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Abstract. An excessive number of cars cause serious traffic jams. For-
tunately, a new kind of environmentally friendly transportation service,
sharing bikes, came into being. In the cities with shared bikes, deploying
shared bikes stations purposefully will make a contribution to reduc-
ing the pressure of the traffic. We aim to draw support from sharing
bikes to improve the bad traffic. To find the real problems of the current
traffic. We make full use of history taxi trajectories to analyze current
traffic condition. We design a traffic jam detection framework in this
paper. It is called CF framework for short. Derived from the density-
based clustering algorithm of inspiration, we propose a new clustering
method (CF-Dbscan). The new method has successfully been applied to
the trajectories clustering. To deal with errors of devices, a road network
matching algorithm (CF-Matching) helps match GPS points to real road
network accurately. The first experiment proves that our clustering algo-
rithm performs better than DBSCAN in the field of trajectory clustering.
We design another experiment to verify the effectiveness of our CF frame-
work in the real scene. The results of the experiments prove that we can
achieve the purpose of reducing traffic jam with our framework.
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1 Introduction

Recently, the urban traffic is getting worse. As the population of the cities grows,
the number of private cars and public transport also increases. Although it sat-
isfies people’s travel needs to some extent, it has also caused great pressure to
traffic. Fortunately, the bicycles came back to the sight of the public in the form
of sharing. In the last few years, shared bikes have been springing up across many
big cities of China. Commuters scan QR code on shared bikes with their mobile
phones to borrow them from a station. They only have to pay a certain amount
of money to ride the bike anywhere. In addition to environmental friendliness,
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the existence of sharing bikes can also improve traffic conditions by reasonably
planning the station location.

By observing several cities with shared bicycles, it is not difficult to find that
most of the shared bike stations [3] are deployed around personnel-intensive
areas. There are some potential problems with such a deployment method.
Firstly, bicycle resources are too much to be concentrated in personnel-intensive
areas, people in other areas do not enjoy enough convenience so distribution is
not balanced. Secondly, the environmentally friendly feature of sharing bicycles
is not being used well. How to use shared bicycles to reduce traffic congestion
is the core of this paper. With the development of location based service, GPS
equipments are widely used by taxis [10]. We have collected a large number of
taxi trajectory data. Information on traffic congestion of a city is hidden in the
taxi trajectory data [11]. We apply the results of the analysis to shared bikes to
find the most suitable station locations [5,13]. Our goal is to give pedestrians one
more choice on traffic jams. This approach will reduce the number of vehicles
on congested roads. As traffic congestion is mainly caused by motor vehicles.
Bicycles travel on bike paths instead of occupying motor ways. This is a good
way to divert pedestrians. The less vehicles in the motor ways, the more smooth
the traffic will be.

Of course, it is not a compulsive act to choose a shared bike as a means of
transportation. However, in the face of traffic congestion, shared bikes provide
a new choice, which can guide people to choose other means of transportation
to avoid the peak hours. There are always people who would rather ride a bike
than wait for traffic jams in the car.

As we all know, there are always many trajectories generated by motor vehi-
cles on the road at any time. In general, at certain intervals, the more trajectories
on the road the more crowded the vehicles are. And we can identify traffic flow
on a road as trajectories with similar temporal and spatial characteristics. We
can find all the trajectories from the data set with similar temporal and spa-
tial characteristics and treat them as on the same road segment. This conforms
to the idea of clustering. Due to noise points in the data, we decided to use
density-based clustering algorithm. We propose a framework (CF) to detect the
traffic jam [2] in this paper. Trough taxi trajectory data mining to make traf-
fic problems reveal. CF framework consists of two main phases, CF-Dbscan and
CF-Matching. Compared with the traditional density-based clustering algorithm
DBSCAN [1], the CF-DBSCAN is greatly improved. Traditional DBSCAN faces
two potential problems in processing trajectory data. (1) The DBSCAN is an
algorithm based on the location of points, it is too concerned about the location
information of the point itself, so that the association between points and points
is ignored. It may be well-suited for hashing irrelevant points, but it does not
apply to trajectories that are closely related. Although a typical GPS trajectory
consists of a series of points. Points belonging to the same trajectory are related
to each other. The traditional DBSCAN will ignore some of the associations to
make the clustering results unreasonable. (2) The traditional DBSCAN algo-
rithm calculates the distance of every two points in the data set. There will be
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huge computational costs on a large number of data sets. After fully considering
the limitations of the original method, the density clustering idea was redesigned
in this paper to make it more suitable for the trajectories [8,12]. We take into
account the interrelationships between the points. So the CF-DBSCAN algo-
rithm considers each trajectory as a whole [7,9], capturing the common parts
(if any) [4] of the two trajectories. We have eliminated a lot of distance com-
parisons between points and points. Instead, we compare the macro features of
the trajectories. The CF-DBSCAN algorithm improves the computing perfor-
mance and makes the clustering result clearer. CF-Matching is a road network
matching algorithm that can map the trajectory points to the real road net-
work even at a low sampling rate (e.g., the time between two sampling points
exceeds 2 min), thereby solving the GPS error problem. In this paper, the spatial
evaluation function [6] is introduced to analyze the correlation of each sampling
point sequence. With this framework a traffic congestion map is generated. It
represents the most suitable places for the deployment of shared bicycle stations.

