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Abstract. Software defined networking is a network paradigm which
separates the control plane and the data plane. In a large SDN network,
multiple controllers are used for handling switches’ requests. Because
of the unbalanced requests, sometimes some controllers get overloaded.
If switch’s management can be shifted from the overloaded controller
to idle controllers, network performance can be improved. But shifting
the switches will bring cost to the system. In this paper, the isolation
nodes problem is studied. A minimum cost load migration approach and a
heuristic migration algorithm are proposed. The proposed load migration
approach can avoid the isolation nodes. The simulation results show that
the proposed approach enhances the system performance.
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1 Introduction

Compare to traditional network, the software defined networking (SDN) has the
advantage of flexibility, scalability and virtualization [1]. In SDN, for every new
flow, the switches request the controller according to the openflow [2] proto-
col. If the size of the network is large enough, single controller is not sufficient
for dealing with the requests from all switches. Although topology shared con-
trollers cluster can manage larger size network than single controller, but when
the network size is keep increasing, distributed multiple controller SDN gets bet-
ter performance. In distributed multiple controllers environment, sometimes a
controller gets overloaded, while other controllers do not get fully used. If the
system supports the mechanism to migrate the load from the overload controller
to the underload controllers, the network performance can be improved.

Researchers have proposed approaches about how to balance the loads
between controllers. Those solutions are mostly based on game theory. There
is little research or no research considers the isolation nodes problem in SDN
load migration. The isolation nodes will cause extra overhead when switches
request the controllers. On the other hand, the load of the controller is changing
frequently. A very balanced load situation in this moment is not so necessary.
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Consider switches migration will cause topology change and the communication
will be affected until routing system gets convergence. The cost of the migration
is non-negligible. Thus a migration approach which has lower cost is more useful.

In this paper, we studied the isolation nodes problem and proposed a con-
nected load migration approach which can decrease the controller’s load to the
safe level with the minimal cost.

2 Related Work

For solving the problem that maps switches to their master controller, the
authors of [3] designed the elastic distributed control system ElasticCon and pro-
posed a switch migration protocol. A load balancing algorithm based on lowest
utilization policy is proposed in [4]. The literature [5] proposed a lightweight col-
laborative mechanism for SDN controllers. An architecture which includes super
controller and regular controller is proposed in [6]. The network is arranged as
clusters. The super controller sends the state vectors to regular controllers and
implements the load allocation. The authors of [7] proposed the DALB. The
overloaded controller will collect the information of other controllers temporary,
it has the low time efficiency. To solve this problem, the literature [8] proposed a
load notification mechanism. In the approach, every controller notifies its load to
other controllers in regular intervals. The authors of [9] proposed a dynamically
switches adjusting approach. The approach adjusts the number of activated con-
trollers and sleeping controllers according to the real time flow situation. The
authors used the greedy knapsack and simulated annealing to solve the prob-
lem. The literature [10] described a multiple controller hibernation model. The
authors proposed a genetic algorithm to get the optimal solution. A pareto-based
optimal controller placement approach is narrated in [11]. The authors consid-
ered the performance, fault tolerance and load balancing and also proposed a
policy for switches migration when fault happened. The authors of [12] proposed
the approach for maximum resource utilization on the constraints of processor,
bandwidth and memory. By using the non-cooperative game theory, they pro-
posed the switches migration algorithm to maximum the benefits of players. The
authors of [13] modeled the dynamic controller allocation for the stable match-
ing problem. With the game theory, they also proposed a layered two phase
algorithm to get the Nash equilibrium solution.

3 System Framework and Problem Formulation

3.1 System Framework

The system architecture is shown as Fig. 1. The bottom part is the data accessing
and forwarding layer. The middle part is the control layer. The controller receives
the requests from the switches and sends the flow table item information back.
To implement the load migration among controllers, the system has a service
module which known as Load Migration Service (LMS). The LMS is on the top
level of the SDN.



Minimum Cost Load Migration in SDN 199

Fig. 1. The system view of the load migration for SDN

3.2 Problem Formulation

We define the network as a graph G = (V,E). The V is the set of switches and
the E is the set of links. Each link has latency. The network has k domains. Each
domain has a controller to manage its switches. The set of controllers is denoted
as CV = {c1, c2, ..., ck}. Assume the controller c1 is the overloaded controller.
The set of switches set in each domain is denoted as S = {s1, s2, ..., sk} where sj

is the switches set managed by the controller j. Let S′ = {s1
′, s2′, ..., sk

′} be the
switches set after migration, where sj

′ is the switches set in new domain j. When
switches send requests to controller, the controller can be modeled as an M/M/1
queuing model. Suppose packets arrive according to a Poisson process and the
processing times of the packets are independent. Let λj denotes the total arrival
rate of requests at the controller j, the fi denotes the requests from switch i.
Then λj can be calculated as follows

