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Abstract. Radio-frequency identification (RFID) technology has become the
key focus of indoor localization recently. The low cost and flexibility allow
numbers of passive RFID-based algorithms been proposed for indoor localiza-
tion. However, in a real-world environment including retail store and super-
market with large-scale item-level deployment of RFID tags and complex
surroundings, these algorithms may not be available due to the collision and
interference. Existing algorithms either require extra hardware or only take a
small number of tags into consideration, facing difficulty in applying to these
places. In this paper, we propose a novel machine learning-based REal-Time
and Item-Level (RETalL) indoor localization system, which is designed to
tolerate various interference. RETalL incorporates three machine learning
algorithm, J48, SVM and cloth grouping, for indoor localization. Validations in
both complex laboratory environment and real-world Levis outlet store
demonstrate the accuracy and efficiency of RETalL and its capability of dealing
with interference in retail environment.
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1 Introduction

Embedded sensors are changing the way people live and retailers manage merchandise.
As one of the sensor technologies, radio-frequency identification (RFID) technology is
attracting growing interests in various applications [1], and its wider adoption defined
the revolution of the Internet of Things. With the desirable features of cost-effective,
contactless communications, high data rate and easy implementation, item-level
deployment of RFID technology is applied in warehouse, supermarket, retail store and
factories [2]. During the past decades, item-level RFID offered tangible benefits to both
suppliers and retailers [3, 4] in product tracking, supply chain, anti-counterfeiting and
stock estimation. However, there are still losses caused by unsolved problems including
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misplaced items, out-of-stock items and inventory shrinkage, which make RFID
technology-based real-time item-level localization urgently needed in retail
environment.

Compared with the relative simple environment that most indoor localization
implemented in, including dense tag environment [5] and clutter environment [6], retail
store or warehouse environment is much more complicate. The main challenges of
applying indoor localization algorithm in retail environment lay in: (1) thousands of
RFID tags may be densely deployed in a small area; (2) several RFID readers may be
deployed within the range of backscattered signal that tags send back; (3) different
materials of shelves, walls and other obstacles may exist; (4) costumers may cover or
touch the tags or move around in the room all the time. Under such circumstances, the
signals among RFID tags and readers can be greatly altered by interference of tag-tag
collisions, reader-reader collision, signal reflections of different surfaces as well as
other environment factor including human activities, temperature, noise and humidity.

In this paper, we propose a novel item-level localization system that focuses on
retail environment by combining three efficient machine learning algorithms, Support
Vector Machine, J48 and a novel algorithm named cloth grouping. The proposed
system can make use of various information and its performance is robust to challenges
from real-world store with thousands of items and crowded customers moving around.
Based on Intel® Retail Sensor Platform we offer a simple way for retailers to locate
products of interest efficiently and accurately, and eventually reduce losses from
misplaced or out-of-stock items.

The rest of the paper is organized as follows: in Sect. 2, we present a brief review
of related work in the field of RFID localization and machine learning algorithms that
applied in RFID-based problems. Section 3 introduces the proposed localization sys-
tem RETalL, including the detailed feature description and algorithm description. In
Sect. 4, after tested RETalL in lab environment, we turn to practical application in
Levis outlet store for further evaluation. Finally, we briefly conclude our work in
Sect. 5.

2 Relation to Prior Work

A variety of indoor localization algorithms have been proposed in last decades using
RFID technology including active RFID-based localization algorithms [7-9, 20] and
passive RFID-based algorithms [2, 5, 10]. The cost-efficient nature of passive RDIF
enabled large-scale deployment of embedded RFID tags and created many dense tag
environments. Due to the fact that passive RFID tags are easily interfered by dense tags
and dense readers, algorithms were proposed to solve the tag collision and reader
collision problems [11] in dense RFID environments [5, 12—15, 20]. However, most of
these algorithms are proposed and tested in a relatively simple environment. For
example, in Zhang’s work [2], the dense environment has only 16 tags/m2. InPLaCE
[6] system is proposed to deal with clutter environment, but there are less than 50 tags
for testing. Performing item-level indoor localization in a complex environment is still
a challenging task.
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In terms of prediction approach, besides math-physics-based methods, machine
learning algorithms were also applied in RFID-based problems. For example, Li [16]
extracted read rate, phase and RSSI features to distinguish human-object interaction
including still, translation, rotation, swipe and cover touch using several 2-class SVMs.
Later, they also proposed a machine learning pipeline named PaperID [17] to distin-
guish multiple simultaneous gestures over RFID tag by incorporating SVM with
similar features. Machine learning algorithms achieve good classification performance
based on RFID parameters, which provide insights into RFID technology-based
problem including indoor localization.

