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Abstract. Dataflow computing has been regarded one of the most
promising computing paradigms in the big data era. With the vast dis-
tribution of data sources, it is significant to deploy the dataflow based
applications in distributed environment to digest these data. In dataflow
computing, the data flows shall be transferred between different process-
ing units to the accomplish the predefined semantics. Software-defined
networking (SDN) has emerged as an effective network management tech-
nology to orchestrate the data flows among these processing units. For
each data flow, a forwarding rule shall be inserted into the forwarding
table of each switch on the routing path. However, the number of rules
that can be inserted in one forwarding table is limited. We are motivated
to take such constraints into the consideration of dataflow applications
deployment in distributed computing environment managed by SDN. An
efficient deployment algrotithm is proposed and evaluated in this paper.

1 Introduction

Dataflow computing, thanks to its charming characteristics in dealing with the
large and stream data, has raised lots of attention for embracing the upcoming
big data era. Specially, with the fast development of cloud computing, it has
been widely regarded that it is ideal to deploy the dataflow computing programs
in distributed environments to explore the vast cloud computing resources. As
a result, many distributed dataflow computing based frameworks, e.g., GraphX
[10], CIEL [6], TensorFlow [1], etc., have been proposed. These frameworks all
share the same design principle that the program can be described as a directed
graph where the data flows between the processes according to the predefined
semantics. This raises one natural question on how to deploy these processes in
the distributed computing environment, as illustrated in Fig. 1. This is gener-
ally referred as virtual network embedding (VNE), which has attracted much
attention in the literature, as surveyed in [4]. However, we notice that existing
network embedding studies usually consider traditional network architecture.
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Software-defined networking (SDN) [9] has been regarded as one of the essen-
tial technologies in the next-generation networks by allowing centralized man-
agement of the data flows in the network. Although it is promising to apply
SDN to orchestrate the data flows between different processes, a new challeng-
ing problem due to the inherent characteristics of SDN is introduced. That is,
SDN relies on the forwarding rules written in the SDN switches to manage for-
warding behaviors for different flows passing through the switches. The rules are
usually written in Ternary Content Addressable Memory (TCAM) such that the
rules can be read in parallel for fast entry matching and corresponding process-
ing. However, TCAM is expensive and power hungry. This limits the size of the
forwarding table, or rule space.

Fig. 1. Illustration of embedding a dataflow computing program into an SDN managed
distributed computing environment

Therefore, it is significant to re-investigate the network embedding problem
in SDN managed distributed environment, especially with the consideration of
the inherent characteristics of SDN itself, e.g., the forwarding table size limita-
tions. In this paper, we are motivated to investigate the cost-efficient dataflow
application deployment problem in SDN managed distributed computing envi-
ronment. The main contributions of this paper exist in the following folds:

– To our best knowledge, we are the first to take the SDN characteristics in
the consideration of VNE. In particular, we consider the problem of cost-
efficient dataflow application deployment in SDN managed distributed com-
puting environment.

– We formulate the cost-efficient network embedding problem into a mixed
integer linear programing (MILP) form and further propose a relaxation-
based polynomial heuristic algorithm.
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– Through extensive simulation based studies, the high efficiency of our pro-
posed heuristic algorithm is proved by the fact that it performs much close
to the optimal solution.

The rest of the paper is organized as follows: existing related work is sum-
marized in Sect. 2. The system model is given in Sect. 3. Section 4 presents our
MILP problem formulation. Section 5 proposes the heuristic algorithm. Perfor-
mance evaluation results are reported in Sect. 6. Finally, Sect. 7 concludes this
paper.

