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Abstract. By deploying dense renewable-connected small-cells, hetero-
geneous networks (HetNets) are able to provide spectral and energy effi-
ciencies for 5G system. However, the small-cell base stations (BSs) may
suffer the intra-cell interferences and variabilities of renewable energy.
In this paper, we firstly introduce a collaborative architecture to deal
with intra-cell interferences and renewable uncertainty for different-tier
of users in HetNets. A stochastic optimization problem is formulated
to maximize the energy efficiency of collaborative HetNet. To solve the
problem, a centralized resources allocation algorithm is proposed based
on random variabilities of spectrum and renewable resources. Finally, the
extensive numerical results are provided to verify the effectiveness of the
proposed collaborative resources allocation method.
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1 Introduction

Heterogeneous network (HetNet) is treated as a promising solution to support
tremendous number of diverse terminals and wireless services in 5G system. How-
ever, the dense deployment of small-cell BSs and terminals in HetNet will lead to
two important issues: spectrum efficiency and energy efficiency. To address these
two issues, some technologies have been intensively studied. Massive multiple-
input multiple-output (MIMO) technology have been proven to its potential of
significantly improving the spectral efficiency about 10–20 times in the same
frequency bandwidth [1]. Cognitive radio (CR) technology has been proposed to
effectively utilize the spectrum [2,3]. The CR users/devices are allowed to oppor-
tunistically operate in the frequency bands originally allocated to the primary
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users/devices when these bands are not occupied by primary users. Along with
the spectral efficiency, energy efficiency also attract intensive research interests.
Recent research activities mainly focus on renewable connected BSs and devices,
energy efficient communication techniques, energy-driven software defined radio
and energy-efficient beamforming technologies for MIMO systems, etc.

To evaluate different spectrum and energy efficient technologies, an unified
framework is expected for maximizing the spectrum efficiency while reduce the
energy consumption. A widely accepted framework is defining the energy effi-
ciency as the ratio of the transmitted traffic loads to the consumed energy for
transmitting such loads [5–9]. Based on this definition, many literatures devoted
to maximize the energy efficiency under different wireless network scenarios.
In [7], the energy efficiency performance is improved in the heterogeneous cloud
radio access network. An energy-efficient optimization problem with the resource
assignment and power allocation is formulated to characterize user association
with remote radio head or high power node. The authors in [8] propose a resource
allocation algorithm to achieve maximum energy efficiency for a given spectrum
efficiency for heterogeneous network by using coordinated multi-point transmis-
sions. In [5], four green transmission technologies are introduced to balance the
tradeoff between energy and spectrum efficiency for 5G wireless networks. An
energy efficient and spectrum efficient wireless heterogeneous network framework
for 5G systems is introduced in [6]. The system framework is based on cooper-
ative radios, which aims at balancing and optimizing spectrum and energy effi-
ciency. However, the small-cell base stations (BSs) may suffer the variabilities of
renewable resources, which will drastically degrade the coverage and capacity of
the heterogeneous networks.

In this paper, we dedicate to investigate the collaborative spectrum and
power allocation method of macro-cell Bs and small-cell BSs by maximizing the
energy efficiency. Taking into account of the uncertain renewable resources, we
formulate a stochastic optimization problem to maximize the energy efficiency
for collaborative HetNet. Three key parameters are obtained to characterize the
proposed collaborative method: the optimal spectrum assignment of small-cell
BSs, the optimal power levels of both small-cell and macro-cell users. To solve
the stochastic optimization problem, we reformulate the original nonlinear frac-
tional optimization problem as an equivalent convex feasibility problem. Then, A
centralized algorithm based on sample average approximation (SAA) is proposed
to solve the stochastic reformulated problem. Finally, the numerical results show
the effectiveness of the proposed collaborative resource allocation method.

The remainder of this paper is organized as follows. In Sect. 2, the system
model is introduced. The formulation of the stochastic optimization problem is
formulated in Sect. 3. Meanwhile, a centralized algorithm based on SAA method
is proposed. Section 4 presents the numerical results to assess the performance
of the proposed schemes. Finally, the paper is concluded in Sect. 5.
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2 System Model

2.1 Network Infrastructure

We consider a heterogeneous network consists of several macro-cells, which is
overlaid by N number of small-cells, as shown in Fig. 1. Each macro-cell BS serves
C number of user equipments (UEs) while each small-cell BS serves U number
of nodes (UEs or devices). The macro-cell BS can be the traditional cellular
network BS which has the fixed location and operation. The intra-backhaul (fiber
or microwave backhaul) is used to connect the small-cell BSs to the macro-cell
BS in each cell-site. In addition, the UEs and devices are uniformly distributed
over the coverage areas of macro-cell and small-cell BSs.

