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Abstract. Workflow technology is an efficient means for constructing complex
applications which involve multiple applications with different functions. In
recent years, with the rapid development of cloud computing, deploying such
workflow applications in cloud environment is becoming increasingly popular in
many fields, such as scientific computing, big data analysis, collaborative design
and manufacturing. In this context, how to schedule cloud-based workflow
applications using heterogeneous and changing cloud resources is a formidable
challenge. In this paper, we regard the service composition problem as a
sequential decision making process and solve it by means of reinforcement
learning. The experimental results demonstrate that our approach can find near-
optimal solutions through continuous learning in the dynamic cloud market.
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1 Introduction

With the rapid development of cloud computing technologies, a large number of cloud-
based applications are delivered across the internet. Cloud workflow applications are
typical ones which can be used to handle complex and combinatorial tasks in academia
and industry. For example, Cloud-based design and manufacturing (CBDM) [1] is a
popular collaborative working pattern which utilizes cloud resources to execute
applications to achieve cooperation across multiple enterprises. Scheduling workflow
applications in clouds means using compositional cloud services to execute tasks
contained in workflows. In the cloud market, IaaS providers provides various on-
demand computing resources in the form of virtual machines (VMs). SaaS providers
can use them to run their applications cost-effectively. However, how to choose
appropriate VM instances to execute workflow tasks is not easy. Relationships among
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tasks need to be considered and there are multiple alternative VM instances with
various configurations and prices provided by different IaaS providers.

Several works have been proposed to address workflow scheduling problems in the
literature [2, 3]. Most studies are based on the assumption that the execution time of
each task on different types of VM instances has been known in advance and it will not
change. However, this assumption is not reasonable because SaaS providers hardly
know the real performance of VMs in a dynamic cloud environment. In addition, some
factors such as task parallelization and data transmission are seldom considered. Our
main contribution of this paper is taking into account all these features in our model
and proposing an effective workflow scheduling approach based on reinforcement
learning. Compared with existing methods, our approach can learn the dynamic per-
formance of the cloud market and generate near-optimal workflow application
scheduling without any prior knowledge.

The rest of this paper is structured as follows. Section 2 gives an overview of
relevant related work. In Sect. 3, we describe the three-tier cloud market model and
then present the problem formulation in this context. Section 4 introduces the basic
theories of reinforcement learning and details our approach. Experimental results and
conclusion are given in Sects. 5 and 6 respectively.

2 Related Work

In recent years, the research on scheduling cloud based workflow applications has been
studied intensively [2, 3]. Generally, monetary cost and makespan are two optimization
objectives in this field. In our work, we focus on minimizing the workflow cost to help
SaaS providers get more profits. There have been some existing approaches [4, 5]
regarding this topic, but their considerations of workflow constraints and operating
environment are inadequate. Most of them only consider some basic constraints (e.g.
budget and deadline) and ignore the uncertain and dynamic characteristics of cloud
markets.

In contrast, selecting services for workflow scheduling in the unknown and
changing cloud environment can be viewed as Markov Decision Processes (MDPs),
which can be solved by reinforcement learning approaches naturally. Some researches
[6, 7] have applied Q-learning algorithm to achieve service composition. However,
their problem models are very general and of course does not take into account the
features of workflow applications. Similar to our objective, [8, 9] try to help SaaS
providers to optimize resource allocation to their applications. But their application
model is not a workflow thus it is different from our workload-based model.

3 Problem Statement

3.1 System Model

As shown in Fig. 1, there are three parties in the three-tier cloud marketplace: appli-
cation users, SaaS providers and IaaS providers. Application users can get access to
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applications provided by SaaS providers. SaaS providers rent cloud resources from
IaaS providers to run their applications and serve their customers. We assume that there
are some SaaS providers who deliver workflow applications to their customers. That
means these SaaS providers need to lease a collection of cloud resources to execute all
tasks contained in workflows. In an open public cloud environment, the cloud market is
diverse and full of uncertainty. Specifically, there are lots of different types of com-
puting resources in the form of VM instances offered by IaaS providers with varying
prices and configurations. Also the performance of VMs is always fluctuant because of
the change of time and workloads. Furthermore, from the perspective of SaaS provi-
ders, their workflow applications normally have some constraints, such as deadline,
task dependencies and hardware configuration. In order to maximize their profits in the
long run, SaaS providers need to select the appropriate IaaS service for each task to
execute their workflow applications profitably.

