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Abstract. In transportation business, the passenger flow analysis counts the
ridership of given bus stops on given time duration. On the smart card data from
the card readers of buses, the calculation of passenger flow faces challenges: the
accuracy or the latency is blamed, and the scalability is poor on large volume
data. In this paper, we propose an effective method on massive smart card data,
in which ride behaviors are modeled and the passenger flow can be achieved and
efficiently. Our method is implemented by Hadoop MapReduce, and proves
minute-level latencies on weekly historical data with nearly linear scalability.
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1 Introduction

In urban transportation, the passenger flow analysis counts the ridership of given bus
stops on given time duration. It has been widely applied to find hot spots, improve bus
scheduling and evaluate service quality, and is essential to build industrial intelligent
system [1]. Accordingly, related research is always hot in academia. Traditionally,
smart card data of buses is stored in data warehouse or relational database, and the
passenger flow analysis is done by SQL composition or store procedure [2, 3] through
statistic model on small samples. However, it still faces inherent limitations on massive
data. First, the latency is intolerable when large data involved. To achieve the latest
values, the database suffers long time because huge volume data should be loaded,
scanned and sorted several times during query execution. Second, the accuracy is
blamed due to complex ride behaviors of passengers. With simplified assumptions,
traditional methods on small samples [4] could only count short-time passenger flow
(e.g., five minutes duration) at limited bus stops. Third, the scalability is extremely poor
when data or infrastructure grows.
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In this paper, we propose a novel analysis method for different types of passenger
flow through ride behavior models. The contributions can be summarized as follows.
(1) Ride behavior is modeled by business rules and statistics, and passenger flow would
be achieved accordingly in an efficient way. (2) Passenger flow depicted as MapReduce
jobs proves minute-level latencies on weekly data with nearly linear scalability in
extensive conditions.

2 Motivation and Related Work

Our work was initiated by Passenger Big Data Analysis Platform in Beijing. We
collaborated with E-hualu, one of the leader companies in China for intelligent
transportation system (ITS). We had deployed a bus scheduling system for more than
30 new night-bus lines in late 2014, and were eager to improve the bus departure
intervals and the passenger on-board time through Big Data technologies. A record as
the data unit contains 13 attributes in Table 1 including three entities, two timestamps
and two spatial attribute-groups. Currently, the smart card data was regularly processed
through traditional databases, while the execution latency on massive data is too long to
endure. It is urgent to find effective solutions, and that is our original motivation.

Table 1. A record structure of smart card data.

Attribute Notation Type
card_ID Identity of smart card Entity
line_ID Identity of bus line

bus_ID Identity of bus

begin_time Timestamp of getting-on Time
end_time Timestamp of getting-off
from_station_ID Identity of getting-on station Space
from_station_name Name of getting-on station

[from_station_longitude | Longitude of getting-on station
from_station_latitude | Latitude of getting-on station
to_station_ID Identity of getting-off station
to_station_name Name of getting-off station
to_station_longitude Longitude of getting-off station

to_station_latitude Latitude of getting-off station

There is an assumption that the data has been cleaned to eliminate fallacious
records. The low data quality obstructs the data analysis and user experience [5]. We
employ data cleaning method previously proposed [6] on those massive spatio-
temporal data to guarantee temporal consistency and semantic legality.

Database is the traditional technology for passenger flow analysis. Through per-
sistent data storage, the smart card data is processed by SQL composition or store
procedure [2]. On the card data in GTFS (General Transit Feed Specification) format,
Tao et al. [7] demonstrate a multi-step methodology to examine the spatial-temporal
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dynamics of travel behaviors among bus passengers. But such technology suffers long
latency, because holistic data ought to be scanned several times during execution [8].

To improve the latency, the statistic model is widely used on small samples to
predict passenger flow in short-time. Ma et al. [2] build travel probability models on
smart card data, and their DBSCAN joint algorithm could identify historical travel
patterns and regularities. Zhang et al. [4] propose a Kalman filter method to forecast
short-term passenger flow on heterogeneous data (including smart card data of buses).
Their accuracy is high only on limited data, but cannot hold on large volume.

