
An Efficient Black-Box Vulnerability
Scanning Method for Web Application

Haoxia Jin1, Ming Xu1(B), Xue Yang1, Ting Wu1, Ning Zheng1,
and Tao Yang2(B)

1 Internet and Network Security Laboratory,
Hangzhou Dianzi University, Hangzhou, China

{151050013,mxu,153050004,wuting,nzheng}@hdu.edu.cn
2 Key Lab of the Third Research Institute of the Ministry

of Public Security, Shanghai, China
yangtao@stars.org.cn

Abstract. To discover web vulnerabilities before they are exploited by
malicious attackers, black-box vulnerability scanners scan all the web
pages of a web application. However, a web application implemented
by several server-side programs with a backend database can generate a
massive number of web pages, and may raise an unaffordable time con-
suming. The root cause of vulnerabilities is the mal-implemented server-
side program, instead of any certain web pages that generated by the
server-side program. In this paper, an efficient black-box web vulnera-
bility scanning method – handler-ready – is proposed, which highlights
the scanning on the server-side programs – handlers – rather than con-
crete web pages. Handler-ready reduces the HTTP requests of massive
web pages to a small number of handlers, and gives the handlers an
even chance of being scanned. Therefore, the handler-ready can avoid
being stuck with massive web pages that generated by the same handler
when scanning. The experimental result shows that the proposed scan-
ning method can discover more vulnerabilities than traditional methods
in a limited amount of time.

Keywords: Web application · Black-box vulnerability scanner

1 Introduction

Web applications are the most popular way of delivering services via the Internet.
The complexity of modern web application has caused massive vulnerabilities
in web applications, and, in fact, the number of reported web applications is
growing sharply [1].

Web vulnerabilities threaten the security and privacy for both citizens and
enterprises. For example, an attacker exploited a vulnerability of CSDN’s (China
Software Developer Network) website in Apr. 2010, and published the database
in Dec. 2011, which contains over 6 million user informations [2].

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

I. Romdhani et al. (Eds.): CollaborateCom 2017, LNICST 252, pp. 444–455, 2018.

https://doi.org/10.1007/978-3-030-00916-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_42&domain=pdf

Handler-Ready 445

An approach for fighting security vulnerabilities is to discover defects before
malicious attackers find and exploit them by conducting automated black-box
vulnerability scanning. Black-box vulnerability scanners observe the applica-
tion’s output in response to a specific input, and verify whether a vulnerability
exists.

However, virtually any website that serves content from a database use one
or more server-side programs to generate pages on the website, leading to a site
considering of several clusters of pages, each generated by the same server-side
program [3]. Taking stackoverflow.com for example, which has over 13 million
web pages. A thorough black-box scanning against 13 million web pages is impos-
sible and unnecessary. A pre-defined maximum pages to be crawled may neglect
some of the functionalities of web application not being scanned. Alternatively,
the impact of the massive server-side generated web pages on efficiency can be
mitigated by our method.

In addition, web applications are released or updated with new features all
the time, which may also introduce new vulnerabilities. It is necessary to discover
their vulnerabilities with a rapid reaction.

In this paper, we propose the method – handler-ready – to improve the effi-
ciency of black-box web vulnerability scanning against the massive automatically
generated web pages under the time-restrict situation. Handler-ready is based on
the motivation that the web pages generated from the same server-side program
have similar patterns of their HTTP requests, and scanning on a small number
of web pages could find vulnerabilities as much as scanning on all the web pages.

In summary, the main contributions of this paper are following:

– An efficient scanning method. It avoids being stuck in massive pages that
related to the same server-side handler.

– Proposing the sharing-the-same-handler problem and the relevant concepts.
– A method of the handler learning along with the method of request sampling.
– An evaluation of both efficiency and effectiveness of the proposed method

under the time-restrict situation. The experimental result promisingly shows
that the efficiency is improved with no decrease in effectiveness.

The rest of the paper is organized as follows. We discuss related work in
Sect. 2. In Sect. 3, we describe proposed handler-ready method along with its
important formulations for request and handler. The evaluation of various scan-
ning methods for effectively discovering web vulnerabilities are presented in
Sect. 4.