3.2 Problem Formulation

Workflow Model. In general, a workflow application is represented as a directed
acyclic graph (DAG) WA ¼ T ;Eð Þ. The finite set T = {T1, …, TN} denotes N tasks in
the workflow. E ¼ fEi;jj1� i; j�N; i; j 2 N þ g is the set of directed edges which
describes the precedence constraints between tasks. An edge Ei;j ¼ Ti; Tj

� �
states that

Tj is the child task of Ti and it cannot be executed until all of its parent tasks have been
completed. In a given workflow, the task without any parent tasks is called a start task
Tstart and the task without any successors is called an end task Tend. We assume that
there is only one Tstart and Tend in our model. Data is a N � N matrix where

Fig. 1. Three-tire cloud marketplace
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Data Ti; Tj
� �

is the amount of data that required to be transmitted from Ti to Tj. Each
task is expected to be executed on one or more VM instances.
A Workflow application WA generally has some constraint Constraint(WA) = {GC,
TC}. The former set GC = {deadline, budget} defines the maximum makespan and cost
of the whole workflow that users would like to accept. The later set TC = {TC1, …,
TCN} contains N subsets which describe the restrictions of tasks. TCi ¼
parallelismi;CPUi;memoryif g denotes the maximum parallelism degree and the

minimum configuration requirements of VM for task Ti.

Cloud Resources Model. The cloud market has M IaaS services Resources = {VM1,
…, VMM}. Each of them defines one type of VM instances VMi ¼ DataCenteri;f
ePi; inPi; outPi;CPUi;memoryi; bandwidthig, where DataCenteri identifies the location
of VMi, ePi is the hourly execution cost, inPi and outPi are the cost of transferring and
receiving per unit of data from other VMs, and other attributes denote the VM capacity.
Due to the task features and VM configurations, task runtime on different types of VMs
is varying. Moreover, for one task, its runtime is not constant even though it is executed
on the same VM. This is because the VM performance is also affected by its data
center’s workloads. There are K workload conditions W = {W1, …, WK} and the
probability matrix for DataCenteri is WPi ¼ P1

i ; . . .;P
K
i

� �
, where

PK
j¼1 P

j
i ¼ 1.

Supposing VM(Ti) and VMnum(Ti) represent the VM type and number that is scheduled
to Ti, and W(VMj) is the current workload condition of DataCenterj.

Task Execution Time and Cost. Let basicET Ti;VMj;Wk
� �

denote the execution time
of task Ti on one VMj instance when the data center condition is Wk. As some tasks can
be executed concurrently on the same type of VMs, the actual execution time is:

ET Ti;VM Tið Þ;W VM Tið Þð Þð Þ ¼ basicET Ti;VM Tið Þ;W VM Tið Þð Þð Þ=VMnum Tið Þ ð1Þ

Generally, it is assumed that VM instances are charged hourly, thus the task exe-
cution cost can be calculated by:

EC Ti;VM Tið Þ;W VM Tið Þð Þð Þ
¼ VM Tið Þ:eP � ET Ti;VM Tið Þ;W VM Tið Þð Þð Þ� � VMnum Tið Þ½ ð2Þ

Data Transfer Time and Cost. Let Bandwidth is a M � M matrix, in which
Bandwidth VMi;VMj

� �
is the bandwidth between VMi and VMj. For a pair of consec-

utive tasks, the data transfer time and cost between them are defined by (3) and (4)
respectively.