Big data technology is being adopted because traditional models cannot run well in
continuous and scalable environment [9]. Through Hadoop, the intelligent trans-
portation systems like SMARTBUS [10] and Xiong’s work [1] integrate data in
multiple layers and views. Through MapReduce on smart card data and bus GPS data,
Zhang et al. [11] analyzed the passenger density to infer crowdedness and evaluate the
vehicle scheduling, and Wang et al. [12] estimated boarding stop time and bus arrival
time. All those works show their efficiency in specific business, but none of them has
reported the passenger flow analysis yet, and we have to learn and start-up elaborately.

In brief, on massive smart card data of buses, it still lacks effective methods to
analyze passenger flow.

3 Passenger Flow Analysis Through Ride Behaviors

3.1 Methodology

To take a bus at one stop, a passenger would have one of three behaviors: getting-on,
getting-off and transfer. In this paper, we focus on the getting-on behavior and its
passenger flow.

Definition 1. Getting-on (getting-off) passenger flow. For a bus stop s on any time
duration d; by interval 0, the passenger flow of getting-on (getting-off) is the count of
passengers who gets on (off) any bus b; at s. |l| = a day/0, [ > 0.

The time durations are divided by the time inferval 0 which can be assigned as
30 min, 1 h or 1 day in practice. Therefore, the passenger flow analysis in this paper is
the calculation to achieve the passenger flow defined above at all the bus stops on any
duration. The getting-on and getting-off analyses are similar due to their symmetrical
behaviors, so that only the former one would be discussed in details in the following
parts.

The architecture of passenger flow includes three layers as a PaaS (platform as a
service) fashion.

The bottom is data layer to maintain two kinds of data. The basic data is the
dependent items for analysis, such as bus stop, bus line and vehicle id, which is
preserved in relational database like MySQL. The smart card data would be uploaded
daily from offline files to distributed file system HDFS after data cleaning. Compared
with the basic data, the smart card data has much larger volume (1 TB vs. 100 MB) and
updates in higher frequency (daily vs. weekly).

The middle is processing layer for analysis execution. Different types of passenger
flow would be completed as respective MapReduce jobs. The time interval 0 is 1 h by
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default, and could be adjusted on demand. Those jobs would be dispatched as parallel
tasks. In fact, as an open layer, other jobs on those data rather than passenger flow
analyses can be calculated here.

The top is the application layer to monitor jobs and get results. The calculation
console is a web monitor for machines, services (e.g., jobtracker, tasktracker,
namenode, datanode, zookeeper), and jobs (states, slot, task counter, load-balance).
Some native commands like job submission and halt have been encapsulated as GUI
(graphical user interface). The map service shows results in an online map, in which the
bus stops, bus lines and vehicle trajectories are directly visualized. At selected bus stop,
the analysis results can achieve intuitively in a pop-up table. The visual parameters like
resolution and zoom can be also adjusted.

3.2 Getting-on Behavior and Its Passenger Flow

As the Definition 1, getting-on passenger flow ought to refer a location (i.e., bus stop)
on given time (i.e., time durations).

There are three problems about time here. (1) One problem is to how discriminate a
bus’ different trips, when the records of the smart card data on the same bus were
appended in sequential. A bus has high possibility to drive for service more than one
round-trip in a day, and those different trips cannot be distinguished from each other
directly. (2) The second problem is how to infer the stop and start time of a bus at one
bus stop. The getting-on/off timestamp of passengers varies much due to the card
tapping time of passengers. (3) The third problem is how to sensibly count passenger
flow if the wait period [z, t,) of a bus overlaps two adjacent durations. For example,
when 0 =1 h, t,, = 8:58, 1, = 9:01; which is more rational reflections about the rid-
ership during the period [#,, t,): the duration dg = [7:00-8:00) or d¢ = [8:00-9:00)?