2 Related Work

Another approach for fighting web application vulnerabilities is using white-box
vulnerability scanners, which requires a web application’s source code or tar-
get code. However, white-box scanners are commonly programming-language-
specified, which reduce the scope of target web applications. In addition, there
is the problem of substantial false positives [4]. Finally, the source code or target

http://stackoverflow.com

446 H. Jin et al.

code of the applications itself may be unavailable. In contrast, black-box vulner-
ability scanners observe the application’s output in response to a specific input
to verify the existence of vulnerabilities.

Automated black-box web application vulnerability scanning has been a hot
topic in research for many years. A number of tools have been developed to
automatically discover vulnerabilities in web applications, produced as academic
prototypes [5,6], and open-source projects, such as skipfish, w3af, and OWASP
Zed Attack Proxy.

The evaluation of [7] acknowledges challenges of web application vulnerability
scanning in depth. [8] makes a comparison of the efficiency and effectiveness of
vulnerability discovery techniques. A common theme of web vulnerability scan-
ning is to improve effectiveness. [9,10] emphasizes the importance of crawling
and application’s internal states, and introduces a state-aware scanning method,
which captures the web application’s state changing, to find more vulnerabili-
ties under different states. Different with these works, our aim is improving the
efficiency, while not downgrading the effectiveness.

3 Method: Handler-Ready

Traditional scanning method takes following steps to scan a web application:

1. Crawling. The crawling process collects the target application’s web pages
automatically or manually. The automatic crawling often fails to trigger the
AJAX requests which dominated by the client-side dynamic codes. Therefore,
a common practice is manually browsing the target application first, then
launching the automatic crawling.

2. Scanning. The scanning process constructs and sends some sophisticated
HTTP requests to a collected web page’s every injection point (such as a
text input box, a parameter inside the URL) for every type of vulnerabilities.
After the HTTP request received and processed by the target application,
the scanning process receives the HTTP response of its constructed HTTP
request, verifies whether a certain type of vulnerability has been found.

3. Reporting. The discovered vulnerabilities along with the relevant informa-
tion are represented to the user.

The challenge is that the scanning processes often costs unaffordable time
consuming, due to the massive number of web pages collected in the crawling
process. These pages are generated by the very same server-side programs [3].
However, the number of web application’s handlers is limited despite the massive
number of server-side generated web pages. In addition, the duplicated web
pages may reports spurious vulnerabilities that related to the same root cause
[10]. Therefore, we introduce our efficient scanning method, handler-ready, which
does two extra steps before scanning launched:

1. Handler-Learning. It reduces the HTTP requests of a massive number of
web pages to a small number of handlers by utilizing the state-of-art frequent
pattern mining algorithm.

Handler-Ready 447

2. Request-Sampling. It generates a partial sequence of HTTP requests for
scanning such that the handlers have even chance of being scanned and avoid
being stuck.

The steps of the proposed handler-ready method are shown in Fig. 3. Only
two steps are inserted into the traditional steps. Therefore, handler-ready is
ready to plug into existing scanners (Fig. 1).

Fig. 1. Handler-ready steps for vulnerabilities scanning.

The traditional method can also be interpreted by the proposed method,
whose “handler-learning” treats every web page come from the same handler,
and whose “request-sampling” just sample every web pages for scanning. The
commonly used setting of “maximum children to crawl”, which modifies the
behavior of the crawling process, can also be a special “request-sampling” that
samples a web page unless the number of its siblings sampled in the same direc-
tory not exceeds the threshold of “maximum children to crawl”. Therefore, in
our evaluation, we treat all traditional methods as different “request-sampling”
methods, and compared them with the proposed method.

3.1 Modeling: The Request and Handler

In this section, we define the request and the handler, along with their relations.

Definition (Request). A request u is a map u : K → V from the key-set K
to the value-set V . The set of all possible requests is denoted by U .

Where K is the set of keys {kmethod, kscheme, kport} ∪ {khost,1, ..., khost,h} ∪
{kpath,1, ..., kpath,p} ∪ {kqs,∗}. V is the set of all values of any possible HTTP
requests, augmented with token ⊥ that denotes the empty value. In describing
any request u, u maps the keys of K to the corresponding values occurred in the
original HTTP request, or the default empty value ⊥ unless the corresponding
values are not exist.

Example 1. Given a request

u1 = GET http://example.com/foo/bar?hello=world,

it has following mapping:

· kmethod kscheme kport khost,2 khost,1 kpath,1 kpath,2 kqs,hello ·
u1 GET http ⊥ example com foo bar world ⊥

448 H. Jin et al.

Notice that the keys {khost,1, ..., khost,h} are encoded reversely to the domain
name’s segments of a web application’s for the alignment of the multiple sub-
domains that the web application may employ.

