)

Check for
updates

A Load Balancing Method Based on Node
Features in a Heterogeneous Hadoop Cluster

Pengcheng Yang'~, Honghao Gao'?, Huahu Xu'”®*?,
Minjie Bian'*, and Danqi Chu*

! School of Computer Engineering and Science,
Shanghai University, Shanghai 200444, China
huahuxu@l63. com
2 Computing Centre, Shanghai University, Shanghai 200444, China
3 Shanghai Shang Da Hai Run Information System Co., Ltd.,
Shanghai 200444, China
* Equipment Office, Shanghai University, Shanghai, People’s Republic of China

Abstract. In a heterogeneous cluster, how to handle load balancing is an urgent
problem. This paper proposes a method of load balancing based on node fea-
tures. The method first analyses the main indexes that determine node perfor-
mance. Then, a formula is defined to describe the node performance based on
the contributions of those indexes. We combine node performance with node
busy status to calculate the relative load value. By analysing the relative load
value of each node and the cluster storage utilization rate, the recommended
value of the storage utilization rate for each node is calculated. Finally, the
balancer threshold is generated dynamically based on the current cluster’s disk
load. The results of experiments show that the load balancing method proposed
in this paper provides a more reasonable equilibrium for heterogeneous clusters,
improves efficiency and substantially reduces the execution time.

Keywords: Cloud computing - Hadoop - Heterogeneous cluster
Load balancing - Relative load

1 Introduction

With the rapid development of the Internet and information technologies, increasing
amounts of research and business data are produced. The amount of data has reached
the PB level [1], and a single machine is unable to handle such large-scale data. This
situation has led to the creation of cloud computing. Hadoop is an open source dis-
tributed processing system developed by the Apache Foundation [2]. In the field of big
data, Hadoop has become an outstanding platform that can handle intensive computing
tasks. The platform consists of many nodes, and data is stored in those nodes. After a
job is submitted, Hadoop splits the job into several tasks, distributes it to the nodes, and
returns the results. In data-intensive supercomputing, the cost of moving data is much
higher than the cost of moving computing [3]. Moving the process of calculation to the
data nodes saves large amounts of network bandwidth, effectively reduces the number
of data transfers, and improves cluster efficiency. However, when new nodes are added

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
I. Romdhani et al. (Eds.): CollaborateCom 2017, LNICST 252, pp. 344-354, 2018.
https://doi.org/10.1007/978-3-030-00916-8_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_32&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00916-8_32&domain=pdf

A Load Balancing Method Based on Node Features 345

or the number of files in the cluster change dynamically, the amount of data in each
node can become unbalanced. When the data load among cluster nodes becomes
unbalanced, many problems can arise. For example, the MapReduce program no longer
makes good use of local computing, because the probability that the task must be
assigned non-locally increases [4]. Thus, the node must copy the data from the other
nodes, increasing the network load. The nodes cannot improve network bandwidth
utilization and disk utilization. Consequently, the efficiency of the cluster is reduced
and the execution time increases. Obviously, ensuring balanced data in the Hadoop
cluster is very important. Data load balancing has gradually become an important
research area in the field of distributed computing [5].

There are two solutions to this problem: static load balancing algorithms and
dynamic load balancing algorithms. A static load balancing algorithm calculates the
load of nodes using a pre-designed load balancing algorithm, which then allocates tasks
[6]. However, this approach does not consider the node’s resource load status. A static
load balancing algorithm is simple to implement, but because it neglects the resource
load, the final allocation scheme may not meet the requirements for load balancing and
can lead to load imbalance. A dynamic load balancing algorithm considers the load
information of the node to allocate tasks reasonably. However, because the load
information must be calculated in real time, dynamic load balancing increases resource
consumption [7]. Therefore, based on an analysis of the shortcomings of the two
solutions, a data load balancing method based on node features for heterogeneous
clusters is proposed.

The method proposed in this paper combines the static load balancing algorithm
with the dynamic load balancing algorithm. First, the node performance is defined to
calculate the node’s data processing ability. Second, the node load status is evaluated
by dynamically obtaining the current number of node connections. The node’s relative
load value is calculated by combining the node performance with the node load status.
Then, node data is allocated considering the relative load value. Nodes with larger
relative load values will be allocated more data.

The rest of this paper is organized as follows. Section 2 introduces load balancing
and related works. Section 3 describes the construction of the load balancing method
based on node features. The algorithm proposed in this paper is simulated and the
simulation results are analysed in Sect. 4. Finally, Sect. 5 concludes and presents
prospects for future work.

