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Abstract. The recommender system based on collaborative filtering is
vulnerable to shilling attacks due to its open nature. With the wide
employment of recommender systems, an increasing number of attackers
are disordering the system in order to benefit from the manipulated rec-
ommendation results. Therefore, how to effectively detect shilling attacks
now becomes more and more crucial. Most existing detection models rec-
ognize attackers in statistics-based manners. However, they failed in cap-
turing the fine-grained interactions between users and items, leading to a
degradation in detection accuracy. In this paper, inspired by the success
of word embedding models, we propose a collaborative shilling detection
model, CoDetector, which jointly decomposes the user-item interaction
matrix and the user-user co-occurrence matrix with shared user latent
factors. Then, the learned user latent factors containing network embed-
ding information are used as features to detect attackers. Experiments
conducted on simulated and real-world datasets show that CoDetector
has a good performance and generalization capacity and outperforms
state-of-the-art methods.

Keywords: Collaborative filtering · Shilling attack · User embedding
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1 Introduction

Nowadays recommender systems play an important role in dealing with the
problem of information overload. In recommender systems, collaborative filter-
ing (CF) is a widely used technique which recommends items according to the
assumption that users who have the similar preferences would like to choose
similar items. CF model has been proven to be effective but is vulnerable to
shilling attacks due to its open nature [1,2]. In shilling attacks, attackers inject
user profiles to increase or decrease the recommended frequency of the targeted
items, which will reduce the accuracy of recommendation and robustness of a
recommender system. As a consequence, they can benefit from the manipulated
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results whereas normal users may not trust the system anymore. Therefore,
how to detect shilling attacks is a big challenge in the studies of recommender
systems.

Generally, shilling attacks can be seen as a binary classification problem,
that is, for each user profile, the classified result can only be a normal user or
an attacker. Therefore, the key point for this problem is to appropriately design
the user features [17]. Most existing detection models recognize attackers in
statistics-based manners [5,7]. However, they failed in revealing the fine-grained
interactions between users and items, leading to a degradation in detection accu-
racy when attackers are disguised elaborately.

Matrix factorization (MF) characterizes both items and users by decom-
posing the user-item rating matrix. Latent factors derived from MF capture
the implicit features underlying the interactions between users and items. In
this paper, we propose a detection model named CoDetector based on MF.
However, to further include more information, we bridge basic MF and the
word embedding model [4] which can uncover the context structure of users.
Inspired by [3], our model jointly factorizes the rating matrix and the user-user
co-occurrence matrix with shared user latent factors. For each pair of users,
the user-user co-occurrence matrix encodes the number of items they both con-
sumed, which is similar to the word co-occurrence matrix in word-embedding
models. The main idea of our model is that attackers tend to promote the tar-
get item in group so as to enhance the attack effect [16]. Therefore, factorizing
these two matrices can fuse rating preferences and structural information in the
user-item bipartite network into the user latent factors, which are the input of
the classifier. The experimental results show that CoDetector has a good perfor-
mance and generalization capacity and significantly outperforms state-of-the-art
methods in real scenarios.

The rest of this paper is organized as follows: Sect. 2 reviews the related
work of shilling detection. Section 3 focus on the proposed method. In Sect. 4,
experimental results of CoDetector on both simulated and real-life dataset are
reported. Finally, Sect. 5 concludes our work.

2 Related Work

2.1 Shilling Attack Models

In CF, users who have the similar preferences would like to choose the similar
items. Based on this idea and the open nature of recommender systems, attackers
can inject biased profiles to manipulate the recommendations [1,2].

In order to behave like a normal user without being detected, malicious users
use attack models to generate attacker profiles based on knowledge of recom-
mender systems. The general profile of an attacker can be divided into four seg-
ments [1] and is depicted in Fig. 1. IT denotes target item set which is just what
attackers want to promote (push attack) or demote (nuke attack), IS denotes
the selected items based on specific needs of the spam user, IF denotes filler
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item set which is used to disguise attackers, and I∅ denotes unrated item set
which forms the majority of the profile and are always empty.

Fig. 1. General framework of attack profile

In accordance with the different chosen items and given ratings in the user
profile, attack models are categorized into five types [5]. Table 1 describes these
attack strategies.

– Average attack: Filler items are assigned the corresponding average ratings
of items.