3 System Framework

In this paper, we developed a novel localization system with the purpose of locating the
items with RFID tags in a retail environment. The deployment of the RFID system is as
follow: a large number of clothes that are densely placed in different areas are
embedded with RFID tags. Several RFID readers are deployed in the room, which will
send energy to RFID tag, and read the received signal information, including RSSI,
frequency and phase from tags. Based on these setting, localization system is devel-
oped by incorporating machine learning algorithms and the data collected from readers.

Figure 1 shows the framework of RETalL, including data collection stage, feature
extraction stage, prediction stage, voting stage to output the final location based on the
results from multiple algorithms.
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Fig. 1. Overview of system framework.

3.1 Feature Extraction

For the three algorithms we adopted in this system, different information is used with
respect to the function of each algorithm. Here, RF channel parameter including fre-
quency, RF phase, RSSI, as well as corresponding reader IDs are used to build model.
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Besides, as each tag might get read by multiple readers more than once in a given
period of time, a sliding window (window size = T) which slides every T/2 with 50%
overlap is utilized to segment the RF channel parameters reported by each reader. For
each segment, seven features are derived from RSSI, RF phase, frequency and time.

Average RSSI Value. Passive RFID tags operate by reflecting the RF signal trans-
mitted to them from a reader and RSSI is a measurement of reflected signal. In the retail
environment, RFID tags are densely deployed within limited area, in which the signals
among tags and readers can be greatly altered by interference of RFID tag collisions,
reader-reader collisions as well as the environment factor, making uncontrolled RSSI
values can’t reflect accurate information. However, by keeping the maximum power
level, we can utilize the average RSSI values that each reader received from a tag
within segments as features [17], which makes an n-dimension feature vector.

RFID tags can receive signals only in a short distance, so usually a tag can mainly
receive signal from several readers around it. Besides, signal-sending rates of all
readers are adjusted to be distinct from each other, which makes read rate information
effective for classification. The definitions are as follow:

Tag Read Rate. The tag read rate is defined as the number of packets received from
each tag by each reader per second.

Sent Percentage. For each RFID reader, sent percentage is defined as the ratio
between number of packets received from one tag and number of all packets received
by this reader (Eq. (1)).

Oa
SP’,J:@’Q: lifa € tagi,b € readerj. (1)
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Receive Percentage. For each tag, receive percentage is defined as the ratio between
number of packets received by one reader and number of all packets received from this
tag by all readers.
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Phase and frequency wrap around between 0-3.14 and 902-928 MHz and repeat
recurrently. Ideally, when having X axis as frequency and Y axis as phase, a series of
parallel lines could be obtained. As mentioned above, with a sliding window of T
minutes with 50% of overlap, we get the phase/frequency ratio over one of these
parallel lines instead of doing line fitting. In the end we took the average of this sliding
window period as feature. RF parameters phases and frequencies are utilized to
compute slope and error rate as follow:

RP;; = ,0=1if a € tag;,b € reader;. (2)
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Slope. It’s the slope of the graph when phase values were plotted against frequency.

(Z,TZO frequency x Z;T:() phase) — count x Z;T:() frequence x phase (

slope =
T 2 T )
(3o frequency)” —count x 3,  frequency

3)

Error Rate. Due to the interference, signals may vary from time to time and error rate
is an estimation of the fluctuation of phase and frequency. In (4), ¢ is between (n — 1)7/2
and n * T/2, denoting the nth slide window.

max (ph min (ph
error rate = —; (phase,) - (phase:) . (4)
min (frequency,) max (frequency,)

Finally, for n readers, average RSSI value, tag read rate, sent percentage, receive
percentage, slope and error rate are calculated and encoded into n-dimension features
according which reader receives these signals, respectively.

3.2 Machine Learning Algorithms

The model we propose is a machine learning model instead of a math-physics based
model because signal strength is not a directly indicative of distance in the case of retail
environment with disorganized interference, obstruction and collision. Furthermore,
our early stage experiments show that although count of reader reads are good
indicative of distance, only using the read rate was not giving stable results. Therefore,
we took a slightly different approach by using a voting mechanism between two
supervised machine learning models and one unsupervised machine learning model

J48. For each tag, more than one signals are received by different readers within a
period, each signal reflects the characteristics of the tag. As a powerful approaches to
discover useful patterns from large and complex bulk of data, J48 [18] is used to make
full use of all these signals. Reader information, RSSI, frequency and phase are used as
independent features and each signal is treated as a sample to perform multi-label
classification. Pre-trained model are used to predict locations for each sample of a tag.
Finally, the location with highest voting score is selected.