2 Related Works

As a framework for dealing with big data, Hadoop can fully utilize the advantages of
large-scale clusters. The most important goals are to improve cluster efficiency and
ensure full resource utilization. However, when the load in a cluster is unbalanced,
problems will occur, such as low overall throughput of the cluster and resource
underutilization. Many scholars have studied cluster load balancing through task
scheduling, in which the load statuses and overall performance of clusters are analysed,
and then, reasonable decisions are made. Gao et al. [8] conducted an in-depth study for
implementing of MapReduce. The deviation of each node’s running time in the Reduce

346 P. Yang et al.

phase is caused by differences in the performances of the nodes in the cluster. A load
balancing algorithm based on node performance was proposed to solve this problem.
First, the algorithm creates a pre-allocated list, named RPReduceNum, based on the
performance of all nodes. Data is allocated to Reduce tasks based on the RPReduce-
Num list, and high-performance nodes process more tasks in the Reduce phase.
Therefore, this approach reduces the overall MapReduce running time and improves
efficiency. However, it also causes large network consumption in the cluster. In the
Reduce phase, the amount of received data for the Reducer is determined by a parti-
tioning function. The Reducers with high input data become a performance bottleneck,
which delays execution completion. To solve this problem, Fan et al. [9] proposed a
method for storing the input data for a Reducer by creating a virtual partition. Each
output of the Map task is assigned to a different virtual partition based on a hash
function. All the virtual partitions are combined into the same number as the Reduce
task by the LBVP algorithm, which ensures that the input data for each Reduce task is
balanced. However, this approach ignores the problem of node heterogeneity. Zheng
et al. [10] proposed a method of adaptive task scheduling method based on node
capability. The tasks for nodes are distributed according to each node’s history, current
load status, performance, task characteristics and failure rate. Each node can adaptively
adjust the number of running tasks, which decreases the time to completion for all tasks
and improves node load balance. In HDFS, multiple copies of data blocks are placed on
different DataNodes. Although this approach improves the fault tolerance of HDFS, the
randomness of the default block may cause load imbalances between DataNodes. Lin
et al. [11] proposed an improved load balancing algorithm to avoid adjusting data by
using a balancer and minimizing block movement as much as possible to reduce the
movement costs. This method mainly balances the loads of file blocks after addition or
deletion, but it ignores the effects of dynamic addition or deletion in the cluster for load
balancing. Wei et al. [12] proposed a new replica placement strategy to uniformly
distribute the data, thus meeting the requirements of HDFS replica placement. This
method does not need to run the balancer to make adjustments, but it still cannot avoid
the problem of data imbalances after new nodes have been added or when node failures
in clusters occur. Liu et al. [13] proposed an improved load balancing algorithm based
on heterogeneous clusters that analysed four aspects of load imbalance: imbalance in
input splits, imbalance in computation, imbalance in partition sizes, and imbalance in
heterogeneous hardware. Xie et al. [14] proposed a strategy for storing data propor-
tionally that involved distributing a large number of data sets to multiple nodes based
on the computing ability of each node. In addition to the data redistribution algorithm
for HDFS, a data reorganization algorithm was also implemented to solve the problem
of data deviation caused by dynamic insertions or deletions. This strategy takes the
heterogeneity of the nodes into account, but it ignores the impact of the heterogeneity
of node storage on data storage.

First, this paper analyses the importance of default load balancing and the limita-
tions exposed under heterogeneous clusters. Next, a method of load balancing for
heterogeneous clusters is proposed. The method analyses the features of each node and
then calculates a relative load value for each node. According to the relative load value,

A Load Balancing Method Based on Node Features 347

the data for clusters can be allocated more reasonably. A large number of conducted
experiments show that the method reduces cluster imbalance, improves cluster effi-
ciency and reduces execution time under certain environments.

3 Improved Load Balancing Method

In this paper, we propose a load balancing method based on node features in hetero-
geneous clusters. The heterogeneity of a heterogeneous cluster is reflected by high
performance nodes handling the same work in less time and the different storage
allocated by each node to the HDFS. When the data is allocated proportionally
according to the performance of each node, due to the heterogeneity of the node’s
storage, the node’s disk may not support the allocated amount of data. The scheme
proposed in this paper is based on the performance of each node and on HDFS storage
to calculate the theoretical value of data allocation and the threshold used to determine
whether a node is at equilibrium status. Finally, the load balancing problem of
heterogeneous clusters is processed in a method similar to homogeneous clusters. This
approach simplifies the complexity of load balancing for heterogeneous clusters.