Definition (Handler). A handler r is a map r : K → W , mapping each key in
K to a value in W . Let R be the set of all possible handlers. Where W is the set
of values V extended with regular expression characters. For simplicity, in this
paper, we only consider W = V ∪{�}, where � represents the wildcard character
that can match any non-empty value in V . We define the match relation between
handlers and requests, the handler partial ordering relation between handlers,
and the supports of handlers as follows:

– Match. A handler r matches request u, written as r ⊕ u, if for every key k,
either r(k) = � or r(k) = u(k).

– Handler Partial Ordering. A handler r′ is less general than r, written as
r′ ≤ r, if for every key k, r′(k) �= r(k) ⇒ r(k) = �. This is saying that a
handler, which is more specific, is less general than other handlers.

– Supports. The support of r in U , denoted supp(r), is the set of requests
{u|∀u(r ⊕ u) ∧ ¬∃r′(r′ �= r ∧ r′ ≤ r ∧ r′ ⊕ u)}. This is saying that a request u
belongs and only belongs to supp(r), if r is most preceding one of the handlers
that match the request u.

Given sets of handlers R′ and R′′ that match all the requests, the sets
{supp(r)|∀r ∈ R′} and {supp(r)|∀r ∈ R′′} are partitions(i.e. equivalence classes)
on U . Therefore, the similarity Θ(R′, R′′) is calculated by Jaccard Similar-
ity: Θ(R′, R′′) = sum(min(MR′ ,MR′′))

sum(max(MR′ ,MR′′)) , where MR′ ,MR′′ are the upper triangular
matrixes of R′, R′′’s relation matrixes.

Our definition of handler coincides with the definition “pattern” or “script”
of works about URL classification, such as [3,11]. In addition, our definition of
handler partial ordering relation enables the ordering between handlers, which
is not defined in the previous works. As show in Example 2, the handler partial
ordering is useful when modeling handlers which seems very similar.

Example 2. Given following instances:

· kmethod kscheme kport khost,2 khost,1 kpath,1 kpath,2 kpath,3 k�

u1 GET http ⊥ stackoverflow com questions 666 subrasi ⊥
u2 GET http ⊥ stackoverflow com questions 233 lol ⊥
u3 GET http ⊥ stackoverflow com questions tagged java ⊥
u4 GET http ⊥ stackoverflow com questions ask ⊥ ⊥
r1 GET http ⊥ stackoverflow com questions ask ⊥ ⊥
r2 GET http ⊥ stackoverflow com questions tagged � ⊥
r3 GET http ⊥ stackoverflow com questions � � ⊥

Handler-Ready 449

On the stackoverflow.com, r1 represents a web page for asking a new question;
r2 represents the web pages about questions tagged with the value indicated by
kpath,3; and r3 represents a question specified by kpath,2 and kpath,3. They have
similar URL formats, but represent totally different functionalities.

There are r1 ≤ r3, r2 ≤ r3, r1 �= r2 �= r3, r1 ⊕ u4, r2 ⊕ u3, and r3 ⊕ ui, i =
1, 2, 3, 4. Although r3 matches u1,2,3,4, u3,4 are not supports of r3. The supports
of r1, r2, and r3 are supp(r1) = {u4}, supp(r2) = {u3}, and supp(r3) = {u1, u2}.

The definitions of handler partial ordering and supports provide the ability
to model multiple handlers that very similar to each other.

Assumption. We assume the web application is a handler-dispatcher machine
that a request u is dispatched to the handler r if u ∈ supp(r).

It should be note that our assumption handler-dispatcher machine meets
the implementations of popular web servers, such as Microsoft IIS, Apache
HTTPD, Nginx, as well as web application frameworks, such as SpringMVC,
Struts, and Django. These implementations employ a regular expression rule
based mechanism for request matching, and support the ordering between rules
in the configuration file. All these features can be interpreted by our model. For
web applications implemented by dynamic web pages and even static websites,
the handler-dispatcher machine can still work.

Problem. The proposed problem is called sharing the same handler problem.
Given a subset of requests U ′, find the a subset of handlers R′, such that
Θ(R,R′) → 1.0.

Where R is the true set of handlers decided by the server-side programs or
web server’s configuration. Solving the sharing the same handler problem is the
very aim of the handler-learning process of the proposed handler-ready method.