TT Ti; Tj
� � ¼ Data Ti; Tj

� �
Bandwidth VMðTið Þ;VMðTjÞÞ ð3Þ

TC VM Tið Þ;VM Tj
� �� � ¼ Data Ti; Tj

� � � VM Tið Þ:outPriceþVM Tj
� �

:inPrice
� � ð4Þ
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Workflow Application Cost. The whole workflow cost is the total expense for all
tasks execution, which contains the tasks’ execution cost and data transfer cost. The
computational formula for each task’s cost is:

Task costi ¼ EC Ti;VM Tið Þ;W VM Tið Þð Þð Þþ
X

j2children Tið Þ
TC VM Tið Þ;VM Tj

� �� � ð5Þ

Thus the total cost of workflow application is WAcost ¼
PN

i¼1 Task costi.

Workflow Makespan. Let ST(Ti) and ET(Ti) are the earliest start time and finish time
of task Ti. For the start task Tstart, we have:

ST Tstartð Þ ¼ 0 ð6Þ

ET Tstartð Þ ¼ ST Tstartð ÞþET Tstart;VM Tstartð Þ;W VM Tstartð Þð Þð Þ ð7Þ

For the other tasks, their ST and ET values can be computed recursively:

ST Tið Þ ¼ max
Tj2parents Tið Þ

ET Tj
� �þ TT Tj; Ti

� �� � ð8Þ

ET Tið Þ ¼ ST Tið ÞþET Ti;VM Tið Þ;W VM Tið Þð Þð Þ ð9Þ

Therefore, the total workflow execution time is WAmakespan ¼ ET Tendð Þ.
Cost-optimal Scheduling Problem. SaaS providers derive their profits from the
margin between the revenue obtained from customers and the expense of renting cloud
resources from IaaS providers. In order to maximize profits, the best policy is reducing
the workflow application cost at the most and guaranteeing the makespan within
customers’ deadline constraints. Therefore, this problem can be formally defined as
follows:

min WAcost

s:t: WAmakespan � deadline
VMnum Tið Þ� TCi:parallelismi

VM Tið Þ:CPU� TCi:CPUi

VM Tið Þ:memory� TCi:memoryi

8>>>><
>>>>:

ð10Þ

4 Workflow Scheduling Approach Using Q-Learning

4.1 Theoretical Foundations

Reinforcement learning (RL) [10] is a widely used method in the field of machine
learning. Faced with an unknown environment, an agent without prior knowledge can
improve its behavior based on the interactions with its environment. In general, rein-
forcement learning problems can be modeled as Markov Decision Processes (MDPs)
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. is a set of environment states and is a set of actions that an
agent can take. defines the probability of the state transition, where

represents the possibility of action a in state s at
time t will move to a new state s′ at time tþ 1. is a reward function which yields a
reward for each state transition. c ∊ [0, 1] is a discount factor which is used to balance
the influence of present reward and future rewards. The goal of RL agents is to find the
optimal behavior for each state to maximize the accumulated discounted rewards in the
long-term.

Q-learning [11] as a model-free reinforcement learning algorithm which can be
used to find optimal policies by learning from previous decision-making experiences. It
uses Q function to approximate the long-term benefit of each state-action pair <s, a> by
updating Q values during learning processes. The update rule is defined in (11), where
a ∊ [0, 1] is the learning rate and c ∊ [0, 1] is the discount factor. It will be updated
based on the next state s′ and obtained reward R s; a; s0ð Þ.

Q s; að Þ ¼ Q s; að Þþ a R s; a; s0ð Þ þ cmaxa0Q s0; a0ð Þ � Q s; að Þ½ � ð11Þ

4.2 Level-Based Workflow Scheduling Approach

In general, the workflow scheduling problem is a multidimensional, multi-choice,
multi-constraint optimization problem (MMMO), which is NP-hard to solve. On this
basis, in the dynamic cloud market, performance of IaaS services is always filled with
uncertainty. For SaaS providers, it is hard to predict the task execution time on different
VMs at a certain time in advance. Therefore, traditional heuristic approaches such as
genetic algorithms do not perform well. By contrast, we can model the IaaS service
composition problem as a MDP and solved it by Q-learning algorithm. Our level based
scheduling approach involves two phases: initialization phase and decision-making
phase. We will describe them respectively.

