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Abstract. Route-oriented participants recruitment is a critical prob-
lem in collaborative crowdsensing, where task publisher uses monetary
reward to motivate private cars collecting data along their routes. For
map producers, route-oriented crowdsensing scheme helps them achieve
maximum roads coverage with a limited budget, by selecting appropriate
participants from a group of candidates.

Focused on route-oriented participants recruitment problem, this
paper first formalizes the road network and vehicle route model. Each
vehicle’s route is mapped to a coverage rate on the road set. The recruit-
ment problem therefore transforms to a combinatorial optimization prob-
lem, which has proved to be NP-hard. To find a solution, we proposed an
approximation algorithm, which leverages submodularity to reduce com-
putation complexity and has a worst performance guarantee. Finally we
evaluate the performance of proposed algorithm on real road and trajec-
tory data in Beijing, China.

Keywords: Participants recruitment · Collaborative crowdsensing
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1 Introduction

The rise of big data, the method of collecting data is of great importance. Being
intellectualized and networked, smart vehicles are able to sense and communicate
in urban area. Their intrinsic mobility can be leveraged to dynamically collect
urban data in different time and areas [1]. A promising data service is collecting
data for HD (High Definition) map [2], which built from environmental data of
multiple sensors. The map producers, such as Here, TomTom and Baidu, need
lidar/camera/IMU data to build a live map for autonomous driving [3]. The
huge volume of information, as well as fast updating frequency to build a “live”
map, challenges map producers because their own devices undoubtedly could
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not meet these requirements. Some researchers therefore proposed crowdsensing
in which private cars are incentivized to accomplish a sensing task and upload
data to map producer. The incentives could be either real or virtual money.

In real scenario, each private car has its own short-term route which includes
a sequence of road segments and sensing cost. For a budget-constrained task pub-
lisher, participants recruitment turns into a combinatorial optimization problem.
Hence, how to select appropriate participants to maximize road coverage with
limited budget is a critical problem for HD map crowdsensing. Concentrated on
this problem, this paper has following three contributions.

Problem Formalization of Route-Oriented Participants Recruitment.
The problem is route-oriented because road coverage rate is considered as a
major indicator in this paper. We first formalize urban road networks as a graph,
the road segments are represented by edges in the graph. Then fine-grained
trajectory of vehicle is simplified into route, a sequence of edges in graph. With
each route has its unique coverage rate on graph, the task publisher selects
participants that maximize road coverage within a given budget.

Approximation Algorithm Using Submodularity. The formalized prob-
lem is NP-hard, which has no polynomial solution unless NP = P . We look for
a greedy algorithm guaranteeing lower bound with a ratio of (1 − 1/e). Specifi-
cally, we observe and prove that the coverage rate function is submodular, which
enables us to employ the property in submodular optimization.

Performance Evaluation by Real Data. To validate effectiveness of pro-
posed algorithm, real road networks and vehicle trajectories in Beijing are used.
Selected major roads in Beijing urban area are extracted. Taxi trajectories are
partitioned into sequence of road segments. Preprocessed data are fed into our
proposed algorithm and two other algorithms, including naive selection and
pureGreedy selection. The results are compared and analyzed to demonstrate
effectiveness of approximation algorithm.

The rest of this paper is organized as follows: Sect. 2 describes basic sce-
nario and definitions of participants recruitment. Section 3 presents our pro-
posed approximation algorithm. Section 4 presents simulation results and analy-
sis. We delay our discussion of related work until Sect. 5, in order not to interrupt
reader’s mind. The paper ends, in Sect. 6, with some conclusions and future works
on route-oriented crowdsensing problem.

2 Preliminaries

This section describes the scenario of participants recruitment and frequently
used notations.

2.1 Scenario Description

The task publisher on the cloud publishes task among candidate vehicles. Then
candidate vehicles report their short-term route to task publisher, who decides
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to choose appropriate participants at last. The communication between task
publisher and vehicles is supported by cellular network. Figure 1 is a description
of route-oriented participants recruitment.

Fig. 1. A description of route-oriented participants recruitment. Task publisher and
vehicles communicates by cellular network.

2.2 Models and Measurement

We consider the scenario where task publisher distributes the sensing task to
candidate vehicles on the urban road networks.