3.2 Handler Learning

As shown in Example 1 and Example 2, a bundle of requests is literally encoded
into a multi-dimensional database. Therefore, a frequent closed itemset mining
algorithm can be used to learn the patterns of requests. The handler-learning
process follows the following steps:

1. Itemset Encoding. Transform a request u to itemset u′ by Eq. (1).
2. Frequent Pattern Mining. Mine frequent itemsets {u′′, ...} from {u′, ...}.
3. Handler Constructing. A frequent pattern u′′ can be converted to a han-

dler ru′′ by Eq. (2).

u′ = {ek, vk,u(k)|∀k ∈ K,u(k) �= ⊥} (1)

ru′′(k) =

⎧
⎪⎨

⎪⎩

u(k), if ek ∈ u′′ ∧ vk,u(k) ∈ u′′.
�, if ek ∈ u′′ ∧ vk,u(k) �∈ u′′.
⊥, otherwise.

(2)

http://stackoverflow.com

450 H. Jin et al.

In the Eq. (1), ek represents the existence of key k, and vk,u(k) represents that
the value of key k is u(k). The choosing algorithm for frequent pattern mining
is FPClose [12], which is a state-of-art algorithm, and its output is so called
“closed itemset pattern”. The closed itemset pattern is not included in another
pattern having exactly the same occurrence. This feature make sure that the
learned handlers are representative.

FPClose needs a parameter minsup, which is the minimum occurrence of a
pattern. In our problem, FPClose with minsup = 5% produces patterns that
not trivial. For large web application that have many functionalities, the minsup
may be smaller to preserve more details. The requests that not matched by the
FPClose produced patterns, are grouped together, and form a special handler,
which is also used as a handler in the hereafter request-sampling process.

3.3 Request Sampling

In this section, we introduce our sampling method, which generates the sequence
of requests for vulnerabilities scanning. Our sampling method needs following
principles to do sampling:

– The chances of all handlers being sampled should be equivalent, as we don’t
know whether a given handler is more vulnerable than another.

– The chances of all requests of a handler ’s support being sampled should be
even. As we are agnostic with the values’ meaning of requests even when their
sets of keys are same, the only thing we can do is giving them the equivalent
chance of being sampled.

To meet the above principles, the request-sampling take a sampling threshold
p, a given set of requests U ′ and the learned handlers R′ as input, and follows
the following steps:

1. Shuffle the order of the requests in the set supp(r) for all r ∈ R′.
2. Traverse every r ∈ R′ in turn, and sample a u ∈ supp(r) for scanning.
3. Stop when the ratio p of requests of U ′ are sampled.

4 Evaluation

The purpose of the proposed method is to detect vulnerabilities of web applica-
tions. In this section, we evaluate the effectiveness of our handler-ready method
in terms of the following questions:

– Whether efficiency improved by employing handler-ready?
– Whether more vulnerabilities discovered by handler-ready when scanning

same number of objects that scanned by the traditional method?

Handler-Ready 451

Table 1. Evaluated applications.

Application Description Version Lines

Gallery3 A photo hosting 3.0.2 26,622

Vanilla Forum v2.0 A discussion forum 2.0.17.10 43,880

WackoPicko An intentionally vulnerable web application 2.0 900

WackoRESTful WackoPicko’s URL rewrite version 2.0 941

WordPress v3 A Blog hosting platform 3.2.1 71.698

4.1 Preparations

Table 1 provides an overview of the evaluated web applications. Most of them are
evaluated in [10]. WackoRESTful is WackoPicko’s URL rewrite version modified
by us. All of them are varied in size, complexity, and functionality.

In order to collect the data sets, OWASP Zed Attack Proxy 2.6.0 is used to
crawl and to scan pages on the web applications listed in Table 1. The sequence
of requests scanned by the OWASP Zed Attack Proxy is the input of our handler-
ready method, and is also the other sampling-methods’ input. After the sequence
of requests being scanned is collected, the handler learning process is started to
extract handler information.

The statistics of handler learning against evaluated applications are shown
in Table 2, and the labeling is made by us manually to calculate the similarity.
The column “Similarity” shows the similarities, which are not very close to 1.0.
These similarities is actually saying the ratios of the relations of the requests
that dispatched to the same handler with 100% confidence. A bigger similarity
may potentially introduce a higher scanning efficiency. Therefore, the proposed
handler-ready can still improve the scanning efficiency against Vanilla Forum
v2.0 despite its small similarity.