SVM. We implement optimized LIBSVM [19] with RBF kernel and tuned parameters
and use SVM as a multi-class classifier in this project. To overcome the unbalanced
numbers of samples in each location, weight parameter w is set to be inversely pro-
portional to the number of samples for each class. Prior to location prediction,
exhaustive feature selection algorithm is use to try every combinations of the six kinds
of features described in Sect. 3.1. To ensure robustness of model, we use training
datasets of different size to perform feature selection process and then validate the
accuracy of the constructed model. Finally a feature subset that obtained the highest
accuracies is selected to construct SVM model. At deployment stage, same feature set
and scale range is used for query data.
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Fig. 2. Tllustration of cloth grouping algorithm. Left panel matches criteria 1 and tight panel
matches criteria 2.

Cloth Grouping. In this system, read rate of every reader is specially adjusted to be
different from each other. System compares the read rate of every tag by every reader
with pre-stored read rate of every shelf. A tag is predicted to be located in one shelf
when it meets one of the following criteria: (1) read rate of a tag is close to read rate of
a shelf; or (2) percentage of shelf-reader is close to percentage of tag-reader (as shown
in Fig. 2).

Voting Strategy and Optimization. For J48 and SVM, multiple signals are received
from one tag and each signal is used for prediction, a voting process is used to decided
prediction result for each tag. After prediction results are obtained from each algo-
rithms, a voting strategy is utilized to decide the final location of an item. Specially, if
three different locations are predicted for an item by three algorithms, after validations
and tests, we found that simply ignore cloth grouping result and compare the confi-
dence of the J48 and SVM and take the result of the algorithm with higher prediction
confidence as the final result gives good accuracies.

To implement real-time localization system, the following optimization approaches
are utilized to improve efficiency while retaining high accuracy: (1): For the three
supervised algorithms, parallelized computing is enabled; (2): Sliding window size
T = 2 min is defined to have a better tradeoff between size of training data and effi-
ciency; (3): For the most time consuming algorithm, SVM, a novel implementation is
developed to compress model and multi-thread is used to decrease computing time,
detailed engineering implementation of the speedup library is not described as it is less
relevant to this study.

4 Experiments

This section outlines the details related to deployment of both the laboratory and real
retail store and evaluate proposed approach towards attaining the end objective of
determining item location inside a retail environment.
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4.1 Experiment Results on Lab Environment

To evaluate how machine learning algorithms helps in dealing with interference for
item-level localization, we setup a laboratory with dimensions of 27 foot * 27 foot to
imitate retail environment. Considering that a real store would have a dense population
of tags, we had brought in shelves and racks and populated them with of real clothing
with respect to the lab deployment. The passive RFID deployment is based on Intel
Retail Sensor Platform and the layout is shown in Fig. 3. In Fig. 3, the gray portions
are either walls, desks, lab shelves, or areas where items cannot be placed. The light
blue rectangles designate the shelves of our “store” with tagged jeans, which are the
targets that will be used to evaluate their predict locations. Rectangles A/D designate
the wooden furniture and H/I are metal racks that are deployed among shelves to
imitate real store and to increase interference and multipath effect. The black squares
represent the RFID readers, which are approximately 100 in. up from the floor. Totally
730 jeans are distributed in shelves with uneven numbers for evaluation and researchers
movements are also included to imitate real store.

Fig. 3. Layout of the laboratory for experimental evaluation of RETalL.

In a real store, instead of knowing the exactly position accurately within cen-
timeters, the most important localization task is to obtain the real time information
about which area is the query clothes locate at and whether the clothes were moved. To
this end, firstly we divided room into four sub-quadrants (SQ), within which shelves
are closely deployed. Numbers of tags in these sub-quadrants are 267, 90, 78 and 295,
respectively. Secondly, we have the settings configured as “mobility” scan such that we
get a high read rate, which makes it easier to see moving tags.