2 Related Work

To explore the vast distributed cloud computing resources, much effort has been
devoted to study of how to deploy a dataflow computing program in distributed
computing environment with different goal. For example, Chowdhury et al. [3]
address the efficient mapping of virtual nodes and virtual links onto the sub-
strate network resources to increase revenue and decrease cost of the infrastruc-
ture provider in the long run, in addition to balancing load of the substrate
network resources. Sun et al. [11] consider the case that the user demands and
the corresponding virtual network requests change dynamically, and study on
how to reconfigure an existing embedding to minimize the reconfiguration cost.
Botero et al. [2] consider an energy aware VNE with the goal of providing opti-
mal energy efficient embeddings. After comprehensive survey on existing studies
on VNE in the literature, we noticed that all existing studies consider traditional
network architecture and none of them takes SDN into consideration.

The functionality of SDN deeply relies on the forwarding rule deployed in the
SDN switches. While, as we have known, the forwarding rule space on the SDN
switches is usually size-limited due to the expensive and power-hungry TCAM.
As a result, pioneering researchers have widely discussed how to efficiently man-
age the SDN rules in the size-limited rule spaces. For example, Giroire et al.
[5] focus on applying SDN for energy aware routing with respecting capacity
constraints on links and rule space constraints on SDN routers on backbone
networks. Kang et al. [8] present efficient rule-placement algorithms to deploy
predefined forwarding policies in general SDN switches while preserving the rule-
space constraints. Although the rule space constraints have already been widely
discussed in the literature, it can be noticed that existing studies usually assume
end-to-end traffic model. When it comes to dataflow computing paradigm, there
are a number of dependent communication nodes. Existing modeling and opti-
mization algorithms cannot be applied directly.

3 System Model

We consider a substrate network consisting of a number of geographically dis-
tributed servers interconnected by SDN switches. Hence, we can denote the
substrate network as an undirected weighted graph Gs = (N,S,L), where N
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and S denote the set of servers and the set of SDN switches, respectively, and L
is the set of communication links between the servers and the switches, as well
as the ones between the switches. For each substrate server n ∈ N , the amount
of available resource capacity is denoted as Cn. For each SDN switch s ∈ S,
the forwarding table capacity (i.e., rule space size) is denoted as Cs. For each
substrate network link l ∈ L, the amount of available communication resource
capacity is denoted as Cl.

A dataflow computing program to be deployed can be abstracted as a vir-
tual network request. As a result, we similarly model a dataflow program as a
weighted directed acyclic graph (DAG) Gv = (P,E), where P is the set of con-
stituent processes of the dataflow computing program and E denotes the data
dependency relationships between these processes. If there is an edge euv from
process u ∈ P to process v ∈ P , it indicates that the output flow of u shall flow
to v as input flow. In other words, u is the parent process of v and v is the child
process of u. A process may generate multiple output flows to different child
processes. Different output flows may have different flow volume expansion rela-
tionship, either increase or decease. We therefore define αuv, u, v ∈ P to denote
the ratio of stream volume on edge euv ∈ E to the total input stream volume
to u. For each process v ∈ V , certain units of resources are needed. We denote
the resource requirement of process p ∈ P as Rp. Without loss of generality, we
specially define p0 as the first process as the front-end proxy that each comput-
ing request shall visit. Similarly, we define p1 as the child process of p0. The
proxy process p0 has been deployed on all the servers such that each can receive
the computing requests from the clients. We view each request as a flow with
different rates that shall traverse all the constituent processes in the dataflow
computing program. We denote the set of flows as F .

4 Problem Formulation

Extended Dataflow Computing Graph Construction: We notice Gu et
al. [7] invents an extended graph for VNE, with the joint consideration of sub-
strate network and virtual network. Following their work, we extend our dataflow
computing DAG into an extended dataflow computing graph Ge = (V e, S, Ee)
by integrating the substrate network architecture as follows. For each vertex
v ∈ V , we replicate it into |N | copies in Ge such that each vertex v ∈ V e rep-
resents one possible process placement. As a result, V e has |V | · |N | vertices,
i.e., |V e| = |V | · |N |. The set S is inherited from substrate network graph Gs.
Next, we construct the edge set Ee between the vertices in V e and the switches
in S. Let us first define h(v) and t(v) denote its hosting server and correspond-
ing process for vertex v ∈ V e, respectively. Specially, for tractability, we define
h(s) = s,∀s ∈ S. Then, for any vertex v ∈ V e, if there is a link from h(v1) ∈ V s

to s ∈ S in Gs, we create an edge from v to s in Ge, i.e., adding an edge evs to
Ee, whose unit cost is inherited from Gs as Ch(v)s. Such process repeated until
all vertices in the extended dataflow computing graph Ge.