Device

Macro Cell BS Small Cell BS

UE

Fig. 1. System model of Hetnet.

2.2 Interference Mitigation Model with Collaboration

Two types of interferences should be carefully considered in Hetnets: Inter-cell
interference and Intra-cell interference.

For macro-cell users, the inter-cell interference is coming from other macro
BSs in adjacent cells. Meanwhile, the intra-cell interference is also caused by
the macro BS transmits signal to other macro-cell users in the same cell. For
small-cell users, the inter-cell interference is coming from other macro-cell BSs
and small-cell BSs in adjacent cells. Meanwhile, the intra-cell interface is caused
by the macro-cell BS and small-cell BSs in the same cell.
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To mitigate the inter-cell interferences, collaboration between the macro BSs
are critical. Using the backhaul, macro-cell BSs are able to exchange data, control
information with each other. Consequently, the inter-cell interferences of macro-
cell users and small-cell users can be coordinated. Also, in this paper, we assume
that each macro-cell BS has the knowledge of the information of the channel
from the BS to its overlaid small-cell users. Then, such channel information is
used by macro BS to manage the interference to the small-cell users.

Hence, the signal-to-interference-plus-noise ratio (SINR) for the uth small-
cell user in nth small-cell is given by

γu,n =
σu,nhu,n

(PMσM
u,nhM

u,n +
∑

m �=n pmσm,u,nhm,u,n)
+ B0N0 (1)

where σu,n and hu,n denote the path loss and the channel gain from the served
small-cell BS to the uth small-cell user in nth small-cell, respectively. PM is
the transmit power of macro-BS. σM

u,n and hM
u,n denote the path loss and the

channel gain from the macro-cell BS to the uth small-cell user in nth small-cell,
respectively. pm is the transmit power of the mth small BS. σm,u,n and hm,u,n

denote the path loss and the channel gain from the mth small cell BS to the
uth small-cell user in nth small-cell, respectively. B0 denote the spectrum of a
channel and N0 denote the estimated power spectrum density (PSD) of both the
sum of noise and weak inter-small-cell BS interference (in dBm/Hz).

For macro-cell user, the SINR of cth macro-cell user in kth macro-cell can
be obtained as

γc,k = σc,khc,k/B0NM (2)

where σc,k and hc,k denote the path loss and the channel gain from the the kth
macro-cell BS to the cth macro-cell user, respectively. NM denote the estimated
PSD of the sum of noise.

2.3 Data Rate and Traffic Load Model

Let Rn(t) denote the sum data rate for the nth small-cell BS at time slot t.
Then, we have

Rn(t) =
U∑

u=1

Bu,n(t) log2(1 + γu,npu,n(t)) (3)

where Bu,n(t) and pu,n(t) are the spectrum (spectrum resource) and the transmit
power allocated to the uth small-cell user in the nth small-cell at time slot t,
respectively.

Let RM
k (t) denote the sum data rate for the kth macro BS at time slot t.

Then, we have

RM
k (t) =

C∑

c=1

B0 log2(1 + γc,kpc,k(t)) (4)

where pc,k is the transmit power allocated to the cth macro-cell user in nth
small-cell.
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Therefore, the sum data rate of the kth macro-cell at time slot t can be
written as

Rk(t) =
N∑

n=1

Rn(t) + RM
k (t). (5)

In our model, we assume that the traffic load of each cell-site is different and
use random variable dn(t) to indicate the traffic load of the nth cell-cite at time
slot t. Let dmax

n denote the maximum value of the traffic load in nth cell-site.
We have

0 ≤ dn(t) ≤ dmax
n ,∀n, t. (6)

To guarantee the QoS requirement of each cell, we set a minimum threshold
for how much traffic load must be served. In this paper, we assume that for the
entire time horizon, there is at least 1 − δ probability that the total traffic load
will be served. Then, we have the following relationship

Pr
( T−1∑

t=0

N∑

n=1

dn(t) −
T−1∑

t=0

N∑

n=1

Rn(t) ≤ 0
) ≥ 1 − δ. (7)

2.4 Energy Consumption Model

The total power consumption Pk for kth cell mainly depends on the power
consumption of N number of small-cells and the macro-cell BS. The power con-
sumption per small-cell is written

Pn(t) = a

U∑

u=1

pu,n(t) + Pcircuit + Pbasic (8)

where pu,n is the transmit power allocated to uth small-cell user in nth small-
cell. a, Pcir and Pbas are the efficiency of the power amplifier, circuit power and
basic power consumed by small-cell BS, respectively.