The column “Distribution” shows the distribution of ||supp(r)||/||U ′|| of the
evaluated applications, and suggests that a minority of handlers could matches
the largest portions of requests. The processes handler-learning and request-
sampling of handler-ready are necessary to give all handlers even chance of

Table 2. The statistics of the evaluated applications after handler-learning.

Application Requests Handlers Similarity Distribution

Gallery3 1,710 38 0.5536
Vanilla Forum v2.0 1,353 42 0.1988
WackoPicko 144 19 0.4120
WackoRESTful 276 22 0.4166
WordPress v3 253 24 0.7884

Total 3,736 145 N/A

452 H. Jin et al.

being scanned rather than the chances positively correlated to the number of
matched requests.

4.2 Sampling Methods

To simulate the time-restrict situation, the following are evaluated sampling
methods:

– handler-readyp. The proposed method. The first ratio p of request-
sampling’s result are used for scanning.

– DFSp. The first ratio p of the lexicographical order of requests.
– owasp-zapp. The first ratio p of original sequence of requests scanned by

OWASP Zed Attack Proxy.
– max-childrenm. The sequence of requests scanned by OWASP Zed Attack

Proxy when setting the parameter “maximum children to crawl” to m.

where p is the ratio of requests being scanned, and m is the maximum children
to crawl under a certain directory.

4.3 Vulnerabilities Scanning Results

To evaluate the performance of the handler-ready for vulnerabilities scanning
under the p and m, we conduct two sets of comparison experiments:

– Comparisons between handler-readyp, DFSp, and owasp-zapp. The threshold
p is ranging from 0.1 to 1.0.

– Comparisons between handler-readypm
and max-childrenm. Where pm is the

threshold related to m, such that ||handler-readypm
|| = ||max-childrenm||.

Without loss of generality, the parameter m is ranging from 0 to 20.

handler-readyp vs. DFSp vs. owasp-zapp . The vulnerabilities reported by
three sampling methods under different threshold p are shown in Fig. 2. In most
cases, the proposed handler-readyp performs better than other methods.

For Gallery3 and WordPress v3, the true positives are omitted, because they
have no true positives found in this experiment. It is interesting that Vanilla
Forum v2.0 has two reflected XSS vulnerabilities and three external redirect
vulnerabilities discovered during our experiment. As all of these vulnerabili-
ties are placed in the management module of the application, the damage of
these vulnerabilities being exploited will be very harmful. The reflected XSS
vulnerabilities can be exploited by a malicious user to collect another user’s(web
master’s) credential.

The sampling method owasp-zapp is actually a breadth first traversing of
requests. owasp-zapp and DFSp are often being stuck, for they often enter a
directory with massive web pages derived by the same server-side handler. In
contrast, the proposed handler-readyp does not.

Comparing with the traditional scanning methods, handler-ready has a 40%
efficiency improvement against the evaluated web applications with no decrease
in effectiveness.

Handler-Ready 453

(a) Gallery3 (b) Vanilla Forum v2.0 (c) WackoPicko

(d) WackoRESTful (e) WordPress v3

Fig. 2. Vulnerabilities reported under different threshold p. Handler-ready-true, owasp-
zap-true, and dfs-true are three methods’ true positives respectively.

handler-readypm
vs. max-childrenm . The vulnerabilities reported by two

methods under different parameter m and m’s related pm are shown in Fig. 3.
The proposed handler-readyp performs better than “maximum children to

crawl” method, i.e. max-childrenm. As shown in Fig. 3(a), max-childrenm still
neglects vulnerabilities that should be discovered when m = 20, which is quite
large. Although handler-ready seems not superior than max-children against
Vanilla Forum v2.0, the former can still find true positives earlier than max-

(a) Gallery3 (b) Vanilla Forum v2.0 (c) WackoPicko

(d) WackoRESTful (e) WordPress v3

Fig. 3. Vulnerabilities reported under different parameter m and pm. Handler-ready-
true and max-children-true are two methods’ true positives respectively.

454 H. Jin et al.

children. The reason is that “maximum children to crawl” prunes the requests
that have vulnerable children.

Under the time-restricted condition, handler-ready can discover more vulner-
abilities than the commonly used “maximum children to crawl” approach with
the same number of the object being scanned.