Storage of Node (Cmf(i)): Capacity is allocated to the HDFS by nodes and is not
limited to the capacity of the node disk. C,,s(i) represents the allocated capacity of the
i"™ node.

Used capacity (Cyseq(i)): The used capacity of the HDFS by the node’s storage.
Ciusea(i) represents the capacity used by the i node.

CPU Performance of a Node (Pcpu(i)): As is known, it is impossible for dual-core
performance to reach a full 1 + 1 = 2 efficiency. By referring to the relevant infor-
mation, in a multi-core CPU, the performance of each core is approximately only 0.8—
0.9 times as much as that of a single-core CPU. Therefore, we set p = 0.8 and 6 = 0.1.
The CPU Performance of a Node is defined as follows:

Fcpu(i)aNcore =1

P.,.(i) = .
P (i) { (p+5 N ez—Nmm(t)) *Fcpu(i)7Nmm >1

(1)

where N, (i) represents the number of cores in the CPU, and F,,(i) represents the
CPU frequency of the i™ node in GHz.

Memory Performance of Node (Pyen(i)): We use Pem(i) = Niem (i) * Fyem(i) to
measure the memory performance of nodes, where N, (i) represents the memory size
of the i node in MBs. Here, Fem(i) denotes the memory frequency of the i node in
GHz.

Connection Number of Node (Q(i)): This value indicates the number of active
connections established by a DataNode with the outside world. These connections are
generally used to transmit or receive data, send control signals, etc. The larger the

348 P. Yang et al.

value, the busier the node and the greater its load. The sum of clustered connections is
defined as:

Q=Y " 00) (1)

Definition 1: Relative load value:

R) B (e R R

max (Pcpu) 2 maX(Pmem) ax(Q)

The relative load value describes the node’s ability to carry its current load. Here, o,
f and 7 represent weight parameters of CPU performance, memory performance and
number of connections, respectively, and oo+ § 47 = 1. The upper bound of the rel-
ative load value is set to 1 and will be simplified in later calculations. By analysing the
contributions of these parameters, we set o = 0.5, § = 0.3, and y = 0.2. The sum of
the relative load value is defined as follows:

L= 3L ®)

Definition 2: Cluster storage utilization rate:
n

Cusg i— Cuse]
Ruve = & % 100% = H* 100% (5)
conf i=1 “conf

where 7 is the total number of nodes in the cluster.

Definition 3: Relative load storage capacity:

L) # Crygea () 4)

Cideal (l) - I

Definition 4: Relative load storage utilization rate:

Ci ea]
Rigeat (i) = Si2eat @) 10097 (5)

conf (l

According to the ratio of a node’s relative load value to its total relative load value,
the data can be distributed proportionally. We obtain the storage capacity of nodes
based on its relative load, which is relative to its load storage capacity. For one node,
the ratio of storage capacity based on its relative load value to the storage capacity
assigned to the HDFS is defined as its relative load storage utilization rate.

A Load Balancing Method Based on Node Features 349
Definition 5: Maximum load value:
.2 (T
M= (0‘8 +0.2 * sin (E * RAVg>> (6)

Due to heterogeneity of node disks, the storage capacity of each node will differ.
When the node’s relative load value is high, the node’s storage is fairly limited. At this
point, the allocated data size is greater than the available node storage. For this
problem, this article defines the maximum load value for the node. The maximum load
value is dynamically adjusted according to the cluster storage utilization rate. When the
cluster storage utilization rate is larger, the maximum load value of the node will be
increased accordingly. The value of M is between 80% and 100%.

We find nodes whose data ratios are greater than the maximum load value and
calculate the total overflow capacity. The total overflow capacity of the nodes in the
cluster is calculated as follows:

Csupr(i) = Z::l (Ridelll(i) - M) * Cmﬂf(i) (7)

where n is the total number of nodes in the cluster, i = 1,2, -, n and Rigeq (i) > M.
Then, data is allocated to other nodes. This iteration runs until the cluster contains no
overloaded nodes—those whose allocated data ratio is greater than the node’s maxi-
mum load value.