– Random attack: Filler items are assigned random values.
– Bandwagon attack: Selected items are the frequently rated items and

assigned the maximum rating.
– Segment attack: Segment attacks choose items similar to target items as

selected items.
– Sampling attack: The user profile is a copy of that of a normal user.

Table 1. The features of the attack models

Attack model IS IF IT

Random ∅ β(i) ∼ N(u; σ),

selected randomly

push : γ(i) = rmax

nuke : γ(i) = rmin

Average ∅ β(i) ∼ N(u; σ)

selected randomly

push : γ(i) = rmax

nuke : γ(i) = rmin

Bandwagon Widely popular items
α(i) = rmax, ∀i ∈ IS

β(i) ∼ N(u; σ),

selected randomly

push : γ(i) = rmax

nuke : γ(i) = rmin

Segment Similar items to target
items α(i) = rmax, ∀i ∈ IS

β(i) = rmax/rmin,

selected randomly

push : γ(i) = rmax

nuke : γ(i) = rmin

Sampling A copy of a exiting users profile

2.2 Shilling Attacks Detection Methods

According to whether training labels are needed, shilling detection methods can
be divided into three categories.
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– Supervised detection model: This type of detection methods usually rec-
ognize attackers by elaborately designing user features. [6] computes rating
indicators like DegSim (Degree of Similarity with Top Neighbors) and RDMA
(Rating Deviation from Mean Agreement) for all users. [7] extracts popularity
patterns based on items analysis.

– Semi-supervised detection model: In the real situation, there exist few
labeled data and much unlabeled data. Thus, semi-supervised detection mod-
els make use of both unlabeled and labeled user profiles for shilling attacks.
[10] proposed a model which firstly use naive bayes to train an initial clas-
sifier and then improve it with unlabeled data. In [18], a model based on
PU-Learning [19] which relies on a few positive labels and much unlabeled
data to construct a classifier iteratively was introduced.

– Unsupervised detaction model: Compared with supervised detection
algorithms, unsupervised ones are more applicable to real scenarios because
of less labeled data set. [11] proposed a graph-based detection approach which
finds most associated sub-matrices in a user-user similarity matrix for shilling
attacks. In [15], the authors exploited the similarity structure in shilling user
profiles to separate them from normal user profiles using principal compo-
nents analysis.

3 Proposed Method

In this section, we propose our model, CoDetector, which bridges MF and user
embedding to exploit the implicit interactions between users and items.

3.1 Preliminaries

MF and word embedding are pillars of CoDetector. First, we will briefly retro-
spect these two models.

Matrix Factorization. MF is a basic method in collaborative filtering which
uncovers the latent features underlying the interactions between users and items
by mapping both users and items into a low-dimensional latent-factor space [12].
The objective function of MF is:

L =
∑

u,i

(yui − pTu qi)2 + λ(
∑

u

‖pu‖2 +
∑

i

‖qi‖2), (1)

where user and item latent factors are denoted by pu ∈ R
d and qi ∈ R

d respec-
tively, yui denotes the observed rating expressed by user u on item i and the
algorithmic parameter λ controls the magnitudes of the latent factors.

Word Embedding. Word embedding represents a set of successful models in
natural language processing. Using these methods, each word in a sequence of
words can be embedded into a continuous vector space. SGNS (the skip-gram
neural embedding model) in word2vec [13] is a neural model which trained with
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the negative-sampling procedure. [3] proved that SGNS is equivalent to factor-
izing a word-context matrix, whose cells are the pointwise mutual information
(PMI) of the respective word and context pairs. PMI between a word w and a
context c is an information-theoretic measure, can be empirically estimated as:

PMI(i, j) = log
#(i, j) · |D|
#(i) · #(j)

(2)

where #(i, j) is the number of times word j appears in the context of word i,
#(i) =

∑
j #(i, j) and #(j) =

∑
i #(i, j), and |D| is the total number of word-

context pairs in the corpora. Then [3] proposed SPPMI (Shifted Positive PMI)
based on PMI with different negative samples count k to improve the resulting
embedding.