The power consumption per macro-cell is written

PM
k = aM

C∑

c=1

pc + PM
circuit + PM

basic (9)

where pc is the transmit power allocated to cth macro-cell user in a macro-cell.
aM , PM

cir and PM
bas are the efficiency of the power amplifier, circuit power and

basic power consumed by macro-cell BS, respectively.
Therefore, the total power consumption of kth cell is

Pk(t) =
N∑

n=1

Pn(t) + PM
k . (10)
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3 Optimal Resource Allocation for Small-Cells

3.1 Problem Formulation

The energy efficiency is defined as the ratio of the sum data rate and the energy
consumption.

Θ(t) =
∑K

k=1 Rk(t)
∑K

k=1 Pk(t)
(11)

The main objective of this paper is to maximize the energy efficiency by
allocating the power and spectrum. In addition, it considers the power and spec-
trum variabilities of the renewable-connected small-cell BSs. Then, we have the
stochastic optimization problem as follows

(P1) max
pc,k,Bu,n(t),pu,n(t),

lim
T→∞

1
T

T∑

t=1

Θ(t) (12)

s.t.
U∑

u=1

pu,n(t)σsmhsm ≤ ηs, (13)

C∑

c=1

pc,kσmshms ≤ ηm, (14)

C∑

c=1

pc,k ≤ Pk,max, (15)

U∑

u=1

pu,n(t) ≤ P̃n(t), (16)

U∑

u=1

Bu,n(t) ≤ B̃n(t), (17)

Pr
(
β

T∑

t=1

N∑

n=1

dn(t) −
T∑

t=1

N∑

n=1

Rn(t) ≤ 0
) ≥ 1 − δ, (18)

where ηs and ηm denote the maximum interference that the small-cell BS allows
to generate to the macro-cell users and the macro BS allows to generate to
the small-cell users, respectively. σsm and hsm denote the corresponding path
loss and channel gain from the small-cell BS to the interfering macro-cell users,
respectively. σms and hms denote the corresponding path loss and channel gain
from the macro BS to the interfering small-cell users, respectively. Pk,max denote
the maximum transmit power of the kth macro-cell BS. P̃n(t) and B̃n(t) denote
the maximum transmit power and spectrum can be obtained in the nth renew-
able connected small-cell BS at time slot t, respectively. Constraint (18) ensures
that for the entire time horizon, there is at least 1−δ probability that the served
traffic loads is larger than or equal to the minimum level β, 0 < β < 100%.
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3.2 Problem Transformation

The problem (P1) is a stochastic problem due to the uncertainty of the transmit
power P̃n(t), available spectrum B̃n(t) and traffic loads dn(t) of small cell n at
time slot t, respectively. In this paper, we use the Sample Average Approximation
(SAA) method in which the true distributions of the transmit power, available
spectrum and traffic load are replaced by empirical distributions by using the
Monte Carlo simulation.

Specifically, to estimate the transmit power P̃n(t), the Monte Carlo simula-
tion generates I number of scenarios, each with the same probability 1/I. After
the scenarios are generated, the expected value function of the transmit power
can be estimated by the sample average functions as follows:

P̃n(t) ∼ I−1
I∑

i=1

Pn(t, ϕi),

where ϕi, i = 1, · · · , I, are independent and identically distributed (i.i.d.) sam-
ples of I realizations of the transmit power P̃n(t). Similarly, the expected value
function of the available spectrum B̃n(t) and traffic load dn(t) can be estimated
by the sample average functions as follows, respectively:

B̃n(t) ∼ I−1
I∑

i=1

Bn(t, ωi), dn(t) ∼ 1
I

I∑

i=1

dn(t, ξi),

where {ωi, ξi, i = 1, · · · , I} are independent and identically distributed (i.i.d.)
samples of I realizations of the available spectrum and traffic load, respectively.
Hence, the constraints (16) and (17) can be rewritten as follows:

I

U∑

u=1

pu,n(t) ≤
I∑

i=1

Pn(t, ϕi) (19)

I

U∑

u=1

Bu,n(t) ≤
I∑

i=1

Bn(t, ωi) (20)

Moreover, let G(ξi) � β
∑T−1

t=0

∑N
n=1 dn(t, ξi)−∑T−1

t=0

∑N
n=1 Rn(t). Accordingly,

the constraint (18) can be estimated by an indicator function

I−1
I∑

i=1

1(0,∞)(G(ξi)) ≤ δ (21)

where the value of the indicator function 1(0,∞)(G(ξi)) is equal to one when
G(ξi) ∈ (0,∞) and zero when G(ξi) ≤ 0.

In addition, the fractional objective function (12) of the optimization problem
(P1) makes the problem to be a non-linear fractional programming problem.
According to [7], the fractional objective can be converted to the subtractive
form and the fractional programming problem (P1) can be transformed as
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(P2) max
pc,k,Bu,n(t),pu,n(t)

K∑

k=1

R̄k − Θ∗
K∑

k=1

P̄k

s.t. (13)−(15), (19)−(21).

where x̄ = limT→∞ 1
T

∑T
t=1 x(t) and Θ∗ is the optimal value of Θ̄. The problem

(P2) is equivalent to problem (P1) by the following theorem.

Theorem 1. Θ∗ is an optimal solution for (P1) if and only if Θ∗ is an optimal
solution for (P2) to satisfy the constraints (13)–(15) and (19)–(21).

Proof: We prove the Theorem 1 with two steps: sufficient condition proof and
necessary condition proof.

(1) Sufficient condition proof: we define Θ∗ = R̄(B∗,p∗)
P̄ (B∗,p∗) , where B∗ and p∗

are the optimal spectrum and power allocation policies of the small-cell users,
respectively. It is easy to obtain the following expression:

Θ∗ =
R̄(B∗,p∗)
P̄ (B∗,p∗)

≥ R̄(B,p)
P̄ (B,p)

, (22)

where B and p are the feasible spectrum and power results by solving problem
(P1). Then, we have

{
R̄(B,p) − Θ∗P̄ (B,p) ≤ 0
R̄(B∗,p∗) − Θ∗P̄ (B∗,p∗) = 0

It is obvious that max
{B,p}

R̄(B,p) − Θ∗P̄ (B,p) = 0 and the maximum value is

obtained by the optimal spectrum and power allocation policies B∗ and p∗. The
sufficient condition is proved.

(2) Necessary condition proof: we assume that B̂
∗

and p̂∗ are the optimal
spectrum and power allocation policies of the objective function of problem
(P2), respectively. Then, we can obtain R̄(B̂

∗
, p̂∗) − Θ∗P̄ (B̂

∗
, p̂∗) = 0. For any

feasible spectrum and power allocation policies B and p, we have the following
expression:

R̄(B,p) − Θ∗P̄ (B,p) ≤ R̄(B̂
∗
, p̂∗) − Θ∗P̄ (B̂

∗
, p̂∗) = 0. (23)

The above inequality can be derived as:

R̄(B,p)
P̄ (B,p)

≤ Θ∗ and
R̄(B̂

∗
, p̂∗)

P̄ (B̂
∗
, p̂∗)

= Θ∗ (24)

Hence, the optimal resource allocation policies B̂
∗

and p̂∗ of the objective func-
tion of problem (P2) are also the optimal policies of problem (P1). The necessary
condition is proved. �
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Based on Theorem 1, the objective function of problem (P1) is transformed
into the subtractive form in problem (P2). In the following subsection, we will
propose an iterative algorithm (Algorithm 1) to solve problem (P2). In the
Algorithm 1, the value of Θ is updated while ensuring the corresponding solution
{B,p} remains feasible in each iteration. The convergence proof is also provided.

3.3 Solution

To solve the problem (P2), we first define F (Θ) = max
{B,p}

R̄(B,p) − ΘP̄ (B,p)

and have the following Lemma.

Lemma 1. For all feasible B, p and Θ, F (Θ) is a strictly monotonic decreasing
function in Θ and F (Θ) ≥ 0.