To solve those problems, we observe the characteristics of data, and propose the
following model with the symbols in Table 1.

Definition 2. Getting-on behavior model of passengers. For a bus stop s of bus b;,
the getting-on behavior in any record r conforms these characteristics:

(1) entity attribute r.bus_ID = bj;
(2) four spatial attributes of r.from_station_* is related with bus stop s;
(3) all the long integers of temporal attribute r.begin_time
(a) can be clustered according to trips of bus service;
(b) are smaller than the start time of b; in high possibility;
(c) are negative skewed because their mean is larger than their SD (standard
deviation).

Here, the third one just reflects the facts of three problems above, and we would
cope with them individually.

(a) To speed the clustering on those long integers to discriminate different trips, we
include an auxiliary condition: for bus b;, the successive records r; and ;| belong
to serial trips respectively if (r;.begin_time — r;.begin_time) < y. We employ
the empirical ¥ = 420 (i.e., 7 min), because we have learned from the official
documents, a bus in Beijing spends at least 14 min for a round-trip.
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To infer the start time of bus b; at stop s, we have to get rid of the skewness of
original data. For the data in skewed distribution, logarithm transformation is
feasible to find the normality, because it can turn multiplicative effects into
additive ones. The calculation is the following procedure:

i. for any r;.begin_time, transform it to its Natural Logarithm value g;;

ii. on all those logarithm values, calculate their mean m, and SD sd;

iii. the start time can be inferred as t,, = EXP (m, + 2* sd,), where EXP

x) = e".

To count passenger flow in a time period overlapped two adjacent durations d;, d;
+1, we refer the start time #,, got from (b): the getting-on ridership belongs to either
0; if t,, € 9; ord;y (i.e., t,, € d;1). It is sound because the getting-on behavior
depends on action of bus start.

Through the behavior model in Definition 2, the getting-on passenger flow analysis

can be designed as two-step procedure in Fig. 1, and each step is implemented as a
Hadoop MapReduce job. In this figure, the left part of either step is realized as a map
task and the right one is a reduce task; each of which requires only one-pass to scan the
data.
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Fig. 1. Getting-on passenger flow analysis

The first step is to achieve the getting-on passenger flow of single bus. It is rep-

resented in the top part of the Fig. 1. Here, each record would be extracted by its
attributes. The timestamp of getting-on (i.e., attribute begin_time) is divided by two
parts: date and time. After grouping by the composition of station id, bus id and date,

the

calculation is done through the getting-on behavior model. The intermediate results
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could be sorted by time and then be outputted as the getting-on passenger flow of each
bus. For example, if 0 is set as 1 h, a output could be <3, 00028294, 20151208, 0, 0, 0,
0,0,0,13,0,0,25,0,0,0,18,0,0,0,0,0, 0, 0, 0, 0, 0>. It means the bus 0028294 at
bus stop 3 on Dec. 8™ 2015 has three trips when the ridership is 13 in [6:00, 7:00), 25
in [9:00, 10:00) and 18 in [13:00, 14:00).

The second step is to achieve the getting-on passenger flow of all the buses. It is
expressed as the bottom part of Fig. 1. In this step, the output of the first step is read,
and each record would be extracted by from_station_id, bus_id, date and vectors of
passenger flow of single bus. After grouping by the composition of station id, bus id
and date, the intermediate results could be sorted by time and then be outputted as the
final getting-on passenger flow. For example, if 0 is set as 1 h, a output could be <3,
20151208, 0, 0, 0, 0, 0, 64, 85, 105,128, 256, 204, 230, 242, 189, 205, 143, 145, 252,
286, 259, 235, 102, 82, 35>. It shows the getting-on passenger flow at bus stop 3 on
any duration of Dec. 8" 2015 divided by one hour interval.

The getting-off behavior model for the getting-off passenger flow analysis could
be defined analogously. In that model, the different attribute r.end_time and the bus
stop time are focused. The inferred stop time #, = EXP (m, — 2* sd,) on logarithm
values of getting-off attribute, because those timestamps are positive skewed and larger
than stop time in high possibility.