4.2.1 Initialization Phase
In this phase, workflow application tasks will be classified into different execution
levels. Execution level EL represents the task scheduling sequence in this workflow.
All tasks belonging to the same level will be scheduled at the same time during the
decision-making phase. As we mentioned before, for any task Ti, only when all its
parent tasks have been finished, it can be executed. According to this principle, the
execution level allocation algorithm is shown below:
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Algorithm 1:  Execution level allocation algorithm 

1.   
2.   add  to 
3.   
4.       while
5.         for
6.                 if then
7.                           
8.                           add  to 
9.                 end if
10.       end for     
11.       add  to 
12.       
13.  end while

4.2.2 Decision-Making Phase
During this phase, task scheduling plans will be decided and executed according to the
sequence of EL. When the whole workflow application has been scheduled, it means
one decision-making process has been completed. Such a learning process will be
repeated many times until the near-optimal scheduling plan has been found. In this part,
we will first describe the key elements of this Q-learning problem and then present the
algorithm in decision-making phase.

A. State Space and Actions
The state space S contains all possible states that SaaS providers can experience. We
define each state as a 3-tuple: s ¼ EL; datacenter; timeð Þ, where:
• EL is the current execution level that will be scheduled;
• datacenter is a set which records the VM locations for all tasks in the last EL level;
• time is the total execution time of the uncompleted workflow until now.

Given a state s 2 S, the corresponding action set A(s) includes all available actions
that can be taken. Supposing there are C tasks in current EL level, each action at state s
is expressed as a collection shown in (12), where VMidc and VMnumc are the VM type
and number allocated to task Tc.

a ¼ VMid1;VMnum1ð Þ; . . .; VMidC;VMnumCð Þf g ð12Þ

B. Reward Function
Because the goal of application scheduling algorithm is to find the cost-optimal choices
for the whole workflow, the reward function. R s; a; s0ð Þ at state s is given by the
following equations:
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Rsuccess �
P

Ti:EL¼S:EL
Task costi; if s:EL ¼ ELfinal and s0:time� deadline

Rfail �
P

Ti:EL¼S:EL
Task costi; if s:EL ¼ ELfinal and s0:time[ deadline

� P
Ti:EL¼s:EL

Task costi; else

8>>><
>>>:

ð13Þ

C. Action Selection and State Transition
At a decision time Ti, we adopt the e-Greedy policy to choose an action for current state
s. It means that the optimal action based on current knowledge will be chosen with a
high probability (1 − e), while a random action instead of the best one be taken with a
low probability e, where e 2 0; 1½ �. Once SaaS performs a specific action a, its state will
change from s to s′. The corresponding transitions can be described as follows:

s0:EL ¼ s:ELþ 1
s0:datacenter ¼ fa:VMidc:DataCenterjc ¼ 1; . . .;Cg
s0:time ¼ s:timeþ max

Ti:EL¼s:EL
ET Tið Þ

8><
>:

ð14Þ

where s′.EL, s′.datacenter and s′.time are elements of new state s′. Meanwhile, the Q
value of state-action pair <s, a> will be updated based on (11).

D. Q-learning based IaaS service composition algorithm

Algorithm 2: Q-learning based IaaS service composition algorithm 
1.   Loop (for each scheduling decision-making process) 
2.    Choose action a from A(s) using -Greedy policy 
3.    Rent appointed VMs to execute tasks according to 
      action a 
4.    Move to the new state s’ according to (14) 
5.    if s’ is a new state then
6.        add s’ into state set S
7.        For , initialize Q-values 
8.    end if 
9.    calculate reward  using (13) 
10.   update  Q(s,a) using (11) 
11.   s ←
12. end Loop 

5 Experiment Results and Analysis

In this section, we evaluate our level based workflow scheduling approach through a
series of experiments. We first describe the basic experiment settings and then present
the relevant results and analysis.
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5.1 Experimental Setup

Attributes of Cloud Resources. We simulate a dynamic cloud environment which
involves two IaaS providers. Each of them has one data center and offers three kinds of
VM types with different configurations and prices. Data transfer speeds and costs
between different data centers are varying. In terms of the performance of data centers,
we define two kinds of workload conditions: normal condition (NC) and busy condi-
tion (BC). For a task, its execution time under the busy condition is 1.5 times of that
under the normal condition on the same VM instance. The probability of each con-
dition in different data centers is different. Let denote the probability of
BC in two data centers. We test 5 cases {(0, 0), (0.2, 0.4), (0.3, 0.7), (0.7, 0.9), (1, 1)}
in our experiments, which implies the data centers’ conditions are both normal, both a
little busy, one a little busy and one busy, both busy, both very busy respectively.