Proof: Let Θ1 and Θ2 denote the optimal value of the F (Θ) with optimal solution
{B1,p1} and {B2,p2}. Assume that Θ1 > Θ2, we have following expression:

F (Θ2) = R̄(B2,p2) − Θ2P̄ (B2,p2)
> R̄(B1,p1) − Θ2P̄ (B1,p1)
> R̄(B1,p1) − Θ1P̄ (B1,p1) = F (Θ1)

(25)

Hence, F (Θ) is a strictly monotonic decreasing function in terms of Θ.
Moreover, let Bj and pj be any feasible spectrum and power allocation poli-

cies, respectively. Let Θj = R̄(Bj ,pj)

P̄ (Bj ,pj)
, then

F (Θj) = max
{B,p}

R̄(B,p) − ΘjP̄ (B,p)

≥ R̄(Bj ,pj) − ΘjP̄ (Bj ,pj) = 0.
(26)

Therefore, F (Θ) ≥ 0. �
Then, we propose Algorithm 1 to solve problem (P2). The proposed algo-

rithm is operated in two steps: initialization and iteration. In initialization step,
the initial value of Θ, maximum number of iterations Imax and the convergence
condition ε are given, respectively. In the iteration step, the optimal problem
F (Θi) is solved to achieve the optimal value of Bi and pi with Θi. Then, under
the convergence condition ε, the value of Θi+1 is updated with the R̄(Bi,pi)
and P̄ (Bi,pi) obtained in the last iteration. Further, we provide the conver-
gence proof of Algorithm 1 by the following theorem.

Theorem 2. The Algorithm1 converges to the global optimal solution of F (Θ).

Proof: Let Θi and Θi+1 denote the energy efficiency of the heterogeneous net-
work in the ith and (i + 1)th iteration, respectively. Note that in Algorithm 1,
Θi+1 is set by Θi+1 = R̄(Bi,pi)

P̄ (Bi,pi)
. Meanwhile, F (Θ) > 0 as shown in Lemma 1,

thus we can obtain

F (Θi) = R̄(Bi,pi) − ΘiP̄ (Bi,pi)
= P̄ (Bi,pi)(Θi+1 − Θi) > 0.

(28)
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Algorithm 1. Spectrum and Energy Allocation.
Initialization:
1: Set the initial value Θi = 0;
2: Give the maximum number of iterations Imax;
3: Give the convergence condition ε;
Iteration:
4: Let the iteration index i = 1;
5: for 1 ≤ i ≤ Imax

6: Solve the following problem

F (Θi) = max
{Bi,pi}

R̄(Bi,pi) − ΘiP̄ (Bi,pi)

s.t. (13)−(15), (19)−(21); (27)

7: Obtain Bi,pi, R̄(Bi,pi) and P̄ (Bi,pi) ;
8: If R̄(Bi,pi) − ΘiP̄ (Bi,pi) < ε, then
9: Set {B∗,p∗} = {Bi,pi} and Θ∗ = Θi;
10: break;
11: else
12: Calculate Θi+1 = R̄(Bi,pi)

P̄ (Bi,pi)
and i = i + 1;

13: end if
14: end for

The above expression indicates that Θi+1 > Θi due to P̄ (Bi,pi) > 0, which
suggests that Θ increases in each iteration Algorithm 1. Thereby, the Algorithm 1
ensures Θ increases monotonically.

According to the definition of Θ presented in Sect. 2, it is easy to obtain that
Θi > 0 and Θi+1 > 0 and neither of them is the optimal value Θ∗. Since Θ∗ is
the maximum energy efficiency for all feasible {B,p}, we have Θ∗ ≥ Θi+1. When
the updated Θ increases to Θ∗, we can obtain the value of Θ∗ and F (Θ∗) = 0.
If the number of iteration in Algorithm1 is sufficiently large and the optimal
conditions as stated in Theorem 1 is satisfied, the problem F (Θ) converges to
zero. Therefore, the global convergence of Algorithm1 is proved. �

4 Numerical Results

In this section, numerical simulations are performed to evaluate the performance
of the proposed collaborative resource allocation method (denoted by “Pro-
posed Collaborative Method”) in a HetNet with renewable penetration. The
fixed power allocation method (denoted by Fixed Power Method), is presented
as the baseline. In the Fixed Power Method, the same and fixed transmit power is
set for different small-cells without considering the uncertainty of renewable, and
the optimal spectrum and power allocation derived in our paper is not utilized.
The evaluation parameters are listed in Table 1.