Definition 1-Road Networks: The road network is modeled as a graph G =
(V,E), where the intersections are denoted as vertex V and road segments are
denoted as edge E. The set of roads is denoted by E = {e1, e2, ..., em}, where m
is the number of road segments need to sense.

Definition 2-Participant’s Route : A participant pi’s route ri is a sequence
of segments pertaining to one trip. Each segment in ri is an edge e ∈ E, with an
arriving time stamp e.t1 and a leaving time stamp e.t2, i.e. r : e1 → e2 → ... →
ek, where 0 < ek.t2 − e1.t1 ≤ �T . �T defines the maximum prediction time of
participant’s route. Participants need to report short-term route prediction to
task publisher, larger �T renders lower prediction accuracy due to uncertainty
in real transport environment.

Definition 3-Dependent Coverage : A dependent coverage of pi on road
networks E is C

dep(Pi−1)
pi (E) = {ri ∩ (E − C

dep(Pi−2)
pi−1 (E))}, when Pi−1 =

{p1, p2, ..., pi−1} has sequentially made their coverage. As the name suggested,
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C
dep(Pi−1)
pi (E) is not only related to the length of ri, but also depending on

C
dep(Pi−2)
pi−1 (E) which is resulted from i − 1 previously selected participants.

By definition, for any pi, if P1 ⊆ P2 ⊆ P , below equation always stands:

Cdep(P2)
pi

(E) = Cdep(P1)
pi

(E) ∩ Cdep(P2\P1)
pi

(E) (1)

Thus,
‖Cdep(P2)

pi
(E)‖ ≤ ‖Cdep(P1)

pi
(E)‖ (2)

Definition 4-Global Coverage Rate : Given a road networks’ edge set E and
a group of participants P , with each participant’s ri is consisted of a series
of edges, the global coverage rate is ‖Cglobal

P (E)‖, i.e. the ratio of all covered
edges’ length to the total E’s length. For example, if there are 2 candidate
participants P = {p1, p2}, with r1 = {e1, e2} and r2 = {e2, e3} respectively.
We also assume E = {e1, e2, e3, e4}. The global coverage rate of p on E is
‖Cglobal

P (E)‖ = (|e1| + |e2| + |e3|)/(|e1| + |e2| + |e3| + |e4|).

3 Participants Recruitment with Budget Constraint

In this section, we describe the maximum global coverage with the budget con-
straint and present the corresponding algorithm to address it.

3.1 Problem Formalization

In practical scenarios, the budget of task publisher for rewarding participants is
limited. Additionally, each participant has unique cost and coverage conditions,
making it difficult for participants selection. Considering the set of candidate
participants P = {p1, p2, ..., pn} is associated with cost set D = {d1, d2, ..., dn}.
That is, each pi has a cost di. The total cost of selecting participants should not
exceed a given budget B.

Definition 5-Maximum Coverage Rate with Budget Constraint : Given
an edge set E = {e1, e2, ..., em} and a potential participant set P =
{p1, p2, ..., pn}, with the corresponding cost set D = {d1, d2, ...dn}. Costs are
additive and illustrated by d(P ) =

∑
d(pi) =

∑n
i=1 di. The maximum global

coverage rate under budget constraint B asks for a subset P ′ ⊆ P , such that the
total cost of P ′ is no more than B, i.e., d(P ′) =

∑
pj∈P ′ dj ≤ B, and the global

coverage rate ‖Cglobal
P ′ (E)‖ is maximized.

Formally, this optimizing problem is given by:

max
P ′⊆P

Cglobal
P ′ (E) s.t. d(P ′) ≤ B (3)
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3.2 Leveraging Submodularity

To solve the given problem, we prove that the set function of the global coverage
rate is nondecreasing submodular, so that we could employ the property in
submodular optimization.

Definition 6-Submodularity : Given a finite set E, a real-valued function f(·)
on the subsets of E is submodular if:

f(A) + f(B) ≥ f(A ∩ B) + f(A ∪ B) ∀A,B ⊆ E (4)

It is convenient to use an incremental style of above inequality. If the func-
tion satisfied the diminish returns rule for all element x and all pairs A ⊆ B,
denoted as:

f(A ∪ {x}) − f(A) ≥ f(B ∪ {x}) − f(B) (5)

Then, f(·) is said to be nondecreasing if f(A) ≤ f(B) for all A ⊆ B ⊆ E. Based
on the given preliminaries, we obtained the following lemma and further give its
proof.