Definition 6: Relative load threshold:
T(i) =t * Rigews (i) (8)

where the parameter 7 is a threshold entered by the user. This indicates the maximum
value of the deviation between the node storage utilization rate and the cluster storage
utilization rate. In the default load balancer, if the deviation is less than the threshold,
we assume that the node is balanced. Due to the heterogeneity of node storage, the
actual storage expressed by the same threshold will be different between nodes.
Therefore, this paper recalculates the threshold of each node by referring to its relative
load value.

The procedure of the algorithm is as follows.

By obtaining the hardware parameters of all nodes, the CPU performance and
memory performance are calculated according to formulas (1) and (2). Then, combined
with the number of current connections, the relative load value and the sum of the
relative load values will be calculated according to formula (3). Next, analysing the
proportion of the relative load value to the sum, the relative load storage capacity and
utilization rates are calculated according to formulas (6) and (7). The maximum load
value will be calculated according to formula (8). To ensure that all the relative load
storage values are valid values, we compare the relative load storage utilization rate
with the maximum load value; the relative load utilization rate is set to the maximum
load value when the former is larger than the latter. Next, the overflow capacity is
calculated by formula (9). Overflow will then be allocated to other nodes until,
eventually no node whose relative load utilization rate is greater than the maximum

350 P. Yang et al.

load value will exist. After the threshold is entered, the relative load threshold is
calculated for each node according to formula (10). All the nodes are divided into four
groups as shown in Table 1.

Table 1. Node group

Groups Conditions
overUtilizedDataNodes R(i) > Rigear(i) + T(i)
aboveAvgUtilizedDataNodes | Rigea (i) < R(i) < Rigear (i) + T(i)
belowAvgUtilizedDataNodes | Rizeq (i) — T(i) < R(i) < Rigear (i)
underUtilizedDataNodes R(i) < Rigear(i) — T(i)

4 Experiments and Analysis

The following describes the simulation experiments conducted for this study. The
experimental environment consists of three racks containing nine nodes. There are two
nodes in rack 1, four in rack 2, and three in rack 3. The NameNode is located in rack 2,
and its number is PC3. This node also acts as a DataNode. All the nodes are configured
with the CentOS 7 operating system. The network topology is shown in Fig. 1. In the
experiment, the load balancer is run on the NameNode. The hardware parameters of all
the nodes are shown in Table 2.

"
o] o o =] s =] =] 5]

Fig. 1. Network topology

All the nodes are sorted in descending order by relative load value. PC1 is the node
with the greatest relative load value and PC9 is the node with the lowest relative load
value. The relative load values of all the nodes are shown in Fig. 2.

To compare the default load balancer with the improved load balancer in this
heterogeneous cluster, the data block copies parameter is set to 3, and we delete some
data to force the cluster to be unbalanced. We execute the instruction start-balancer.sh—
threshold 10, which means that we set the threshold to 10% and execute the load
balancer. Then, we run the balancer separately and observe the equilibrium effect.
Finally, the WordCount program is executed to record the finish time for each balanced
scheme. The cluster statuses are shown in Tables 3 and 4 (Fig. 3).

1.00 4
095 4
0.90
085 4
080 4
0754

065 4
0.60 4
0.55
0.50 4

Value of Relative Load

A Load Balancing Method Based on Node Features

Table 2. Node hardware parameters

351

Number of node | CPU Memory Storage
PCl1 3.5 GHz (4 CPUs) |4 GB (1.6 GHz) |80 GB
PC2 3.5 GHz (4 CPUs) |4 GB (1.6 GHz) |60 GB
PC3 3.5 GHz (4 CPUs) |4 GB (1.6 GHz) |40 GB
PC4 3.5 GHz (4 CPUs) |4 GB (1.6 GHz) |40 GB
PC5 2.1 GHz (2 CPUs) |3 GB (1.6 GHz) |70 GB
PC6 2.6 GHz (2 CPUs) | 2 GB (1.333 GHz) | 60 GB
PC7 2.6 GHz (2 CPUs) | 2 GB (1.333 GHz) | 30 GB
PC8 2.0 GHz (2 CPUs) | 2 GB (1.333 GHz) |40 GB
PC9 2.2 GHz (2 CPUs) | 1 GB (1.333 GHz) | 50 GB

[—m— Relative Load For Nodes|

AN

N

™~

T T T T T T
PC1 PC2 PC3 PC4 PC5 PC6

T T T 1
PC7 PC8 PC9

The Number of Nodes

Fig. 2. Relative load value

F ol

Q os A Y ! ioA
5 ; oA’ g

B 0s } U i $:

S =0 Y AN

< o ¢ ! e-if

5 ¥ 3

T T T
sC1 PC2 PCY

T T T
PC& PCE PGS

T T T
2C7 PCB PCS

The Number of Nodes

Fig. 3. Cluster storage utilization

Table 3. Cluster initial status

Number of node | Storage (GB) | Used (GB) | Used (%) | Relative load value
PC1 80 23.3 29.13 0.8
PC2 60 11.6 19.33 0.8
PC3 40 37.8 94.50 0.8
PC4 40 22.4 56.00 0.8
PC5 70 56.7 81.00 0.67
PC6 60 13.7 22.83 0.6
PC7 30 12.3 41.00 0.6
PCS8 40 15.9 39.75 0.5
PC9 50 44.2 88.40 0.46

In Fig. 4, after running the improved load balancer, the data storage distribution is
consistent with the trend in Fig. 2. This result shows that the improved load balancer
works as expected.

The improved balancer will adjust the data distribution into an improved equal-
ization status based on the relative load value. To verify that the improved load

352 P. Yang et al.

Table 4. Cluster load status

Number of | Default balancer Improved balancer
node Threshold | Balanced | Balanced |Ideal Ideal Threshold | Balanced | Balanced
T (%) (%) (GB) storage | storage | T (%) (%) (GB)
(%) (GB)
PC1 10 43.27 34.62 39.45 31.56 3.95 42.40 33.92
PC2 10 47.68 28.61 52.59 31.56 5.26 53.88 32.32
PC3 10 60.43 24.17 78.89 31.56 7.89 80.83 32.33
PC4 10 56.00 224 78.89 31.56 7.89 82.64 33.06
PC5 10 55.32 38.72 37.68 26.38 3.77 34.80 24.36
PCo6 10 47.81 28.68 39.34 23.60 3.93 37.02 22.21
PC7 10 45.72 13.72 78.69 23.60 7.87 74.27 22.28
PC8 10 43.12 17.25 49.53 19.81 4.95 52.06 20.82
PC9 10 59.46 29.73 36.54 18.27 3.65 33.18 16.59

balancer maintains a good equalization effect, the WordCount program is executed to
compare the finish times. WordCount is the demo program used for MapReduce on the
Hadoop official website; it reads a text file and counts the frequency of words in the file.
WordCount programs are I/O-intensive jobs and highly sensitive to data distribution.
The data is distributed in the cluster before running the program, and the program is run
20 times.

Figure 5 shows the finish times for jobs from different balancers. The abscissa
represents the sequence number of jobs, and the ordinate represents the finish time of
jobs. The 20 groups of contrasting experiments show that there are still some uncon-
trollable factors in the experiment, and consequently, some deviation appears. How-
ever, the overall results are relatively stable, and the average completion time of the
default balancer is longer than that of the improved balancer. These results verify that
the improved balancer has a substantial effect on cluster performance.

In a data distribution-balanced cluster, the proposed balancer can effectively reduce
the data migration problems of computing resources and data resources in different
physical nodes caused by job scheduling. Thus, the network load is alleviated, the
number of non-localized tasks decreases, and the execution time is reduced.

0 650 = Default Load Balancing
® Improved Load Balancin,
0 4 620 -
@ 60 4 Z 610
[3 " »
s 2 i ["
T 50 4 600 4 I N\ i
= s n & L] [. i
S 3 | Y £
o 40 E S i
o = / -
L)
E 30 4 g h ‘. - v. I‘
2] B . W, [
= - / ¢ .
£ o y b,
20 w » > \ EAY
L4 1/
. g u
10 4 .
T T T T T T T T T 1 T T T T T T
PC1 PC2 PC3 PG4 PCS PCE PG PGB PCY 0 2 4 6 8 10 12 14 16 18 20 22
The Number of Nodes The Number of Work

Fig. 4. Load balancer comparing experiment Fig. 5. Jobs running status

A Load Balancing Method Based on Node Features 353

5 Conclusion

In this paper, we analysed the working principles of the default load balancer. How-
ever, in heterogeneous clusters, based on the performance differences, storage and
current loads of each node, a load balancing method based on node features is pro-
posed. This method provides a scheme for calculating a relative load value for each
node. Then, the amount of data to be allocated and the appropriate threshold are
calculated by considering the relative load value. Next, we move data and ensure that
the deviations of the storage utilization rate are not greater than the threshold. Finally,
through experimental analysis, the method is shown to cause the cluster to be more
balanced, reduce the execution time of jobs, and improve the overall performance of
the cluster.

