
Constrained Route Planning Based
on the Regular Expression

Jing Wang, Huiping Liu, and Zhao Zhang(B)

School of Computer Science and Software Engineering,
East China Normal University, Shanghai, China

{jingwang,hpliu}@stu.ecnu.edu.cn, zhzhang@sei.ecnu.edu.cn

Abstract. Traditional route planning algorithms, which mainly focus
on common metrics to find the optimal route from source to destination,
are not enough to solve route planning requirements with location con-
straints like sequence, alternative and avoidance. For example, finding
the shortest path passing the whole or a part of user-defined locations
or location categories in order or disorder, or not passing some specified
locations or categories. Mainly focusing on these scenarios, this paper
formalizes the constrained route planning problem based on the regular
expression generated by user requirements and gives a general framework
for the exact solution. By using different shortest path algorithms, we
show how the framework works efficiently with shortest path algorithms.
Finally, extensive experiments on real road network datasets demonstrate
the efficiency of our proposal.
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1 Introduction

Route planning based on metrics such as distance, time, cost, etc. [1–3], has been
rapidly developed in recent decades. However, there are some route planning
requirements constrained by locations which are common in daily life but cannot
be solved by traditional route planning algorithms. Consider a road network in
Fig. 1 where each node indicates a Point of Interest (POI), each directed edge
represents a one-way route between POIs with an associated number indicating
its length. Suppose after working at A, Tom prefers to go to a restaurant to have
a meal first and then choose a cinema or bar to relax (he can only visit one of
them because of insufficient time), after that he should go home at I, but along
the way home he would like to avoid mall F due to traffic jams. Tom wants an
ideal route which not only satisfies above location requirements but also has the
minimum total length.

Similar problems have received significant attentions. Optimal route queries
[4–13] search the shortest route that starts from the query point and passes
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through a user-defined category or keyword set in order, partial order or disorder.
In spite of the significant contributions made by previous works, they are limited
to solve route planning problems like the example in Fig. 1.

Therefore, in this paper, we study the problem of finding the optimal route for
a fixed source and destination pair with given multiple location constraints like
sequence, alternative and avoidance. Considering such route planning require-
ments always cover rich semantics, the regular expression, a character sequence
to represent matching patterns that strings should be in accordance with, is
adopted to express route planning queries. By taking advantages of existing oper-
ator definitions, the user-defined constraints can be expressed completely and
precisely. First, we formalize the Constrained Route Planning Problem (CRPP)
based on the regular expression. Then we devise a general framework, which sup-
ports shortest path algorithms such as the Dijkstra’s algorithm and A* search
algorithm, to solve the CRPP.
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Fig. 1. An example of the constrained route planning problem.

The main contributions of this paper can be summarized as follows:

– We propose and formalize the CRPP based on the regular expression, that
is to find the shortest path from the source to destination in accordance
with customized location constraints like passing sequence, alternative and
avoidance of locations or location categories.

– We devise a general framework to solve the CRPP with the exact solution,
and implement it by using the Dijkstra’s algorithm and A* search algorithm.

– Extensive experimental evaluations performed on real datasets show the effi-
ciency of the proposed approaches.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
review related works. Section 3 gives necessary notations and a formal problem
definition of this paper. Section 4 describes the general framework of our solu-
tions, following two implementations: the Dijkstra-based CRPP algorithm and
the A* search-based CRPP algorithm. Section 5 reports our extensive experi-
ments. Finally Sect. 6 concludes the paper.
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2 Related Work

The optimal route query with multiple constraints has been extensively investi-
gated. Li et al. [4] propose the Trip Planning Query (TPQ) in spatial databases
where each spatial object has a location and a category. The aim of the TPQ is
to find the shortest path from the source to the destination that passes through
at least one object from each category in a defined set of categories. In the TPQ,
users cannot specify the passing order of categories, and [4] only gives approxi-
mate solutions. Sharifzadeh et al. [5] study an Optimal Sequenced Route (OSR)
query which strives to find the shortest path from a fixed source that passes
through at least one node from given category sets in a specified order. [5] gives
solutions in Euclidean space - the LORD and R-LORD algorithms as well as in
metric space - the PNE algorithm. By preprocessing given category sequences,
a series of Additively Weighted Voronoi Diagrams (AWVD) are constructed to
solve OSR queries effectively [6,7]. The Generalized Shortest Path (GSP) query
[8] is essentially the OSR with a given destination and a strict order. By using
dynamic programming formulation, [8] is more suitable for larger graphs. Dif-
ferent from the OSR, Chen et al. [9] consider the Multi-Rule Partial Sequenced
Route (MRPSR) query where only partial ordered categories are specified. [10]
solves the optimal route query from the source and passes through a user-defined
set of categories, supporting partial order restrictions between some specific cat-
egories of the set.