After constructing the extended graph Ge, we start to build a formal opti-
mization model to describe the problem to be studied as follows.
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Process Placement Constraints: To ensure the functionality of the dataflow
computing program, the first requirement is that all the processes must be com-
pleted placed in the substrate network. To this end, we first define a binary xv to
indicate whether virtual vertex v is chosen (xv = 1) or not (xv = 0). According
to our extended graph construction process, it can be seen that xv = 1 indicates
that process t(v) is placed on server h(v). For each process, there must be one
instance in the substrate network. This is equivalent to

∑

v∈V e,t(v)=p

xv = 1,∀p ∈ P. (1)

From the perspective of the substrate server, the processes that can be placed
on it is limited by its resource capacity, i.e.,

∑

v∈V,h(v)=n

xvRt(v) ≤ Cn, n ∈ N. (2)

Flow Distribution Constraints: Let λ
fp′p
uv denote the flow rate between any

two vertices u, v for flow f ∈ F going from process p′ to p, if there exists an
edge euv, euv ∈ Ee in graph Ge. If the rate of a flow going through v is larger
than 0, it indicates that process t(v) must be placed in server n(v), i.e., xv = 1.
Therefore, we have

∑
f∈F

∑
euv∈Ee λ

fp′t(v)
uv

A
≤ xv ≤ A

∑

f∈F

∑

euv∈Ee

λ
fp′t(v)
uv ,∀v ∈ V e, ep′t(v) ∈ E, (3)

where A is an arbitrary large number.
For each process p ∈ P , it receives one or several flows from its parent pro-

cesses p′ and generates one or several output flows, according to the predefined
dataflow computing semantics. Such relationship can be described using the flow
conservation constraints on the vertices in the extended graph as

αpp′′
∑

t(v)=p
euv∈Ee

λ
fp′p
uv =

∑

t(v)=p
evw∈Ee

λ
fpp′′
vw ,∀f ∈ F, ep′p, epp′′ ∈ E. (4)

Note that we treat the front portal as the first process that each flow shall visit.
Therefore, the input flow rate of each front portal process, i.e., p0, has already
been determined. That is,

Λf
v =

∑

t(v)=p0
evw∈Ee

λ
fp0p1
vw ,∀f ∈ F, v ∈ V e. (5)
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For each switch s ∈ V e in the extended graph, unlike the process which may
make some data processing, it simply forward the flow to either another switch
or a server deployed with wanted process. Therefore, we have:

∑

eus∈Ee

λ
fpp′
us =

∑

esw∈Ee

t(w)=p′ or w∈S

λ
fpp′
sw ,∀s ∈ S, epp′ ∈ E. (6)

As each link is with certain communication capacity, the total stream volume
shall not exceed its capacity. That is,

∑

epp′ ∈E

∑

euv∈Ee

h(u)=x
h(v)=y

λ
fpp′
uv ≤ Clxy

,∀lxy ∈ L. (7)