The remaining parts of the paper are arranged as follows: Sects. 2 and 3 elab-
orates the methodology of CF framework. Section 4 introduces the experiments
and evaluation. Finally, we sum up this paper in Sect. 5.

2 Mining Trajectories

We elaborate the core stage of our methodology, CF-Dbscan. In this section. We
first use a clustering algorithm to mine the trajectory data. We will describe the
two phases of the clustering algorithm in two subsections.

2.1 Clustering Trajectories

The clustering algorithm proposed in this paper has two core steps. For easy
description, we define the taxi track sequence Tr as a series of time-sequential
GPS spatial points, Tr:p1 → p2 → · · · → pn. Each track has its unique identifica-
tion code, Tr.id. Because the trajectory data is in the form of coordinate points
on the two-dimensional plane in the data set. For trajectories, they have different
shapes, lengths and geographical positions. So firstly, for any two trajectories to
be compared, we need to standardize them as a preparation for formal clustering.

Get Public Parts. The task of CF-DBSCAN is to find congested roads within
a specific period of time. In this paper, traffic congestion is defined in this way:
if the number of trajectories on a road greater than the threshold during a fixed
period of time, we regard this as a traffic jam. It is unscientific to use only the
endpoints to calculate, because most of the trajectories do not strictly stop at a
specific point from a specific point. For many taxis, the crowded road segments
are not their entire journey, but only part of their whole trip. Figure 1 describes
this situation.

For the situation shown in Fig. 1, we should not consider the overall trajec-
tories, but should look at the trajectory split. For the trajectories, we should do
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Fig. 1. The public parts of two tracks Tr.1, Tr.2

the following first. First of all, we need to know that the geographical coordinates
are spherical coordinates. But for a city, for the convenience of computation, it
can be abstracted as plane coordinates, and the error can be ignored. We regard
longitude coordinates as X coordinates and latitude coordinates as Y coordi-
nates. Then the trajectory is easily projected onto the X axis. We introduce
four related variables P1min, P1max, P2min, P2max. They represent the end-
points of the projections (P1 and P2) above. To begin with, we have to figure
out whether their projection has overlapping parts on the X axis. On X axis,
if P1max.x < P2min.x or P2max.x < P1min.x, obviously, their projections
have no overlapping parts. We treat this situation as two trajectories without
clustering conditions. So we do not need to do the remaining calculations. This
judgment step can save a huge amount of calculation.

If the projection of the two tracks has an overlapping part, it means that two
tracks have the initial condition of clustering, and only need further processing
can we do cluster operation. In other words, they may have passed through the
same road segments. We determine the common part of the original trajectory
based on the projection boundary. The public section is used for a more thorough
judgment.

CF-Dbscan. In this paper, the clustering algorithm is based on the public
parts of two tracks. The traditional DBSCAN algorithm determines whether two
candidates belong to the same cluster according to the spatial characteristics.
But trajectory data contains more dimensions of information. The information
needs to be considered as much as possible in order to achieve better clustering
results. So DBSCAN is not suitable to directly use here. Therefore, we use the
common parts of the trajectories to extend DBSCAN to an algorithm that is
suitable for trajectory clustering.

We introduce a variable that represents spatial radius cd. Variable ct is used
to represent temporal span. They represent the spatial-temporal feature of any
two trajectories. But only the characteristics of spatial-temporal feature are not



300 J. Kang et al.

Fig. 2. A distribution situation of two trajectories

enough. Figure 2 describes the situation. The two trajectories have common parts
and similar spatiotemporal characteristics. But in Fig. 2, they don’t go through
the same section of the road. Obviously, they should not be clustered into one
cluster. To deal with this problem, we introduce a curvature index, which is
represented by K. We define the curvature as the ratio of the actual distance
from pi to pj and Euclidean distance between pi and pj . It is obvious that the
actual driving distance is always greater than the Euclidean distance, so the
curvature is always greater than or equal to 1.