[11] proposes the Multi-Approximate-Keyword Routing (MAKR) query,
which defines not only the source and destination, but also a set of (keyword,
threshold) pairs to find the shortest path that passes through at least one match-
ing object per keyword with the matching degree higher than the corresponding
threshold. Keyword-aware Optimal Route (KOR) query [12,13] gives approxi-
mate solutions to find a path from the source to the destination, covering a set
of user-specified keywords, satisfying the travel budget and optimizing the route
popularity. However, MAKR and KOR don’t take keyword sequences into con-
sideration, and adding keyword matching degree, path popularity, etc. is only
suitable for specific scenarios that contain these information.

Also using the regular expression to define constrained route problems, main
concerns of the formal-language-constrained shortest path problem [14] are edges
where labels of edges on the route should satisfy the regular expression.

To the best of our knowledge, existing works mainly focus on constraints
of location categories, while some do not allow the sequence constraints, some
just give approximate solutions, some take additional consideration into factors
such as the route popularity which only applies to specific scenarios, none of
them solve the alternative and avoidance constraints. For more general con-
strained route planning problems, this paper takes a comprehensive considera-
tion of sequence, alternative and avoidance constraints as well as gives the exact
solution.
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3 Preliminary

Definition 1 (Graph). A directed weighted graph G(V,E) consists of a set of
nodes V and a set of edges E. v ∈ V represents a location with a category v.c.
e = (vi, vj) denotes a directed edge from vi ∈ V to vj ∈ V with an nonnegative
weight w(e). We define G as a general graph, it can be a road network where V
is the set of POIs and E is the set of shortest paths between POIs.

Definition 2 (Constrained Route Query). The constrained route query,
denoted as q, is a regular expression that makes up of five kinds of elements: the
source s, the destination t, a set of locations in V , a set of location categories in
V and six operators ·, |, ∧, ∗, +, ( ) (see Table 1.).

Table 1. Operators in the Constrained Route Query

Operator Meaning

Join · (can be omitted) Indicates concatenation between locations or categories.

Alternative | Separates alternative locations or categories.

Non-operator ∧ Connects avoidance locations or categories.

Kleene closure ∗ Indicates zero or more occurrences of locations or categories.

Positive closure + Indicates at least one occurrences of locations or categories.

Brackets ( ) Defines the range of operators.

Generated by the combination of above elements, q can cover almost all
kinds of route planning requirements constrained by locations. Thus the con-
strained route query of Tom can be represented as q = work · Restaurant ·
(Cinema|Bar) · (∧mall) · home, where work, home and mall are specific loca-
tions while Restaurant, Cinema and Bar are categories. Since a location can
be regarded as a single category, locations can be solved by transferring them
into categories. So following sections only discuss the processing of categories.

However, closure operators ∗ and + can be simplified: (1) a certain category
appearing zero or more times has no influence on route planning results and
can be removed from q; (2) passing a certain category one or more times can
be simplified as once according to properties of the shortest path. Therefore, we
mainly focus on other four operators.

In traditional regular expression theory, a string (can be seen as a route of
characters) is accorded with a regular expression only if they have a complete
matching. For example, only ‘ACFI’ and ‘ACGI’ are satisfied for AC(F |G)I, one
more or one less character are all unacceptable. But in CRPP, q only contains
categories that users care about, also it is insignificant to define all passed cate-
gories in q. It is a key issue when applying the regular expression to the CRPP
and the solution will be stated in 4.2.

Definition 3 (Constrained Route Planning Problem). Given a directed
weighted graph G(V,E) and a constrained route query q, constrained route plan-
ning problem based on the regular expression CRPP(G, q) intends to find the
shortest path that satisfies q in G.
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So the CRPP of Tom is: to find the shortest path that satisfies q = work ·
Restaurant · (Cinema|Bar) · (∧mall) · home in the graph illustrated in Fig. 1.
Actually, his ideal result is A → D → C → G → H → I with the length of 12.5.