λj =
∑

i∈Sj

fi (1)

Let controller’s processing capacity as u. According to the queuing theory, the
expected mean service time τj of controller j can be calculated as follows:

τj =
1

uj − λj
(2)

Let pij denote the path from switch i to controller j. The latency of the path
is the sum of latency for each link on this path. For each switch i, the response
time includes the round trip latency for the path to controller and the processing
time for the request. It can be denoted as

tij = 2dij + τj , dij =
∑

e∈pij

de (3)
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The load migration service monitors the controller. When the mean service
time of a domain is higher than the warning level, the load migration service will
calculate a plan to start loads migration. If the switch i migrates from controller
A to controller B, the topologies of both domains are changed. The controller
will update the topology by LLDP and it will take a few seconds. Before the
routing system gets convergence, the switch i can not send new flows. Assume
during the convergence the cost of communication interruption for each flow is
α, the topology convergence cost for switch i is

Ci
topo = αfi (4)

As the switch i is migrated from domain A to domain B, the information for
switch i should be synchronized from controller A to controller B. The informa-
tion includes the hosts, flows, groups, and meters related to this switch. Assume
the size of these information is mi and the cost for sending each byte is β. The
cost of the synchronization is

Ci
syn = βmi (5)

The cost for migrating switch i is

Ci = Ci
topo + Ci

syn = αfi + βmi (6)

If a controller is overloaded, migrate many switches at once is easy to cause
congestion. A better way to reduce the side effects is migrating switches one by
one. As previous definition, the s1 is the original switch set and the s1

′ is the
switch set after migration. The switches which need to be migrated is

q = s1 − s1
′ (7)

The total cost for migration is

C =
∑

i∈q

Ci (8)

The goal of the approach is to find a minimum cost migration plan that after
migration the mean service time for each domain will be lower than the safe
value ts.

min
∑

i∈q

Ci

s.t. τj < ts, j = 1, .., k (9)

3.3 The Isolation Nodes Problem

The isolation nodes problem must be avoided during the load migration. The
isolation nodes problem is the phenomenon that a domain is divided to two
isolated parts because some key nodes in it are migrated to other domain. One
example of the isolation nodes problem is shown as Fig. 2.
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In the Fig. 2 there are two control domains managed by controller 1 and
controller 2. In the Fig. 2(a) the load of control 2 is high. The migration plan
decides to migrate the switch A from domain 2 to domain 1 in order to decrease
the load of control 2. But this causes the isolation nodes problem. In the Fig. 2(b),
The switch B can not connect to other domain 2’s switches directly because the
switch A is the key switch connects switch B. Assume that the host H1 needs
to communicate with the host H2. Before migration, once the switch B requests
the controller 2, the controller 2 will issue the flow rules for all switches along
the path. But after migration, not only switch B needs to request the controller
2 for its flow table item, but also the switch A needs to request controller 1. It
will cause burden to both controllers. Hence the performance decreases.

(a) before migration (b) after migration

Fig. 2. The migration causes the isolation nodes.

If we decide to migrate switch A, the switch B should follow. The switch B
is the migration dependent set of switch A. The migration algorithm needs to
calculate the migration dependent set for each switch. If a switch is migrated,
the switches in its migration dependent set need also be migrated.

4 Algorithm Designing

4.1 Algorithm for Calculating the Migration Dependent Set

For every node, we can identify a migration dependent set. If no other nodes
depend on this node, the node’s migration dependent set is empty. The main
idea of the algorithm is dyeing to neighbors. The start node is the controller.
The dyeing range is in the same domain. A queue is used in the algorithm. When
there is no new nodes added to the queue, the algorithm ends. The detail of the
algorithm is shown as Algorithm1.

In the algorithm, each node enters the queue at most once. If the maximum
degree of the graph is k, the time complexity of this algorithm is O(kn).
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Algorithm 1. Migration dependent set calculating algorithm
Input: graph G, the switch set S, node v to be migrated, controller c1
Output: migration dependent set H

1: Q ← φ , G′ ← subGraph(G, S[1])
2: all nodes colors in G’ ← black
3: v ’s color ← gray, c1’s color ← white
4: addQueue(Q, c1)
5: while Q �= φ
6: u ← outQueue(Q) , N ← getNeighbors(G′, u)
7: for each node i in N
8: if getColor(i) == black then setColor(i, white); addQueue(Q, i)
9: end while
10: H ← remaining black nodes
11: return H

4.2 Algorithm for Minimum Cost Migration

The load of controller is changing continuously. To avoid oscillation, we define
two levels, namely, safe level and warning level. The warning level is higher than
the safe level. If a controller’s mean service time is higher than the warning level,
it will start the load migration. The load migration procedure will stop when
the mean service time is lower than the safe level or there is no other controller
to migrate.