Lemma 1: Given edge set E and a participants set P ′(P ′ ⊆ P ), the set function
of the global coverage rate ‖Cglobal

P ′ (E)‖ is nondecreasing submodular.

Proof: It is straight forward that ‖Cglobal
ø (E)‖ = 0 because not a single partic-

ipant has been selected to cover. Consider P ′’s two arbitrary subsets P ′′
1 and

P ′′
2 , P ′′

1 ⊆ P ′′
2 ⊆ P ′, we have ‖Cglobal

P ′′
1

(E)‖ ≤ ‖Cglobal
P ′′

2
(E)‖ since a route set rP ′′

1

always has bigger(at least equal when P ′′
1 = P ′′

2 ) global coverage rate than rP ′′
2
.

Then we consider any candidate participant px ∈ P − P ′ and edge set E,
when P ′′

1 , P ′′
2 has been selected. Note that P ′′

1 ⊆ P ′′
2 ⊂ P . By Eq. (3), it holds:

‖Cdep(P ′′
2 )

px (E)‖ ≤ ‖Cdep(P ′′
1 )

px (E)‖ (6)

It also holds that:

‖Cglobal
P ′′

1 ∪{px}(E)‖ − ‖Cglobal
P ′′

1
(E)‖ = ‖Cdep(P ′′

1 )
px (E)‖ (7)

‖Cglobal
P ′′

2 ∪{px}(E)‖ − ‖Cglobal
P ′′

2
(E)‖ = ‖Cdep(P ′′

2 )
px (E)‖ (8)

Combining (6), (7), (8) we have:

‖Cglobal
P ′′

1 ∪{x}(E)‖ − ‖Cglobal
P ′′

1
(E)‖ ≥

‖Cglobal
P ′′

2 ∪{x}(E)‖ − ‖Cglobal
P ′′

2
(E)‖ (9)

It is satisfied with the diminish returns rule (6) in which the difference from
adding an new element to a set P ′′ is at least as large as that from adding the
same element to a superset P ′ of P ′′, therefore ‖Cglobal

P (E)‖ is nondecreasing
submodular with ‖Cglobal

ø (E)‖ = 0.
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3.3 Approximation Algorithm

Motivated by the submodular property of coverage [4], we proposed an approx-
imation algorithm to address the global coverage rate with guaranteed perfor-
mance. As shown in Algorithm 1, the algorithm partially uses an enumeration
technique, and then employs greedy heuristic to get selection results for maxi-
mum global coverage rate with budget constraint.

Algorithm 1 is mainly composed by two components. The first component is
in line 2–line 3, which enumerates all subsets S1 whose cardinality is smaller than
k, and has cost less than B. The enumerated subset who has the most global
coverage rate is set as H1, the candidate subset of the first component. Another
candidate is generated from the second component from line 4–line 12. This
component first enumerates some subsets S2 whose cardinality Card(S2) = k,
and complements these subsets using the greedy algorithm (line 6–line 11).

Algorithm 1. Approximation Algorithm for Maximum Coverage Rate
with Budget Constraint Problem
Input: Edge set E = {e1, e2, ..., em}, potential participants set

P = {p1, p2, ..., pn} and corresponding cost set D = {d1, d2, ..., dn},
budget B, a predefined integer k.

Output: Participants set P ′ ⊆ P .
1 H1 ← ø, H2 ← ø
2 for all S1 ⊆ P , such that |S1| < k, and d(S1) ≤ B do

3 if ‖Cglobal
S1

(E)‖ > ‖Cglobal
H1

(E)‖ then H1 ← S1

4 for all S2 ⊆ P , such that |S2| = k, and d(S2) ≤ B do
5 T ← P\S2

6 Repeat

7 find pj that maximize ‖Cdep(S2)
pj (E)‖/d(pj)

8 if d(S2) + d(pj) ≤ B then
9 S2 ← S ∪ pj

10 T ← T\pj
11 Until T = ø

12 if ‖Cglobal
S2

(E)‖ > ‖Cglobal
H2

(E)‖ then H2 ← S2

13 if ‖Cglobal
H1

(E)‖ > ‖Cglobal
H2

(E)‖, P ′ ← H1, else P ′ ← H2.