SPPMI(i, j) = max{PMI(i, j) − log k, 0} (3)

3.2 CoDetector

Attackers manipulate recommendation results by injecting biased user profiles in
a large scale, causing abnormalities not only in the given ratings but also in the
local clusters in the user-item bipartite graph. Therefore, to further capture the
fine-grained characteristics of attackers, both rating and structural information
are supposed to be fused into the user features. In CoDetector, we adopt user
embedding to discover the anomalies.

User Embedding. In word2vec [13], given a center word, the sequence of words
surrounding it are defined as the context of the center word. Likewise, in the
user-item bipartite graph of the recommender system, we can define the context
of a user u as other users who consumed or rated same items. For example, both
u1 and u2 consumed i1 and i2, therefore, u1 and u2 are contexts of each other.
Then, the user-user co-occurrence SPPMI matrix M ∈ R

m×m is constructed
by computing #(i, j) that denotes the number of items which both user i and
user j consumed. After that, we can obtain user embedding by factorizing M .
As attackers tend to promote/demote target items in group, factorizing SPPMI
matrix can reveal the implicit interactions among attackers in the user-item
bipartite graph and embed structural information into user latent factors. In
addition, by tuning the value of negative samples, noises in the bipartite can be
neglected whereas available connections are preserved.

Training Procedure. To fuse both rating and structural information into
user latent factors, CoDetector jointly decomposes the rating matrix R and the
SPPMI matrix M with shared user latent factors. The overall process is shown
in Algorithm 1. The objective function of CoDetector is stated as:

L =
∑

u,i

(yui − pTu qi)2 +
∑

u,j

(muj − pTu gj − wu − cj)2

+ λ(
∑

u

‖pu‖2 +
∑

i

‖qi‖2 +
∑

j

‖gj‖2)
(4)
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Algorithm 1. The process of CoDetector
Input: User labels U ; user−item ratings matrix R, which include attack profiles.
Output: Labels of users to be recognized.
1: Constructing SPPMI matrix M
2: for user i in U do
3: for user j in U do
4: Count the number of items both user i and user j consumed.
5: Compute the shifted positive point-wise mutual information.
6: end for
7: end for
8: while notConverged do
9: Jointly decompose R and M with shared user latent factors P ;

10: update latent vectors.
11: end while
12: Use P to predict user labels.

where pu is the shared user latent factors which embeds rating and structure
information, muj denotes the shifted positive point-wise mutual information
between user u and user j, gj is the context of user u, and wu and cj are the
biases of the user and context. The model parameters are updated by using
stochastic gradient descent method. The update rules are as follows:

∂L

∂pu
= λpu − (yui − pTu qi)qi − (muj − pTu gj − wu − cj)gj

∂L

∂qi
= λqi − (yui − pTu qi)pu

∂L

∂gj
= λgj − (muj − pTu gj)pu

∂L

∂wu
= muj − pTu gj − wu − cj

∂L

∂cj
= muj − pTu gj − wu − cj

(5)

It should be noted that constructing SPPMI matrix is time-consuming due
to its O(n2) complexity. This part should be computed off-line. Fortunately,
updates for elements in this matrix is not computationally expensive. For each
update, only the cells related to this consumption or click need to be modified.

4 Experimental Results

To evaluate the performance of the proposed algorithm, we conduct experiments
on MovieLens and Amazon datesets. Here we show the results of CoDetector in
comparison with four state-of-the-art shilling attack detectors and analyze the
effect of model parameters.

Datasets including MovieLens and Amazon, are used in our experiments.
MovieLens contains 100,000 ratings rated by 943 users on 1,682 movies, and
Amazon dataset released by [20] contains 60,000 ratings rated by 4,902 users
on 21,394 items. Precision, recall and F1-score were used to measure the
performance.
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To tune the methods included, we use 80% of the data as the training set,
from which we randomly select 10% as the validation set. For the remaining
20% of the data, we consider the users and items that appear in the training
and validation sets to obtain the test set. We record the best parameters of these
methods according to their performance on the validation set. Afterwards, all
the experiments are performed with 5-fold cross validation. The dimensionality
d of latent factors in CoDetetor is 10, and negative samples count k is 25 in
Sect. 4.1. After 200 iterations, the CoDetector reached a stable result.