The definition of curvature in this paper is shown as follow

K =
L(pi → pj)

dist(pi → pj)
(1)

The more similar the shape of the two trajectories, the closer the result of the
curvature will be. We set a threshold for the curvature gap ΔK. If the curvature
difference satisfies the following formula, the result can be accepted.

|K1 − K2| ≤ ΔK (2)

A set of neighborhood corresponding to a core trajectory is defined as
Ncd,ct,k(Tr.i). The trajectories in this set are all trajectories that meet the clus-
tering conditions with the core trajectories. For every common part, we call the
left endpoint as the starting point, and the right endpoint is called the end point.
This paper defines the clustering conditions according to the following rules. If
a trajectory can be added to a neighbor, it needs to satisfy all conditions at the
same time. (1) For the two cut public parts, the spatial distance between the
starting points and the spatial distance between the end points should be within
the threshold cd. (2) For the two cut public parts, The temporal distance ct
between the two starting points should be within the threshold. (3) the absolute
value of the curvature difference is within ΔK, i.e.,

Ncd,ct,k(Tr.i) = {Tr.j ∈ τ |dist(oTi
, oTj

) ≤ cd, dist(dTi
,

dTj
) ≤ cd, |tTi

− tTj
| ≤ ct, |Ki − Kj | ≤ ΔK} (3)

where τ represents the set of tracks, dist(· , ·) denotes road net distance between
two points. oT and dT denote starting point and end point, respectively. tT
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denotes the beginning timestamp of the public part, K is curvature while ΔK
represents curvature threshold.

A capacity threshold named MinTrs is employed here to constrain the density
of cluster. It denotes the lower bound of the number of trajectories in each
cluster. If the number of trajectories belonging to a cluster exceeds MinTrs, i.e.,
|Ncd,ct,k(Tr.i)| ≥ MinTrs, then Tr.i can be regarded as a core trajectory. Based
on the number of existing shared bicycles we plan to deploy and the number of
bicycle stations, we can flexibly adjust the above four thresholds, cd, ct, ΔK and
MinTrs.

Considering the difference between one-way lanes and two-way lanes, we con-
sider two-way lanes as two lanes and cluster them separately. Algorithm 1 gives
a detailed description of the CF-Dbscan algorithm. Our CF-Dbscan algorithm
required five parameters as input. A trajectories set τ and four threshold param-
eters, cd, ct, K and MinTrs. The procedure of GetNeighborhood (Line 5) helps
find a neighborhood tracks set based on Eq. 3. The algorithm first randomly
selects a trajectory from the set τ as the beginning. Then the procedure of
GetNeighborhood can get the neighborhood set to the target trajectory. In the
procedure of GetNeighborhood, to begin with, we cut two candidate trajecto-
ries on the basis of their projections on X axis (if any). If a track and multiple
tracks have common parts, it will be cut many times. This will result in los-
ing data. To avoid this phenomenon, in Ncd,ct,k(Tr) original trajectories will be
reserved instead of trajectories fragment. Although this approach will result in
some redundancy, this is still a more comprehensive approach. Continue Algo-
rithm 1. After obtaining the neighborhood set, it retrieves all unvisited trajec-
tories within the neighborhood (line 12). In this way, the cluster is continuously
expanded until it is saturated. Then one cluster is generated. In other words,
we use open set M to reserve neighbor. The procedure will not stop until all
trajectories of M are explored.

3 Clustering Result Matching

3.1 CF-Matching

After the execution of the CF-Dbscan, several clusters of trajectories are gener-
ated. To locate the location of the cluster accurately, first, find the core trajectory
of the cluster. However, due to equipment errors and other external factors, they
are not standardized. This error sometimes leads directly to wrong results and
cannot be ignored. So in order to eliminate the error, we propose an algorithm
to map the cores of these clusters to the real road network. We call our road
network matching method as CF-Matching.