14 return P ′

Theorem 1: For k ≥ 3, Algorithm 1 has an approximation ratio of (1 − 1/e) for
the maximum global coverage rate with budget constraint problem. That is:

Cglobal
P ′ ≥ (1 − 1/e)

︸ ︷︷ ︸
≈0.632

Cglobal
optimal, for k ≥ 3 (10)

where Cglobal
optimal is the optimal value of the total global coverage rate that can

be achieved by any participants set P ′ ⊆ P . See Khuller’s work [5] for a detail
proof.
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The time complexity of Algorithm 1 is O(lk+2), where k is an integer that is
bigger or equals to 3. This algorithm is polynomial and achieves an approxima-
tion guarantee of (1−1/e). Since the complexity of proposed algorithm increases
with k, we recommend to set k = 3 as usual. To get better performance in cov-
erage rate, a larger k could be set with a price of larger time complexity.

4 Real Data Based Simulation

We evaluate the performance of the proposed algorithm using real road networks
and trajectory data from Beijing, China. Then we make a comparison between
proposed algorithm and other two algorithms, and finally make an analysis on
these results.

4.1 Simulation Data and Settings

Road Networks in Beijing. The road network (V,E) is built from Beijing
map [6]. The detailed information of map is trivial, therefore only main roads
are solicited in our experiment. Each road has its direction and length, which
are important for building road set E.

Taxi Trajectory Data. We extract route from real taxi trajectory data col-
lected by MSRA [7]. The data package includes over 10000 taxicabs’ trajectories
on several days in November 2013. For each day the data package contains a
full-scale GPS during 24 h. Since trajectory is too detailed for use, we simplified
the GPS trajectory into route by trajectory-map-matching [8], i.e. transforming
GPS trajectory into series of road segments, and tag each segment with arriv-
ing/leaving time. Considering the scenario of participants recruitment for HD
map sensing, a vehicle could predict its short-term route in �T . After defining
an initial time tinit, we randomly choose a batch of taxi, whose trajectory is in
the range of selected urban area and within time [tinit, tinit + �T ].

Figure 2 is a sketch map of road networks, which is located in a prosperous
block in Haidian district, Beijing. Selected roads are in blue and three road exam-
ples are presented in Fig. 2(a) and (b). Additionally, three routes/trajectories are

Fig. 2. A sketch map of road networks and routes. a: selected roads are in blue; b:
examples of road segment; c: examples of route. (Color figure online)
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Fig. 3. Statistics of roads and route data.

also presented in Fig. 2(c). To give an insight of simulation configuration, Fig. 3
shows some statistics of road and route data. Note that total trajectory length
in Fig. 3(c) is the whole length of all candidates’ trajectories.

Participants Cost. Unfortunately, there is no real cost data of participants.
As a rule of thumb, each driver has different preference and driving cost. There-
fore we generate a cost di for each candidate participant with uniform distribu-
tion, i.e. D ∼ U [a, b]. Hence, costs and routes are synthesized to support our
simulation.

Overall, simulation settings are illustrated in Table 1.

Table 1. Simulation settings

[tinit, tinit + �T ] [16, 16.5] (30 min)

Road segments number 362

Candidate participants number {5, 10, 15, 20, 25, 30}
U(a, b) [1, 0]

Budget {40, 60, 80, 100}

4.2 Simulation Results

Our proposed approximation algorithm is named after boundedGreedy selec-
tion to indicate its bounded performance guarantee. Besides our proposed algo-
rithm, two other algorithms are arranged to make comparison. Naive selection.
Task publisher randomly chooses participants when participants arrive, until the
total cost exceeds budget B. PureGreedy Selection. PureGreedy algorithm
repeatedly picks participant pi that has the maximum �C/di until the total
cost exceeds budget B. It is easy to applied pureGreedy with high efficiency.
PureGreedy works fine most time but it could not guarantee the worst perfor-
mance. This will inevitably deteriorate coverage on urban sensing, where task
publisher needs stable and balanced coverage performance. Figure 4 illustrates
the comparison of three algorithms. The simulation runs 100 times and results
are averaged.
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Fig. 4. Comparison of three algorithms on coverage rate. left: impact of candidates’
number, budget = 100; right: impact of budget, candidates’ number = 20.