Collaborative and Green Resource Allocation in 5G HetNet 23

Table 1. The simulation parameters

N 10 The number of small-cells

C 20 The number of macro-cell users

U 40 The number of small-cell users

B0 5 MHz The bandwidth of a spectrum channel

N0 1 dBm/Hz The estimated power spectrum density of noise

Pcir/PM
cir 0.1W/10W The circuit power of small-cell/macro-cell BS

Pbas/PM
bas 0.1W/0.2W The basic power of small-cell/macro-cell BS

a/aM 2/4 The power amplifer of small-cell/macro-cell BS

Pk,max 100 W The maximum transmit power of macro-cell BS

1 − δ 1/0.8 The probability of serving load

4.1 Energy Efficiency Comparison

Figure 2 shows the comparison of the energy efficiency of the proposed collabo-
rative method and the fixed power method. The energy efficiency increases with
the increment of the value of SINR because higher SINR leads to less power con-
sumption by which the small-cell users can meet with their QoS requirements. It
is noted that the proposed collaborative method is able to achieve better energy
efficiency than that in the fixed power method. This is because the proposed
method schedule the power usage of all small-cell users in collaborative way.
Meanwhile, the optimal resource allocation solution in the proposed method
guarantees the uncertainty of using renewable power can be greatly reduced.

In Fig. 2, we also compare the energy efficiency under two different QoS
requirement cases: 1 − δ = 0.8 and 1 − δ = 1, respectively. The second case
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Fig. 2. Energy efficiency comparison in terms of SINR.
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indicate that the QoS requirement of each small-cell should be 100% satisfied.
It is observed that the energy efficiency in case 1 − δ = 0.8 is better than that
in case 1 − δ = 1. That is, more powers are consumed to make users meet with
the QoS requirements.
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Fig. 3. Energy efficiency comparison in terms of the maximum power of renewable.

Figure 3 shows the energy efficiency comparison between the proposed collab-
orative method and the fixed power method under different value of the max-
imum power generated by renewable. In this case, the SINR is set as 1 dB.
We can observe that the energy efficiency of the proposed collaborative method
is often better than that of the fixed power method. This is because the pro-
posed method can achieve the best energy efficiency performance due to gains of
optimal spectrum assignment and power allocation. It is noted that the energy
efficiency in the low QoS case (1 − δ = 0.8) is better than that in the high QoS
case (1 − δ = 1). That is, the power consumption and spectrum requirement in
the low QoS case is easy to be satisfied by low level of the power and spectrum
allocation.

4.2 Convergence of the Proposed Algorithm

The convergence of both the proposed collaborative method and the fixed power
method in term of iteration numbers are illustrated in Fig. 4. The value of SINR
of small-cells is set as 1 dB. It can be observed that the plotted energy effi-
ciency of the collaborative method is converged almost within 20 iteration num-
bers during which the fixed power method is converged. This indicates that the
convergence speed is close to the fixed power method which has lower energy
efficiency performance.

As shown in simulation results, the proposed collaborative method can
achieve better performance than other scheme in HetNet. This is because the
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Fig. 4. Convergence of the proposed collaborative method and the fixed power method.

main concern of HetNet is how to provide various applications, by using only
one universal device, and satisfy the diverse resources (i.e. spectrum, energy)
requirement over multi-tier networks in an optimal way. The proposed collabo-
rative method, imbedded in central controller of the HetNet, collects information
of spectrum and renewable resources through the network, intelligently deter-
mines current operating settings, and controls the operation of all devices to gain
optimal network performance. Hence, the collaborative capability of our method
benefits for HetNet.

5 Conclusion

In this paper, we study the energy-efficient resource allocation problem for col-
laborative macro-cell and small-cell BSs in HetNet with renewable resources.
Through stochastic optimization, we develop effective collaborative power and
spectrum allocation mechanism for HetNet and show how to optimally sched-
ule the power usage with corresponding allocation mechanism to maximize the
energy efficiency. It is expected that this paper provides a collaborative model-
ing and optimization approach to effectively integrating renewable resource into
HetNet.
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