Rule Space Constraints: As all the servers are inter-connected by SDN
switches, the flows between the dependent processes deployed on different servers
shall go through the corresponding switches. Each flow shall occupy one rule on
each switch along the routing path. Therefore, for each flow f ∈ F , whenever
there is a non-zero flow going through a switch s ∈ S, it indicates that there is
one rule in the forwarding table of switch s. To this end, we first define binary
variable to describe whether flow f going through s (xf

s = 1) or not (xf
s = 0),

which can be equivalently described as a linear function of the flow as

∑
eus∈Ee λ

fpp′
us

A
≤ xf

s ≤ A
∑

eus∈Ee

λ
fpp′
us ,∀s ∈ S, f ∈ F, epp′ ∈ E, (8)

where A is an arbitrary large number.
For all the flows, the total rule space needed in each switch shall not exceed

its rule space capacity. That is,
∑

f∈F

xf
s ≤ Cs,∀s ∈ S. (9)

A Joint MILP Formulation: We are interested in minimizing the total com-
munication cost for all the dataflow computing requests as

Costcom =
∑

f∈F

∑

euv∈Ee

λ
ft(u)t(v)
uv · Ph(u)h(v). (10)

By summing up all above, we get the following Com-Min problem:

Com-Min: min :
∑

f∈F

∑

euv∈Ee

λ
ft(u)t(v)
uv · Ph(u)h(v),

s.t. : (1)−(9)

xv ∈ {0, 1},∀v ∈ V e, xf
s ∈ {0, 1},∀f ∈ F, s ∈ S.
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Note that it is computationally prohibitive to solve this MILP problem due
to the involvement of integer variables xv, especially in large-scale network cases.
To tackle this problem, we design a low-complexity heuristic algorithm in the
next section.

5 Heuristic Algorithm Design

Relaxation has been widely regarded as an efficient way to address the MILP
problem. Therefore, we are motivated to propose a relaxation-based heuristic
algorithm by relaxing all the binary variables. Following such principle, we design
our relaxation-based algorithm shown in Algorithm1.

As shown in line 1 of Algorithm1, we first relax all the binary variables into
real ones ranging in [0, 1] to obtain a linear programing (LP) model Com-Min-
LP, which can be solved in polynomial time. Once the values of xv,∀v ∈ V e

are determined, the only thing left is to schedule the flows towards minimal cost
under the constraints of SDN switches’ rule space size limitations. In line 14, we
first take the values of xv,∀v ∈ V e into Com-Min-LP ans solve the resulted
in LP formulation to obtain an initial flow scheduling. Note that, we as relax
the variables xf

s into real number variables, the rule space constraints may be
violated. Therefore, starting from 15, we try to take the rule space constraints
into consideration until all flows are scheduled. We first convert all the non-zero
xf
s into 1 to indicate that one rule shall be embedded in s ∈ S for flow f ∈ F

(line 16). After that, we initialize the unscheduled flow set newFlowSet as empty
set and start to check the flows that incur rule space constraints in lines 18–25.
For each switch s ∈ S, we check whether converting all the non-zero xs

s into 1
violates the rule space constraint or not. If there is enough space, we set the
residual rule space as the space of the switch for next-round optimization (line
20); otherwise, we remove the flows with the least values of xf

s and put f into
newFlowSet until s have enough space to accommodate the rest flows (lines 22–
23). Accordingly, as s does not have enough space to accommodate more flows
any more, we shall remove it from S for the next-round optimization. After
we update the rule space for all switches and obtain the unscheduled flow set,
we can re-solve Com-Min-LP with the updated system parameters to obtain
new flow schedule solutions. Such routine proceeds until all flows get completed
scheduled.

6 Performance Evaluation

In this section, we report our simulation based performance evaluation for our
proposed relaxation heuristic algorithm (“Relax”), which is compared against
the optimal solution (“Opt”) and a greedy algorithm (“Greedy”). Commercial
solver Gurobi1 is used to solve our Com-Min and Com-Min-LP problems. In
default, we consider a substrate network with |N | = 5 servers interconnected by

1 http://www.gurobi.com.

http://www.gurobi.com
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|S| = 3 switches, where each switch is with Cs = 5,∀s ∈ S. We then investigate
how our algorithm performs under different scenarios with different settings and
also how various system parameters affect the overall communication cost.