Our algorithm uses a heuristic method to get the minimum cost solution.
The migration includes many steps. In each step, there is only one switch gets
migrated. Before we migrate each switch, the switch’s migration dependent set
is calculated. The switch and its migration dependent set will be considered as
one big switch. Once a switch is migrated, a new switches-controller’s mapping
state is obtained. The algorithm constructs a states graph to trace the state
transformation. For every new state there is a pointer indicates its old state.
When a new state satisfies the goal, the reverse path from goal state to the
initial state is a candidate plan. To get the minimum cost plan, we divide the
cost of migration into two parts. One part is associated with the cost has been
spent in current step. Another part is the cost to be spent for getting the goal.
Let x denote a state. Define f (x ) as the total cost for the goal where x will be
passed by. The g(x ) denotes the cost that has spent from initial state to current
state x. The future cost need to spend is denoted by h(x ). Hence the cost f (x )
and the minimum cost f *(x ) can be denoted as follow

f(x) = g(x) + h(x), f∗(x) = g∗(x) + h∗(x) (10)

Because the future cost can not be measured, the heuristic function h(x ) is
constructed to estimate the optimistic cost for the future steps. Assume that
for a particular state x, the fmin is the new flows rate on switch which has the
smallest new flows rate in remaining switches, fmax is the new flows rate for the
switch which has the biggest new flows rate and mmin is the information size
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for the switch which has the least information. If we migrates each switch, the
load of controller will decrease fmax, we can calculate the value n that migrate
at most n switches from current state the controller will achieve the safe level.
We use these parameters to estimate the optimistic future cost. The optimistic
h(x ) can be expressed as

h(x) = n(αfmin + βmmin) (11)

It is easy to see that the optimistic function h(x ) is no more than the real
minimum future cost function h* (x ).

h(x) ≤ h∗(x) (12)

In the algorithm we use the queue OPEN and CLOSED to record the visited
states. Searching starts from the initial state is. The function calcTime calcu-
lates the mean service time for the state x. The function getNeighborStates finds
the neighbor states of x. It moves one border switch from current state and cal-
culates the switch’s migration dependent set. If the migration dependent set is
not empty, the switches and its dependent set will be seen as one big switch and
moved together. The move of the switch is towards the neighbor domain which
has least service time. If the move causes the distance from switch to controller
greater than the threshold, this move must be abandoned.

Let the initial state is s and the set of goal state candidates is denoted by Γ .
Let r ∈ Γ . Let Pi−j stand for the set of all paths from state i to state j. And let
Pi−Γ denote the set of paths going from state i to the set Γ . The pi−r ∈ Pi−Γ

stands for any path from i to r. The set of cheapest paths from i to j is denoted

Algorithm 2. Minimum cost migration algorithm (MCMA)
Input: graph G, the set of switch set S, safe level ts, controller position c1
Output: migration plan P

1: is ← S, OPEN ← {is}, CLOSED ← {}
2: generate the state graph SG ← {is}
3: while true
4: x ← out queue(OPEN), CLOSED ← CLOSED + {x}
5: if calcT ime(x) ≤ ts then out while
6: NS ← getNeighborStates(G, x, c1)
7: for each y in NS do
8: calculate f(y) ← g(y) + h(y)
9: If y is a new state, then
10: add y into SG, let y point to x, append y into OPEN
11: else if newf(y) < oldf(y) then
12: update y point to x, if y in CLOSED then move y to OPEN
13: sort OPEN by their f values
14: end while
15: RP ← the path from x to is
16: P ← reverse the RP
17: return P
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by P ∗
i−j . Let the C∗ stands for the cheapest cost of paths from s to Γ and let

the Γ ∗ stand for the set of optimal goals.

Lemma 1. At any time before the MCMA terminates, there exists an OPEN
state x’ on p∗

s−r with f(x′) ≤ C∗

Proof. Consider any optimal path p∗
s−r ∈ P ∗

s−Γ , p∗
s−r = s, x1, x2, ..., x′, ..., r. The

MCMA finds neighbor states from initial state. There must be one state in p∗
s−r

is in OPEN. Let x’ be a OPEN state on p∗
s−r. Since all parents of x’ are in

CLOSED and the path s, x1, x2, ..., x′, ..., r is optimal, the pointers assigned to
x’ are along p∗

s−x′ , hence, g(x′) = g∗(x′). Since h(x) ≤ h∗(x), we obtain:

f(x′) = g∗(x′) + h(x′) ≤ g∗(x′) + h∗(x′) = f∗(x′) (13)

And also since x′ ∈ p∗
s−r, we have f∗(x′) = C∗ and

f(x′) ≤ C∗ (14)

Theorem 1. The algorithm MCMA returns the minimum cost migration plan.