4 Evaluations

4.1 Settings

The performance and effects are respectively evaluated as experiments and case studies
in this section. Here, six virtual machines are used in our private Cloud to implement
our method, each of which owns 4 cores CPU, 4 GB RAM and 1.2 TB storage with
CentOS 6.6 x86_64 installed. Four Acer AR580 F2 rack servers via Citrix XenServer
6.2 were used for the virtualization, each of which own 8 processors (Intel Xeon
E5-4607 2.20 GHz), 48 GB RAM and 80 TB storage.

We employ the smart card data of Beijing buses on eight days in 2013 which
contains 24263142 records on 7349 buses of 233 lines involving 3581 bus stops. All
the data was generated from the readers charging by distance, and each record contains
13 attributes as Table 1 in Sect. 2. The data has been cleaned in advance by our
dedicated method [6]. To design the experiments on data in different volume, we have
divided those 8-day data into eight parts by their dates.

Two different ways for the passenger flow analysis have been implemented for
comparison. One is our method termed as BD (Big Data), in which passenger flow
analysis are implemented as Hadoop MapReduce jobs. The counterpart is a statistical
estimation method [13] termed as ODE (Origin-destination Estimation) in the current
production environment.
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4.2 Experiments
We compare and evaluate the performance through experiments below.

Experiment 1. The data of eight dates is used as the inputs of different volume. Run
the two types of passenger flow analysis through both BD and ODE methods, and note
their average executive times.

The result is showed as Fig. 2.
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Fig. 2. The comparison of passenger flow analysis in different ways

As the input volume increases, the executive time through both methods rises, but
through ODE it is longer than that of BD by two orders of magnitude in either analysis.
The volume of three inputs is approximate 3 million, 5 million and 15 million
respectively. The executive time through ODE grows sharply when the volume is
bigger than 5 million, while that of BD rises almost linearly. On 3-day input, BD only
consumes minute-level executive time, while the ODE requires more than 5 h. The low
latency through BD comes from the parallel execution of two-step procedure for either
analysis. But through ODE, the analysis requires multiple data scans to sort and query,
and moreover it has to run on a single machine without parallelism.

We found the too long latencies through ODE, and only BD method is considered
in the following experiments to evaluate the efficiency and scalability.

Experiment 2. The data of one day is appended to the input each test, and the
executive times for getting-on analysis through BD are noted. For comparison, on each
data volume, three different intervals, 10-min, 1-h and 4-h, are set respectively. The
result is presented in Fig. 3(a). The average executive time on one million records in
each test can be deduced as Fig. 3(b).

The getting-on analysis through BD method is proved scalable on data volumes. On
the one hand, when input scales, the increment of executive time of getting-on analysis
is better than linearity at any interval. In Fig. 3(a), the time is kept minute-level and not
doubled even when the input grows eight folds. That trend can also be comprehended
clearly from Fig. 3(b), where the average executive time on give size data declines to
the steadiness about 10 s. It demonstrates that the processing capacity of BD method is
stable and horizontally scalable. On the other hand, on the input of the same volume,
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Fig. 3. The analysis under different intervals and inputs

the executive time varies by intervals. The larger interval has lower latencies, because
either behavior model of BD method relies on the interval: smaller interval implies
more time durations for calculation and requires more time to complete. It is interesting
that when input scales, the capacity on given size data converges in any interval as
Fig. 3(b), which also proves its scalability.

With the experiments above, our method proves minute-level latency on weekly
data in a scalable fashion.

5 Conclusion

Through ride behavior model, we propose a method to analyze the passenger flow on
massive smart card data. For any analysis on weekly historical data, our method can
hold minute-level latency and keep nearly linear scalability in extensive conditions. It
also efficiently shows practical results efficiently. Furthermore, we would research other
rider behaviors, and would analyze their passenger flow through respective behavior
models.
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