Algorithm 1. Relaxation-based Algorithm
1: Relax the binary variables xv, solve the Com-Min-LP problem
2: Sort xv, ∀v ∈ V e decreasingly into Πv

3: for all Process p ∈ P do
4: while True do
5: Find the first xv ∈ Πv with t(v) = p
6: Set the found out xv as 1 and the others with t(v) = p as 0
7: if The host server h(v) has enough resource to accommodate process t(v)

then
8: break
9: else

10: Set the found out xv as 0 and remove it from Πv

11: end if
12: end while
13: end for
14: Take the values of xv, ∀v ∈ V e as known into

Com-Min-LP: min :
∑

f∈F

∑

euv∈Ee

λ
ft(u)t(v)
uv · Pn(u)n(v),

s.t. : (1) − (9)

0 ≤ xf
s ≤ 1, ∀f ∈ F, s ∈ S.

and solve it to obtain the flow scheduling decisions
15: while Not all flows have been scheduled do
16: Convert all the non-zero xf

s , ∀s ∈ S, f ∈ F to 1
17: newFlowSet ← ∅
18: for all s ∈ S do
19: if The switch s ∈ S has enough rule space to accommodate the rules then
20: Set the residual rule space as the rule space capacity of s
21: else
22: Remove the flows with the least values of xf

s until s can accommodate all
the flows, and put f into newFlowSet

23: Remove s from S
24: end if
25: end for
26: Resolve the Com-Min-LP with the updated rule space capacity constraints

and updated flow set newFlowSet
27: end while

6.1 On the Effect of Rule Space

As our work intends to investigate how the rule space affects the dataflow com-
puting program deployment and the corresponding communication cost, we first
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Fig. 2. The overall communication cost
under different rule spaces on the SDN
switches

Fig. 3. The overall communication cost
under different process resource require-
ments

conduct a series of experiments by varying the number of rule space in each
switches from 2−6 and plot the experiments in Fig. 2. We can first notice that
the overall communication cost achieved by our algorithm is much close the opti-
mal solution, under any values of rule space. This validates the correctness and
efficiency of our algorithm. We also further notice that the communication cost
shows as a decreasing function of the rule space. This is because with more rule
space, more flows can go through the switches with lower unit communication
cost and hence the communication cost decreases. However, when the rule space
is large enough, most flows already can go though the switches with lower unit
communication cost, the overall communication cost becomes convergent. Such
phenomenon proves that the rule space indeed has deep influence on the dataflow
computing program deployment and hence the communication cost, especially
when the rule space is severely limited.

6.2 On the Effect of Process Resource Requirement

Next, we check how our algorithm performs under different process resource
requirements by varying the resource requirement of each process. The exper-
iment results are reported in Fig. 3. Once again, we notice that our algorithm
performs much close to the optimal solution. This verifies that our algorithm
can well adapt to the changes of process resource requirement and always obtain
sub-optimal solution. We also notice that the overall communication cost also
increases with the process resource requirement. This is because, when the pro-
cess resource requirement increases, the number of processes that can be hosted
by one server decreases. This makes more processes go through the switches,
inevitably incurring comparatively higher communication cost. Considering an
extreme case when all processes can be accommodated in one server. In this
case, no communication cost is incurred as all communications can go through
intra-server communication.
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7 Conclusion and Discussion

In this paper, we investigate how to deploy a dataflow computing program shared
by multiple different flows in a distributed computing environment with commu-
nication unit cost diversity. Specially, we consider that the substrate servers are
interconnected by SDN switches, whose forwarding capabilities are constrained
by the limited rule space. With respect to such fact, we formulate the cost mini-
mization problem into an MILP form and then accordingly propose a relaxation
based heuristic algorithm in polynomial time. Through extensive simulation-
based studies, the high efficiency of our heuristic algorithm is verified by the
fact that it performs much close to the optimal solution.
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