Acknowledgements. This paper is supported by National Natural Science Foundation of China
under Grant No. 61502294, Natural Science Foundation of Shanghai under Grant
No. 15ZR1415200, CERNET Innovation Project under Grant No. NGII20160210,
NGII20160614, NGII20160325, The Special Development Foundation of Key Project of
Shanghai Zhangjiang National Innovation Demonstration Zone under Grant No. 201411-ZB-
B204-012, and The Development Foundation for Cultural and Creative Industries of Shanghai
under Grant No. 201610162.

References

1. Su, F., Peng, Y., Mao, X., et al.: The research of big data architecture on telecom industry.
In: International Symposium on Communications and Information Technologies, pp. 280—
284 (2016)

2. Apache Hadoop. http://hadoop.apache.org

3. Parsola, J., Gangodkar, D., Mittal, A.: Efficient storage and processing of video data for
moving object detection using Hadoop/MapReduce. In: Lobiyal, D.K., Mohapatra, D.P.,
Nagar, A., Sahoo, M.N. (eds.) Proceedings of the International Conference on Signal,
Networks, Computing, and Systems. LNEE, vol. 395, pp. 137-147. Springer, New Delhi
(2017). https://doi.org/10.1007/978-81-322-3592-7_14

4. Bezerra, A., Hernandez, P., et al.: Job scheduling for optimizing data locality in Hadoop
clusters. In: European MPI Users” Group Meeting, pp. 271-276 (2013)

5. Lin, W.W., Liu, B.: Hadoop data load balancing method based on dynamic bandwidth
allocation. Huanan Ligong Daxue Xuebao/J. South China Univ. Technol. 40(9), 4247
(2012)

6. Fan, K., Zhang, D., Li, H., et al.: An adaptive feedback load balancing algorithm in HDFS.
In: International Conference on Intelligent NETWORKING and Collaborative Systems,
pp- 23-29 (2013)

7. Babu, B.G., Shabeera, T.P., Madhu Kumar, S.D.: Dynamic colocation algorithm for
Hadoop. In: International Conference on Advances in Computing, Communications and
Informatics, pp. 2643-2647 (2014)

8. Gao, Z., Liu, D., Yang, Y., et al.: A load balance algorithm based on nodes performance in
Hadoop cluster. In: Network Operations and Management Symposium, pp. 1-4. IEEE
(2014)

http://hadoop.apache.org
http://dx.doi.org/10.1007/978-81-322-3592-7_14

354

9.

10.

11.

12.

13.

14.

P. Yang et al.

Fan, Y., Wu, W., Cao, H,, et al.: LBVP: a load balance algorithm based on Virtual Partition
in Hadoop cluster. In: IEEE Asia Pacific Cloud Computing Congress, pp. 37-41. IEEE
(2012)

Zheng, X., Ming, X., Zhang, D., et al.: An adaptive tasks scheduling method based on the
ability of node in Hadoop cluster. J. Comput. Res. Dev. 51(3), 618-626 (2014)

Lin, C.Y., Lin, Y.C.: A load-balancing algorithm for Hadoop distributed file system. In:
International Conference on Network-Based Information Systems, pp. 173-179. IEEE
(2015)

Wei, D., Ibrahim, 1., Bassiouni, M.: A new replica placement policy for Hadoop distributed
file system. In: International Conference on Big Data Security on Cloud, pp. 262-267. IEEE
(2016)

Liu, Y., Li, M., Alham, N.K., et al.: Load balancing in MapReduce environments for data
intensive applications. In: Eighth International Conference on Fuzzy Systems and
Knowledge Discovery, pp. 2675-2678. IEEE (2011)

Xie, J., Yin, S., Ruan, X, et al.: Improving MapReduce performance through data placement
in heterogeneous Hadoop clusters. In: IEEE International Symposium on Parallel and
Distributed Processing - Workshop Proceedings, IPDPS 2010, Atlanta, Georgia, USA, 19—
23 April 2010, pp. 1-9. DBLP (2010)

	A Load Balancing Method Based on Node Features in a Heterogeneous Hadoop Cluster
	Abstract
	1 Introduction
	2 Related Works
	3 Improved Load Balancing Method
	4 Experiments and Analysis
	5 Conclusion
	Acknowledgements
	References

