where Y is the prediction, θ denotes parameters {W, b}, W denotes weights, ◦
denotes the element-wise multiplication operator and r ∈ R is a dropout mask
vector of Bernoulli variables with probability ρ of being zero. The fully softmax
layer output provides the probability that the input payload belongs to the class
label given the convolution based features. We measure our detector’s prediction
loss using cross entropy,

L(ŷ, y) = − 1
N

N∑
i

[yi log ŷi + (1 − yi) log(1 − ŷi)] (9)

where ŷ is our model’s prediction probability vector for all the packet samples
and y is the vector of true label. We use Adam [5] method to minimize Eq. 9.

4 Experiments

4.1 Data Set

We collect real-world IP traffic traces from a edge router of a local area network
(LAN) in mainland China. We evaluate ProNet on ten typical application-layer
protocols: DNS, SopCast, PPStream, NBNS, DHCP, QQLive, PPLive, HTTP,
SMTP and SMB. Notice that the ten target protocols involve both connection
oriented protocols (such as TCP) and connection less protocols (such as UDP).
Simultaneously, the ten target protocols also contain both textual and binary
protocols. Note that DNS, SMTP, HTTP and SMB are representatives of well-
known protocols, and they are both textual and connection-oriented protocols.
QQLive, PPLive and PPStream are popular peer-to-peer video streaming pro-
tocols, and they are representatives of proprietary and new protocols. All of
the above protocols offer a great amount of Internet traffic. Our evaluations
only consider the first 16 bytes of the payload of an IP packet, which suffice
for traffic classification. We do not examine the remaining payload and ensure
that the privacy is preserved and for early flow identification. In this work, we
obtain ground-truth by combining port-based method and a rather frequently
used open tool nDPI [1].
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4.2 Performance Metrics

To quantitatively evaluate the effectiveness of our proposal: given a packet trace
of one application protocol, we are interested in the following three metrics.

– Precision: The Precision is the ratio of the number of true positives to the
total number of packets that identified as the target protocol (including true
positives and false positives) by ProNet.

– Recall: The Recall is the ratio of the number of true positives to the total
number of packets that actually belong to the target protocol (including true
positives and false negatives).

– F-Measure: The F-measure is a compromise between recall and precision. It
is defined as 2 ∗ Precision ∗Recall

Precison+Recall .

4.3 Parameter Configuration

In this section, we’ll discuss how to select parameters in our approach. In fact,
many different combinations of parameters can give similarly good results. We
choose some parameters empirically in our experiment. Before training, we ran-
domize the weights using Gaussian distributions, in which the mean and stan-
dard deviation is (0, 0.05). In each convolution layer, the stride is set to 1.
In max-pooling layers, the stride is equal to the number of units, as the units
are non-overlapping. To speed up model training and prevent overfitting, we
use layer-wise batch normalization and dropout (0.5) between layers. The main
parameters that we tune in our work are as follows:

The embedding size (m): Recall that in Sect. 3, we introduced two embedding
strategies for descripting payload. For a given payload example, we converted it
into a s×ms matrix, and a s−n+1×mg matrix. The byte embedding size (ms)
and the ngram embedding size (mg). For parameter simplify, we empirically set
ms = mg = m = 30, s = 16.

The number of convolution filters (t): We use filter windows (h) of 3, 4,
5 with t feature maps each. The number of filters impact the ability of feature
detection of ProNet. In the following evaluations, we carry out our experiments
for t ∈ {10, 30, 50}.

Mini-batch size of SGD (batch): SGD is used in the ProNet model to opti-
mize the loss function. We choose batch ∈ {32, 64, 128}.

Steps in ProNet training phase (step): In one step, the ProNet will update
the weights once. We need to select the appropriate number of steps, so that the
ProNet model can converge. The loss function is used to evaluate whether it is
convergence or not.

Figure 2 shows the results of selecting above parameters for PI-task. We can
observe that the training loss generally converges after 500 steps. The bigger the
batch size the faster the loss can converge, and the value of loss is also smaller.
Also, when the batch size is set to a larger value, the loss declines more smoothly.
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(a) t=10 (b) t=30 (c) t=50

Fig. 2. Parameter tuning with embedding size m = 50

4.4 Performance Results

We conducted five separate 5-fold cross-validation experiments, where for each
experiment we randomly split our data into five equally sized partitions. For each
of the five partitions, we trained against four partitions and tested against the
fifth. The results of performance metrics are shown in Table 1. We can observe
that our approach can achieve above 99% in precision and recall.

Our experiments were carried out on a single machine with 8 G RAM and a
quad-core Intel processor of 3.6 GHz. In the training phase, it takes about 3 min
to train 2000 steps for one protocol class with about 200K samples. The larger
the data set the longer the time it takes to train. In the evaluation phase, it
takes about 5 ms to predict on a packet on average.

Table 1. The results of 5-folds cross validation of ProNet on PI-task

Precision Recall F-Measure

DNS 0.9989 ± 0.00084 1.0 ± 0.0 0.9994 ± 0.00042

SopCast 0.9961 ± 0.00209 0.9959 ± 0.00142 0.9961 ± 0.00090

PPStream 0.9976 ± 0.00065 0.9828 ± 0.00116 0.9902 ± 0.00063

NBNS 0.9971 ± 0.00158 0.9995 ± 0.00037 0.9983 ± 0.00083

DHCP 1.0 ± 0.0 0.9979 ± 0.00030 0.9989 ± 0.00015

QQLive 0.9898 ± 0.00185 0.9993 ± 0.00043 0.9945 ± 0.00080

PPLive 1.0 ± 0.0 0.9930 ± 0.00108 0.9964 ± 0.00054

HTTP 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0

SMTP 0.9936 ± 0.00161 0.9979 ± 0.00065 0.9957 ± 0.00065

SMB 0.9998 ± 0.00024 0.9987 ± 0.00127 0.9992 ± 0.00070

5 Conclusion

We present ProNet, a robust automatic protocol fingerprint learning approach
that can operate on raw packet payloads, for accurately traffic identification.
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ProNet leverages a convolutional neural network for extracting features from
packet payloads as the key insight, and characterizes traffic payloads via byte
embeddings and ngram embeddings. Using embeddings with convolutions as top
layers in our neural network coupled with supervised training, allows us to implic-
itly extract a feature set that is directly optimized for classification. Extensive
experimental evaluations show that ProNet achieves high accuracy and remains
robust in the real trace. ProNet can serve as a critical preprocessing tool for many
traffic classification applications in quality-of-service control, network security,
and resource profiling. We believe that ProNet is the first approach that demon-
strates how top to bottom deep-learning method can be adapted to the traffic
identification problem, where payload data are purposely obfuscated to prevent
obvious feature extraction.
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