The readers collect tag IDs, frequency, phase and RSSI information for feature
extraction. Models and parameters are trained offline before validation. For testing, we
collect data from three different time periods in three days (10 min each time), within
which about 2.6-3.1 million signals are received by five readers. These signals are sent
to the system for localization and the prediction accuracies are shown in Table 1. From
the table we can see that among the three algorithms, the highest accuracies are
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Table 1. Prediction accuracies in laboratory

Accuracy | SVM | J48 Cloth group | Voting
Day 1 89.86% | 88.62% | 89.19% 93.74%
Day 2 93.39% | 88.64% | 88.78% 93.69%
Day 3 91.76% | 88.86% | 89.00% 93.18%
Average | 91.67% | 88.71% | 88.99% 93.54%
Time 53s 2.7s 37s 6.0s

obtained by SVM. For three independent tests, the average accuracies for three algo-
rithms are 91.67%, 88.71% and 88.99%, respectively. By combining all results to
generate stable prediction location, accuracies of final result after voting process are
93.74%, 93.69% and 93.18%, increase consistently from highest accuracy that obtained
from single algorithm. Moreover, it only takes 6 s to locate 730 clothes from ~3
million signal, indicating RETalL. can provide real-time localization on single cloth.

4.2 Experiment Results in Levis Store

One of the key innovations of RETalL is performing localization in very clutter
environment. The previous section gives an insight that RETalL is capable of pre-
dicting locations for hundreds of clothes simultaneously. Here we further test the
system in real retail store, a Levis outlet store in Napa Valley, which also adopts Intel
Retail Sensor Platform for better control of inventory accuracy. Environment is more
complicate in this test due to the crowded people and various collisions and reflections
in the outlet store.

The layout of the store is shown in Fig. 4, in which each color represents one of the
seven sub-quadrants that are taken care of by a shop assistants. White rectangles with
four digits designate RFID readers that are dispersed in the room. The number of
tagged clothes and readers are ~ 10 thousands and 25 respectively at our test period.
All clothes are put on shelves, racks and tables densely while RDIF readers are
deployed on ceiling.

The main purpose of item-level localization in store is to get real-time information
about which sub-quadrant is the query clothes locate in and which assistant should be
responsible for them if they are misplaced. As in real store they need to know item
locations from time to time and readers need to keep collecting data all the time, the
RFID settings used in store is slightly different from laboratory. Read rate is relative
lower than in lab such that less storage space and less prediction time is needed.

Similarly, 10 min data is used for testing by comparing the predicted location with
the manually collected ground truth data. The prediction process repeats three times on
different testing data to ensure reliable results. About 0.89-0.94 million signals
from ~600 clothes are extracted for feature extraction and prediction each time.
Table 2 shows the prediction accuracies of three algorithms and final voting results. As
expect, in a real outlet store with more complex environment, RETalL still gives
satisfying localization results with an overall accuracy of 90.79% and a 1.14% STD
across test results for three days. For each day, different algorithms get best prediction
performance. For Day 1, the highest accuracy of 90.02% is obtained by J48 while in
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Fig. 4. Layout of Levis retail store in Napa valley.

Table 2. Prediction accuracies in Levis outlet store

o
Table 3
[ =]

Accuracy | SVM | J48 Cloth group | Voting
Day 1 90.02% | 90.77% | 84.64% 91.03%
Day 2 90.49% | 89.60% | 75.84% 89.55%
Day 3 91.79% | 90.07% | 80.75% 91.79%
Average | 90.76% | 90.15% | 80.41% 90.79%
Time 13s 1s ls 1.6s

229

Day 2 and Day 3, the highest accuracies of 90.49% and 91.79% are obtained by SVM.
Opverall, the average accuracies of voting result (90.79%) is better than that of using
only SVM, J48 or cloth grouping, whose accuracy are 90.76%, 91.15% and 80.41%,
respectively. Also, with lower read rate and less received signals, it takes only 1.6 s to
perform localization for ~ 600 clothes, demonstrating the efficiency of our system.

It should be noticed that under such configuration, only part of tags are read in the
evaluation process, making localization for unread clothes unavailable. Actually, with
current configuration, a higher read rate is obtained as compared with deep scan mode
and it’s easier to get more signals from moved tags, making our system suitable for
detecting misplaced clothes. For those tags that wasn’t read by RFID reader, they may
not be moved within 10 min. Localization for those clothes can be easily implemented
by only extracting signal received from corresponding tags in a longer time range.
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5 Conclusions

The proposed system guarantees a reliable indoor localization solution in retail envi-
ronment. Different from previous methods in which only a small number of tags were
taken into account, this work focuses on predicting locations for hundreds of tags
accurately regardless of perplexing interference. RETalL achieves robust localization
results in complex environment by incorporating three machine learning algorithms
that make use of both original and statistic features. By imitating store environment in a
lab, RETaIL shows good localization performance. Further evaluation in Levis outlet
store with thousands of clothes, 30 RFID readers, obstacles and crowded customers,
demonstrates reliable localization accuracy of RETalL. The accuracy and robustness
make it suitable for item-level localization in various retail applications including store,
supermarket, industry and warehouse.
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