Get Candidates. The CF-Matching algorithm first traverses a trajectory and
the road network around it, in order to determine the set of candidate points
for each sampling point. Figure 3 describes the process. pi denotes a sampling
point of current trajectory, e represents road segments. c denotes the projection
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Algorithm 1. CF-Dbscan for trajectories clustering
INPUT:

A set of trajectories τ
Four parameters introduced above cd,ct,K and MinTrs

OUTPUT:
A cluster set C={C1,C2,C3,...,C|C|}

1: Set c id = 1
Initialize all trajectories in τ as unvisited

2: for each Tr ∈ τ do
3: if Tr is unvisited then
4: Mark T as visited
5: GetNeighborhood(Tr)
6: if |Ncd,ct,k(Tr)| < MinTrs then
7: Mark Tr as a non-core trajectory
8: else
9: Mark Tr as a core trajectory

10: Put T into Cc id

11: Put trajectories of neighborhood set of Tr into M, i.e.,M ← Ncd,ct,k(Tr)-
{Tr}

12: for each Tb ∈ M do
13: if Tb is unvisited then
14: Mark Tb as visited
15: Put Tb into Ccid

16: GetNeighborhood(Tb)
17: if |Ncd,ct,k(Tr)| ≥ MinTrs then
18: Insert Ncd,ct,k(Tr)-{Tr} into M
19: end if
20: end if
21: if Tb is a non-core trajectory then
22: Put Tb into Cc id

23: end if
Remove Tb from M

24: end for
Increase c id by 1

25: end if
26: end if
27: end for

points of pi on e satisfying c = argmin∀ci∈edist(ci, p), dist(ci, p) returns the
distance between pi and any point on e. To speed up the search for candidate
points, we employ a window that follows the sampling point pi to cut the whole
network to reduce the search range. After executing this step, the algorithm will
get a set sequence, the next question is how to choose one of the most suitable
points from each candidates set so that P: cj11 → cj22 → · · · → cjn

n best matches
T:p1 → p2 → · · · → pn.



Sharing Bikes Deployment for Improving Traffic 303

Fig. 3. Sampling point pi and its candidate points

Correlation Analysis. Empirically, errors in GPS measurements can be rea-
sonably described with a normal distribution N(μ, σ2) of the distance between
cji and pi. It indicates that, without considering the influence of other points,
the probability that GPS observation pi matches the candidate point cji on the
actual road network. We use a formula to describe the possibility N(cji ) of cji
with regard to pi:

N(cji ) =
1√
2πσ

e− (x
j
i
−μ)

2

2σ2 (4)

xj
i = dist(cji , pi), it denotes the distance between cji and pi. In order to make

the number as uniform as possible. Empirically, we use a zero-mean normal
distribution with a standard deviation of 0.002 km.

Road network matching can not be completed only on the basis of possibility.
In practice, we can’t ignore the impact from the front and back sampling points,
otherwise it may result in a wrong matching result. Figure 4 describes an exam-
ple. pi−1, pi, pi+1 are the sequence of sampling points that belong to the same
trajectory. c1i and c2i are candidate points of pi. We may match pi to c2i if we
only consider the observation possibility. Because they are closer in geographical
location. But in fact, as depicted in Fig. 4, if we match pi to c2i it will lead to a
deviation from the right route.

Fig. 4. An example that needs transmission probability
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Actually, when moving to the destination, people tend to take a shorter route.
This needs to take into account the linear correlation of the front and back points.
Given two candidate points cti−1 and csi of two neighboring trajectory points pi−1

and pi, we define the possibility from cti−1 to csi as the possibility of pi−1 to pi on
the real road network. We use the following formula to calculate the associated
possibility.

V (cti−1 → csi ) =
di−1→i

ω(i−1,t)→(i,s)
(5)

where di−1→i is the Euclidean distance between pi−1 and pi, di−1→i =
dist(pi, pi−1). ω(i−1,t)→(i,s) returns the length of shortest path between cti−1

and csi .
To calculate ω(i−1,t)→(i,s), we must first find shortest path. As the road net-

work is a huge undirected map. Directly searching for the shortest path on it will
bring exponentially increasing computational costs. So we employ a threshold to
limit the search depth. In fact, if we can’t find a path within this range, then the
chance of the target point being the next candidate is very small. By combining
Eqs. 4 and 5, we propose Eq. 6 for linear assessment.

Fs(cti−1 → csi ) = N(csi ) ∗ V (cti−1 → csi ), 2 ≤ i ≤ n (6)

where cti−1 and csi are candidate points. They belong to sampling points pi−1,
pi separately.