Table 2. Detection results on three typical shilling attacks on MovieLens

Attack Size
Filler Size

%3 %5 %7 %10 %15

average

%3
Precision 0.5000 0.7500 0.8000 0.8182 0.8889
Recall 0.2500 1.0000 1.0000 1.0000 1.0000
F1 0.3333 0.8571 0.8889 0.9000 0.9412

%5
Precision 0.6667 0.9091 1.0000 1.0000 0.9600
Recall 1.0000 1.0000 0.8333 0.7778 0.9917
F1 0.8000 0.9254 0.9091 0.8750 0.9756

%7
Precision 0.7857 0.8939 0.8333 0.8889 0.9880
Recall 1.0000 0.9158 1.0000 1.0000 0.9832
F1 0.8800 0.9023 0.9091 0.9412 0.9845

random

%3
Precision 0.2500 0.8000 0.9300 0.9057 0.8268
Recall 1.0000 1.0000 0.9588 0.9023 0.9478
F1 0.4000 0.8889 0.9442 0.9030 0.8832

%5
Precision 0.7778 1.0000 0.9550 0.9600 0.9917
Recall 1.0000 0.8750 1.0000 0.9917 0.9835
F1 0.8750 0.9333 0.9770 0.9756 0.9876

%7
Precision 0.9416 0.6667 0.9300 0.7143 0.8182
Recall 0.9453 1.0000 0.9588 1.0000 1.0000
F1 0.9421 0.9017 0.9442 0.8333 0.9000

bandwagon

%3
Precision 0.6667 0.8442 0.8000 0.9057 0.8430
Recall 1.0000 0.9145 1.0000 0.9023 0.9158
F1 0.8000 0.8779 0.8889 0.9030 0.8779

%5
Precision 0.8000 1.0000 0.9000 0.8268 0.9565
Recall 1.0000 0.8571 0.9000 0.9479 0.9483
F1 0.8889 0.9231 0.9000 0.8832 0.9524

%7
Precision 0.9426 0.9915 1.0000 0.9416 0.9750
Recall 0.8928 1.0000 0.8750 0.9453 0.9832
F1 0.9017 0.9957 0.9333 0.9421 0.9791

4.1 Performance for Detecting Profile Injection Attacks

In this section we firstly evaluate the performance of CoDetector on three dif-
ferent attack models: random attack, average attack, and bandwagon attack,
respectively. Then we compare CoDetector with other four methods on the
hybrid attack model which contains simulated attackers generated by three
attack models and real-world dataset, Amazon, to show the excellent generaliza-
tion capacity of CoDetector. In MovieLens, we assume that the original users are
normal user, and inject simulated attackers manually according to the definition
of attack models. In Amazon, normal users and genuine spammers have been
labeled by the authors of [20]. In addition. as the principle of push attacks and
nuke attacks is almost the same, we only inject attackers to promote the target
items.



466 T. Dou et al.

As can be seen in Table 2, CoDetector is very successful at detecting spam
users generated from specific attack models mentioned in Sect. 2. In most cases,
with the rise of the filler size and attack size, the values of the measures gradually
increase. All of the attackers can be detected. The results confirm the robustness
of CoDetector.

Table 3. Comparison of multiple methods

Method DegreeSAD FAP PCASelectUsers SemiSAD CoDetector

MovieLens Precision 0.9565 0.9631 0.9062 0.9415 0.9500

Recall 1.0000 0.9539 0.9667 0.9181 1.0000

F1 0.9825 0.9564 0.9355 0.9255 0.9744

Amazon Precision 0.6880 0.8943 0.5465 0.6035 0.8812

Recall 0.5850 0.7320 0.8852 0.6208 0.8915

F1 0.6324 0.8050 0.6757 0.6120 0.8863

Table 3 shows the results of DegreeSAD [7], FAP [14], PCASelectUsers [15],
SemiSAD [10] and CoDetector on MovieLens and Amazon. Simulated attacker
here are generated with attack size at %15 and filler size at 10%. We can see that
CoDetector and other methods have the comparable performance on MovieLens.
However, on the real-world dataset, Amazon, CoDetector beats other methods by
a fairly large margin. Specifically, the improvements on F1 are 40.14%, 10.09%,
31.16%, and 44.82% respectively. It should be noted that DegreeSAD is based on
statistical features. By contrast, underlying features fusing rating and structure
information in CoDetector can significantly improve the performance.