Impact of Participants Number. Figure 4(left) shows Candidates’ number-
Global Coverage Rate plot under a fixed budget B = 100. The curves generally
show that the global coverage rate increases with the candidates’ number. The
reason is two-fold: First, when candidates’ number n is relatively small (n ≤ 20)
and budget is enough, hiring a new candidate is always feasible and benefi-
cial to coverage rate. Second, when n is big, the budget is not enough to hire
all candidates. However, more candidates could lead to more combinations of
routes, making it more likely to find a combination with higher coverage rate.
Moreover, this figure demonstrates that boundedGreedy outperforms naive and
pureGreedy selection. It could be prudently speculated that the performance
gain of boundedGreedy is also increasing with candidates’ number.

Impact of Participants Budget. Figure 4(right) shows Budget-Global Cover-
age Rate plot under a fixed candidate number N = 20. From this facet, bound-
edGreedy still outperforms other two algorithms. Intuitively, increasing budget
is always good so that we could hire more participants. For example, hiring with
B = 60 gets larger global coverage rate than that when B = 80, and hiring with
B = 100 gets larger coverage rate than B = 80. Nonetheless, this effect con-
forms with diminish returns rule that the utility gain �rate/�budget decreases
as budget increases.

5 Related Work

Crowdsensing has been a hot topic recent years. The research on this field pri-
marily focus on economic model where each participant is only associated with
a cost value and no physical scenario is further considered. Lee [9] designed
and evaluated RADP incentive mechanism, where users can sell their sensing
data to a service provider with a bid price. The proposed mechanism focuses
on minimizing and stabilizing incentive cost while maintaining enough partici-
pants. Yang [10] and Duan [11] both proposed a platform-centric model where
platform provides a reward shared by participants using Stackelberg game. To
protect participants’ privacy, Dimitriou [12] and Krontiris presented an auction
protocol guaranteeing anonymity of bidders.
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Leveraging vehicles for crowdsensing as well as data processing have gained
extensive attention. Zhu [13] proposed PUS (Pervasive Urban Sensing) frame-
work and used probe cars to sense traffic density. The authors also designed a
compressive sensing algorithm to tackle sparsity of data. Yuan [14] observed that
the distribution of probe vehicles is uneven over space and time. He therefore
proposed an adaptive and compressive data gathering scheme based on matrix
completion theory. Beside data processing, there are some works focused on
optimal participants recruitment of crowdsensing. Song [15] aims to select the
most appropriate participants with different budget constraints, a multi-task-
oriented QoI (Quality of Information) optimization problem is discussed and
converted to a nonlinear knapsack problem. Zhang [16] proposed an event-driven
QoI-aware participatory sensing framework with energy and budget constraints
where the main method is boundary detection. The above works discuss partici-
pants recruitment in a grid-based approach, where urban area is partitioned into
small squares. The grid-based approach gives researchers convenience to model
some urban sensing requirements, such as traffic flow or air quality, but remains
coarse and unappeasable if applied to fine-grained sensing tasks.

The fined-grained sensing task usually associates with participants’ trajec-
tories. For example, in a HD map sensing task, participant (smart vehicle) may
collect 3D environmental data along his trajectories. Hence, HD map sensing
task needs an accurate trajectory model, rather than coarse grid-based motion
model of potential participants. To address this problem, Zhang [17] consid-
ered the optimal quality-aware coverage in mobile crowdsensing networks, where
POIs are sensed by passing-by participants. TRACCS [18] is a trajectory-aware
coordinated design for urban crowdsourcing. The authors formulated crowd-task
scheduling as an optimization problem and developed computationally-efficient
heuristic to tackle the problem. Hamid [19] proposed an efficient recruitment
scheme for vehicles in urban sensing applications. They utilized trajectories of
the candidate participants, and applied a minimal-cover greedy algorithm for
recruitment.

6 Conclusion

This paper has discussed route-oriented participants recruitment of collaborative
crowdsensing. Task publisher collects candidates’ route and selects appropriate
participants to sense data along their routes. Given a limited budget, our pro-
posed approximation algorithm could achieve larger global coverage rate than
other two algorithms on real data simulation.

In the future, we will consider a more complicated and realistic scenario where
participants may drop out the sensing task during task execution. This needs
a more vivid model to depict both vehicle’s and driver’s behavior. Moreover,
a remedy algorithm should be considered to reduce the influence of dropping
out.
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