In all possible sequence of candidate points. We need to find a candidate
point sequence with the highest total score according to Eq. 6. This candidate
sequence is most likely the true path of this trajectory. The best match results
follow the formula below:

P = argmaxPc
F (Pc),∀Pc ∈ G′

T (V ′
T , E′

T ) (7)

The result sequence of the calculated output is the sequence of candidate
points with the greatest matching possibility. With CF-Matching, the core tra-
jectory of each cluster can be accurately mapped to the real road network.

4 Experiments

We have prepared two groups of experiments to assess the performance of the
CF framework. To begin with, we will describe a large-scale data set of actual
taxi trajectories. Next we prove on our data set that our method is more suitable
for the trajectory. Finally, we carried out field observations on the experimental
results and made statistics and collation of the results, which proved that our
station deployment method really contributed to improving the traffic condition.
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4.1 Passenger Trajectories

The data set of taxi trajectory was collected in Beijing, China, in November
2011. A total of 12,000 taxis, a total of 230917631 GPS records. Each record
contains nine fields. The fields associated with this study include the latitude,
longitude, taxi ID, timestamp, and occupied status.

In this experiment, the travel pattern of pedestrians is fully taken into
account. The way people travel on holidays is not like usual. For example, every
working day has a similar peak. However, during the weekend, the peak hours in
the morning may be somewhat later than usual, while the afternoon peaks last
longer than usual. Compared to holidays, we tend to study regular working days.
So we preprocess the data. In the use of shared bicycles to alleviate traffic con-
gestion. We filter the data for the weekdays and the peak time data is extracted
from the daily trajectories. Figure 5 shows the clustering result of CF-Dbscan.
The dots in the figure indicate GPS points. From the diagram we can see that
the shape of the crowded road is clearly shown in the result. Although there is
still a little noise, it has little effect on the result.

Fig. 5. Clustering effect shown in ArcGIS

We use the F-measure evaluation method to evaluate the performance of
CF-Dbscan. We randomly select some roads, mark them to determine whether
the tracks in the clustering result are the mark trajectories as the criterion.
We randomly selected ten roads in Beijing to evaluate F-score of DBSCAN and
CF-Dbscan. The contrast results are presented in Fig. 6. The higher the F-score
value, the better the clustering effect. From Fig. 6, compared with DBSCAN, CF-
Dbscan has an approximate 0.1 advantage over the average. This can prove that
CF-Dbscan performs better than traditional DBSCAN on trajectory clustering.

4.2 CF Evaluation

To verify the actual effects of the CF framework. We need to do field observa-
tion and statistics. In order to allow pedestrians to travel in a regular and stable
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Fig. 6. Comparison of F values between original DBSCAN and CF-Dbscan

manner, we chose to conduct experiments for six consecutive days without hol-
idays or special events. In order to control the influence of external factors, we
chose a special experimental road, which has the following four characteristics.
(1) This road is very crowded at peak time. (2) There is a relatively fixed taxi
ride point. (3) There are no other types of parking spots near the taxi stand
(e.g. bus stop). (4) Under completely non special circumstances, the number of
moving cars is very stable during peak hours (here non special refers to non
holidays, non special activities and no accidents). We set up a shared bicycle
experiment point for observation. The reason why we did not choose an existing
shared bicycle station for experiments is that we want to capture the changes
in behavior of pedestrians when facing new options (shared bicycles). We count
the number of pedestrians who take a taxi or choose a sharing bike. In this way,
we can clearly see the respective changes in the number of pedestrians choosing
the two modes of transport. The observation time is 17:00 to 18:00 points per
day during the observation date (Fig. 7).

Fig. 7. Changes in the number of taxis and sharing bikes during the experiment
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The solid line shows the number of taxis that change over time, and the
lower dotted line shows the number of bicycles. From the chart we can easily see
that there is a significant increase in the number of pedestrians choosing shared
bicycles while the number of people taking taxis dropped obviously. The results
can prove that the targeted placement of bicycles on traffic congested roads can
relieve traffic pressure.

5 Conclusion

In this article, we propose a CF framework for the actual problems of traffic con-
gestion. With the rise of shared bicycles, we hope to analyze the hidden congested
sections from taxi trajectory data, and then use bicycles to solve the congestion
problem. Reducing the number of vehicles on the road by allowing shared bikes
to replace taxis to make traffic smoother. In order to find congestion, we use
the improved clustering algorithm CF-Dbscan to cluster the trajectory data.
Clustering results are mapped to real road network by road network matching
algorithm, CF-Matching. We used two experiments to prove the performance of
the framework itself and the effect in the actual scene.
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