5 Limitation

Although the web applications nested in the web browser are unable to manipu-
late other request fields (such as Request Headers) to identify different handlers,
web applications’ developers still have chance to hide handler tokens in the
Cookie or the payload of the POST request as mentioned in [13]. And HTTP-
based APIs (such as API for mobile APP) may manipulate these fields to identify
the handler and parameters. In the future, we will study how to model these fields
and make our method fully-handler-ready.

6 Conclusion

New web vulnerabilities emerge quickly and threaten the security and privacy for
both citizens and enterprises. Web applications update all the time to import new
features, which may also introduce new vulnerabilities in the meanwhile. It is nec-
essary to discover web vulnerabilities with a rapid reaction. However, traditional
scanning methods do not scan quickly against web applications, which utilize
server-side programs to generate massive web pages from a backend database.

The proposed method, handler-ready, learns the pattern of requests for the
massive automatically generated web pages, and samples the requests that worth
to scan under the time-restrict situation. Sampled requests are used to scan the
web application. The experimental result shows that the proposed method can
significantly improve the efficiency under the time-restricted condition.

Acknowledgements. This work is supported by the National Key R&D Plan of
China under grant no. 2016YFB0800201, the Natural Science Foundation of China
under grant no. 61070212 and 61572165, the State Key Program of Zhejiang Province
Natural Science Foundation of China under grant no. LZ15F020003, the Key research
and development plan project of Zhejiang Province under grant no. 2017C01065, the
Key Lab of Information Network Security, Ministry of Public Security, under grant no
C16603.

References

1. Martin, R.A., Christey, S.: Vulnerability type distributions in CVE. MITRE Report
(2007)

2. China Software Developer Network (CSDN) leaked 6 million user information.
http://www.williamlong.info/archives/2933.html

http://www.williamlong.info/archives/2933.html

Handler-Ready 455

3. Blanco, L., Dalvi, N., Machanavajjhala, A.: Highly efficient algorithms for struc-
tural clustering of large websites. In: WWW, pp. 437–446 (2011)

4. Medeiros, I., Neves, N.F., Correia, M.: DEKANT: a static analysis tool that learns
to detect web application vulnerabilities. In: ISSTA, pp. 1–11 (2016)

5. Felmetsger, V., Cavedon, L., Kruegel, C., Vigna, G.: Toward automated detection
of logic vulnerabilities in web applications. In: USS, pp. 143–160 (2010)

6. Halfond, W.G.J., Choudhary, S.R., Orso, A.: Penetration testing with improved
input vector identification. In: ICST, pp. 346–355 (2009)

7. McAllister, S., Kirda, E., Kruegel, C.: Leveraging user interactions for in-depth
testing of web applications. In: RAID, pp. 191–210 (2008)

8. Austin, A., Holmgreen, C., Williams, L.: A comparison of the efficiency and effec-
tiveness of vulnerability discovery techniques. IST 55(7), 1279–1288 (2013)

9. Doupé, A., Cova, M., Vigna, G.: Why Johnny can’t pentest: an analysis of black-
box web vulnerability scanners. In: DIMVA, pp. 111–131 (2010)

10. Doupé, A., Cavedon, L., Kruegel, C., Vigna, G.: Enemy of the state: a state-aware
black-box web vulnerability scanner. In: USS, pp. 523–538 (2012)

11. Hernndez, I., Rivero, C.R., Ruiz, D., Corchuelo, R.: CALA: classifying links auto-
matically based on their URL. JSS 115, 130–143 (2016)

12. Grahne, G., Zhu, J.: Fast algorithms for frequent itemset mining using FP-trees.
TKDE 17(10), 1347–1362 (2005). https://doi.org/10.1109/TKDE.2005.166

13. Shezaf, O.: Rest assessment cheat sheet. http://tinyurl.com/mkqd8br

https://doi.org/10.1109/TKDE.2005.166
http://tinyurl.com/mkqd8br

	An Efficient Black-Box Vulnerability Scanning Method for Web Application
	1 Introduction
	2 Related Work
	3 Method: Handler-Ready
	3.1 Modeling: The Request and Handler
	3.2 Handler Learning
	3.3 Request Sampling

	4 Evaluation
	4.1 Preparations
	4.2 Sampling Methods
	4.3 Vulnerabilities Scanning Results

	5 Limitation
	6 Conclusion
	References