Fig. 2. Impact of the count of negative samples
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Fig. 3. Impact of parameter d

4.2 Impact of Model Parameters

Two parameters are introduced in CoDetector. One is the dimensionality d of
latent factors, the other is the count of negative samples k considered in the
construction of SPPMI matrix. Experiments in this part investigate the sensi-
tivity of these two parameters on Amazon. First we fix d at 10 to tune negative
samples count ranging from 21 to 210. Figure 2 shows that precision, recall and
F1 rise with the increase of negative samples count. We can see in Eq. 3, a larger
negative samples count means a more sparse SPPMI matrix. As attackers tend
to launch attacks in group, larger co-occurrences between two users means that
they may be accomplices. Giving a larger negative count can help to filter noises
generated by coincidences.

Then, we fix negative samples count at 25, to see the influence of d ranging
from 5 to 100. In Fig. 3, we can see CoDetector obtains best recall and F1 when
d=10. However, results on other d values are also acceptable, which validates
the stability of our model.

5 Conclusion

In this paper, we present a collaborative shilling detection model called CoDetec-
tor bridging factorization and user embedding. It integrates rating and structure
information into shared user latent factors to recognize shilling attackers in rec-
ommender systems. Experiments conducted on common datasets show that our
model significantly outperforms state-of-the-art methods.

Shilling attacks in this paper disorder recommender systems by injecting
biased ratings. However, hybrid attacks based on both fake ratings and social
connections were proposed [2]. In the future, we will extend our model to detect
spammers in the social network.
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Zäıane, O., Spiliopoulou, M., Mobasher, B., Masand, B., Yu, P.S. (eds.) WebKDD
2005. LNCS (LNAI), vol. 4198, pp. 96–118. Springer, Heidelberg (2006). https://
doi.org/10.1007/11891321 6

9. Burke, R., et al.: Segment-based injection attacks against collaborative filtering
recommender systems. In: Fifth IEEE International Conference on Data Mining.
IEEE (2005)

10. Cao, J., et al.: Shilling attack detection utilizing semi-supervised learning method
for collaborative recommender system. World Wide Web 16(5–6), 729–748 (2013)

11. Zhang, Z., Kulkarni, S.R.: Graph-based detection of shilling attacks in recom-
mender systems. In: 2013 IEEE International Workshop on Machine Learning for
Signal Processing (MLSP). IEEE (2013)

12. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 42(8), 30–37 (2009)

13. Mikolov, T., et al.: Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781 (2013)

14. Zhang, Y., et al.: Catch the black sheep: unified framework for shilling attack
detection based on fraudulent action propagation. In: IJCAI (2015)

15. Mehta, B., Nejdl, W.: Unsupervised strategies for shilling detection and robust
collaborative filtering. User Model. User Adapt. Interact. 19(1), 65–97 (2009)

16. Jiang, M., Cui, P., Faloutsos, C.: Suspicious behavior detection: current trends and
future directions. IEEE Intell. Syst. 31(1), 31–39 (2016)

17. Wu, Z.A., Wang, Y.Q., Cao, J.: A survey on shilling attack models and detection
techniques for recommender systems. Chin. Sci. Bull. 59(7), 551–560 (2014)

18. Wu, Z., et al.: Spammers detection from product reviews: a hybrid model. In: 2015
IEEE International Conference on Data Mining (ICDM). IEEE (2015)

https://doi.org/10.1007/11891321_6
https://doi.org/10.1007/11891321_6
http://arxiv.org/abs/1301.3781


Collaborative Shilling Detection Bridging Factorization and User Embedding 469

19. Li, X.-L., et al.: Positive unlabeled learning for data stream classification. In: Pro-
ceedings of the 2009 SIAM International Conference on Data Mining. Society for
Industrial and Applied Mathematics (2009)

20. Xu, C., et al.: Uncovering collusive spammers in Chinese review websites. In: ACM
International Conference on Conference on Information and Knowledge Manage-
ment, pp. 979–988. ACM (2013)


	Collaborative Shilling Detection Bridging Factorization and User Embedding
	1 Introduction
	2 Related Work
	2.1 Shilling Attack Models
	2.2 Shilling Attacks Detection Methods

	3 Proposed Method
	3.1 Preliminaries
	3.2 CoDetector

	4 Experimental Results
	4.1 Performance for Detecting Profile Injection Attacks
	4.2 Impact of Model Parameters

	5 Conclusion
	References