Workflow Application Settings. In our experiment, we test 8 cases with different
number of tasks in the workflow. The number of tasks is varied from 3 to 10. Each task
excepting Tend has at least one child task. The average number of child tasks for tasks is
set to 2. Task execution time on different VMs and the amount of transmitted data are
randomly generated in [10 min, 100 min] and [5 GB, 20 GB] respectively. The
deadline and budget constraints are set dynamically based on the value bounds of
workflow makespan and monetary cost.

Q-Learning Parameters. We set the the values of learning rate a and discount factor
c to 0.6 and 0.8 respectively. The initial value of parameter e is 0.2. We decrease its
value gradually so as to reduce explorations and obtain the best renting decisions with a
high probability. As for the reward function, we set Rsuccess = 1 and Rfail = − 5.

Baseline Algorithms. We compare our algorithm (QA) with alternative five service
selection strategies: optimal strategy (OS), random strategy (RS), conservative strategy
(CS), adventurous strategy (AS) and guess strategy (GS). OS strategy is an ideal
baseline, which assumes that all information about the cloud market (e.g. task exe-
cution time and data center conditions at a given time) is known in advance. RS is a
simple strategy in which a random workflow scheduling plan is chosen. Both CS and
AS give constant workflow scheduling plans each time. The difference is that they are
based on different data center conditions. Specifically, CS gives the plan that is the
optimal one under data centers’ busy condition (i.e. ), while AS gives the plan
that is the optimal one under data centers’ normal condition (i.e. ). GS strategy
assumes that SaaS providers guess the market condition is p = (0.3, 0.7).
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5.2 Experiments and Results

In our experiments, there are 5 cases with respect to data center conditions and 8 cases
regarding the number of tasks. We test our workflow scheduling approach and other 5
baselines under these scenarios. For each scenario, we do experiments 10 times with
different stochastic workflows. Because reducing workflow application cost to maxi-
mize profits is the ultimate goal of SaaS providers, we focus on the service composition
profits obtained by applying different scheduling strategies in each round. Figure 2a
shows the comparison results of 6 strategies for one experiment. In this scenario, the
number of workflow tasks is 6 and the data center’s condition is p = (0.2, 0.4). It is
clear that the workflow scheduling plans generated by QA gain low profits at the early
stage of decision-making rounds. However, the profit curve grows gradually and then
reaches a high and relatively stable level which is close to the maximum profit curve
produced by OS strategy. By contrast, workflow scheduling plans generated by RS
strategy and GS strategy always get low profits during the whole period. Furthermore,
we also compare QA with other 5 strategies when its final near-optional scheduling
plans have been obtained. We calculate the total profits in last 100 rounds of our QA
and other baselines respectively. And then we normalize results based on the profit
obtained by OS. Figure 2b gives the profit comparisons under different conditions of
data centers. It can be seen that no matter what the condition is, QA is able to generate
high profits which are close to the maximum profits. In terms of the experiments in
other scenarios, we can get similar results as shown in Fig. 2. Due to the space
limitation, they are not included in this paper.
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Fig. 2. (a) Performance comparison of six strategies. The profit of each time slot equals the sum
profits of 20 consecutive service composition decision-making rounds. (b) Profits comparison
under different data center conditions. If the real normalized value is less than 0, we set it to 0 in
this figure.
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6 Conclusion

In our work, we proposed a workflow application scheduling approach based on the Q-
learning algorithm to help SaaS providers make near-optimal service selection deci-
sions in a dynamic and stochastic cloud environment. Through a series of experiments,
we demonstrated the effectiveness of our approach and compared it with other baseline
strategies in different market settings.
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