Proof. Suppose algorithm MCMA terminates with a goal node t ∈ Γ for which
f(t) = g(t) ≥ C∗. The MCMA will order the OPEN and set the smallest cost
state at the first. Hence when t was chosen for expansion, it satisfied:

f(t) ≤ f(x) ∀x ∈ OPEN (15)

This means that all states in OPEN satisfy f(x) ≥ C∗. However, according to
the Lemma 1 there was at least one OPEN state satisfies f(x) ≤ C∗. Therefore
the terminating t must have g(t) = C∗. Hence the algorithm MCMA returns the
minimum cost migration plan.

5 Simulation

We perform numerical simulations to evaluate our approach. Our simulation
program is developed in python. The python package NetworkX is used for
modeling the networks. In the simulation we use two network topologies, one
topology is AS-733 in 1st January, 1999, another topology is Oregon-1 in 31st
March, 2001. Those topologies are collected from the Stanford Network Analysis
Project (SNAP). The AS-733 has 531 nodes and the Oregon-1 has 10670 nodes.
On these topologies, the high degree nodes are candidates to place controllers.
We put 5 controllers on AS-733 and 30 controllers on Oregon-1. At the beginning,
each controller manages almost equal number of switches.

We set the average number of new flows rate for each switch as fi ∈ [30, 80].
For each switch the simulation program generates new flows that follows the
Poisson distribution. Each flow includes the switch address pair (s, t). The pro-
gram checks whether the path crosses domains. If it does, the extra request will
be added to the controller in every related domain. In the AS-733 topology, we
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set the processing capacity of the controller as uj = 5000 per second. In the
Oregon-1 topology, the processing capacity of the controller is uj = 15000 per
second. The size of data for each switch in controller is mi ∈ [100, 5000] KB. On
both topologies, the latency for every link is set as 1 ms.

To simulate the real environment, we random select some hot spots. If a
switch is selected as a hot spot, its host’s average new flow rate will become
double. The hot spot will sustain for some time and then fade out. During the
simulation, the percentage of the hot spots increases in the first 50 s, and then
fade out in next 50 s, and then increases in next 50 s again. In the simulation, the
warning level for the service time is set as 5 ms. The safe level is 0.5 ms. Once a
switch is migrated, new flows on that switch will be suspended for one second,
the response time of the new flow becomes 1000 ms and the average blocked data
size for each flow is set as 500 KB.

We simulate the average response time for the switches while the request
rate is changing. The static controllers (S-CNTL) scheme and the game playing
algorithm (GPA) are used to compare with our approach. In S-CNTL scheme
the controller-switch mapping is fixed. In GPA scheme, the overloaded controller
select a most wanted switch to migrate and broadcast to other controllers. Those
controllers discuss their difference of the average response time as the bene-
fit. The controller which obtains the highest benefit will keep the switch. The
response time is calculated according to the formula 3. The cost is calculated
according to the formula 8. During the migration the allowed maximum path
latency from switch to controller is 5 ms.

The Fig. 3 shows the average response time in AS-733 and Oregon-1. From
the figures we can see when the load is increasing, the response time of S-CNTL
scheme increases very fast as it does not support dynamic switch assignment.
The GPA and MCMA support load migration, their performances are significant
better than S-CNTL. As the MCMA chooses the plan which has less new flows
be suspended and it supports isolation nodes avoidance. When the load is heavy,
it has less response time than the GPA.

(a) AS-733 (b) Oregon-1

Fig. 3. Response time

The Fig. 4 show the cumulative costs of the load migration for GPA and
MCMA. As the GPA migrates the switches according to maximizing the benefit
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while the MCMA selects the minimum cost switches to migrate, the MCMA uses
less cost than the GPA.

(a) AS-733 (b) Oregon-1

Fig. 4. Cost of migration

6 Conclusion

In large scale networks, multiple controllers are used for handling switches’
requests. If the mapping between the controllers and switches is static, it is
easy to cause controller overloaded. We studied the load migration of the con-
trollers in SDN and introduced the isolation nodes problem. In this paper, a
connected minimum cost heuristic algorithm is proposed for the load migration.
The results of the simulation show that our approach can significant balance the
loads between controllers with low cost. As the algorithm is still complicated, a
more efficient load migration algorithm will be the future work.
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