4 Solutions

4.1 The Framework

In order to solve the CRPP, a general processing framework is proposed by
taking the shortest path algorithm as the main line while the constrained route
planning query assists in filtering routes which don’t meet location constraints.

First of all, q is parsed to a Deterministic Finite Automaton
(DFA) represented by the transition table T , which is recorded as
(state, location/category) → nextstate. See an example in Figs. 2 and 3 for
q of Tom. Particularly, different from traditional regular expression that ∧ only
constrains the next character of a string, in CRPP one can’t pass operand cat-
egories of ∧ until arriving at the next constrained categories in q. For example,
Tom wants to avoid passing mall along his way from Cinema or Bar until get-
ting home. Above definition of avoidance constraints needs a special processing:
first the non-operator and its operands are stored together as a transition con-
dition, for example, (state4,∧ mall) → state6; then add into T a new transition
from the added transfer result state to itself with the non-condition, for exam-
ple, (state6,∧ mall) → state6 (showed in dashed boxes in Figs. 2 and 3). Now
there are two transitions of state6 whose conditions have a overlap that home is
satisfied both for home and ∧mall. In order to get the shortest qualified route
as soon as possible, that is, to forward the route as much as possible, we give
a lower priority to the non-condition so that every time facing transitions like
(state6, home), it will first move to state7, thus keep the determinacy of DFA. As
a result, we can check the qualification of a route through T : a route is qualified
if and only if the start state can be led to an accepting state in the order of
nodes of this route.

 (6, home) -> 7

 (6, ^mall) -> 6

 (1, work) -> 2

 (2, Restaurant ) -> 3

 (5, ^mall) -> 6

 (3, Bar) -> 5

 (4, ^mall) -> 6

 (3, Cinema) -> 4

Fig. 2. The state transition table.

1 72 3

4

5

work Restaurant

Cinema

Bar

^mall
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6

^mall ^mall

Fig. 3. The state transition diagram.

In this paper, we use two classical shortest path algorithm - Dijkstra’s algo-
rithm and A* search algorithm to show the implementation of our framework.
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Because Dijkstra’s algorithm is the basis of many shortest path algorithms and
can be easily extended to them, while A* search algorithm is one of the most
popular and effective target-directed methods by using a heuristic estimation.

4.2 The Dijkstra-Based CRPP Algorithm

Instead of the original Dijkstra’s algorithm [15], we use a variant of it because its
result is sure the shortest route but may be unqualified for location constraints.
When updating the distance from s to v, we keep all partial routes not merely
the shortest one, so that all possible qualified routes are taken into consideration.
Particularly, a route will be discarded if some nodes on it are avoidance locations
or belong to avoidance categories for the current state in T .

As stated in Definition 2, traditional regular expressions are limited in CRPP
for they are a complete matching. To solve this, we define an arbitrary state arb
to represent states not in T , nowstate and paststate to indicate the current
state and its last non-arbitrary state, respectively. If a node satisfies transition
conditions, it will be transferred directly; otherwise, since its subsequent nodes
are likely to meet transition conditions, we mark its nowstate as arb and expand
it according to paststate. A local priority queue LQv is used to store candidate
routes from s to v, denoted as rt(path, dist, nowstate, paststate) where path is
the shortest path while dist is its length. Routes in LQv are sorted by rt.dist in
an ascending order. Then a global priority queue GQ is used to preserve nodes
during processing ordered incrementally by the minimal rt.dist in their LQs.

Algorithm 1. CRPP(G, T )
Input: graph G, transition table T
Output: the shortest path in G satisfied q and its length

1 Get the startState and endState in T ;
2 Create rts(rts.path.add(s), 0, T (startState, s), startState);
3 LQs.enqueue(rts); GQ.enqueue(s);
4 while GQ is not empty do
5 ndi ← GQ.dequeue(); rti ← LQndi

.dequeue();

6 if rti.nowstate=endState then
7 return rti;

8 else
9 if LQndi

is not empty then
10 GQ.enqueue(ndi);

11 GetLinks(G, T,GQ, ndi, rti);

However, above process will produce a lot of redundant routes, which surely
cannot be the shortest qualified route. It is a waste of memory and computation
resources to consider redundant routes, more importantly, they may be expanded
in later steps, which will result in continuous unnecessary calculations. Based on
above observations, we design two pruning rules to filter redundant routes.
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Pruning Rules. When considering two candidate routes rti and rtj of v:

(1) if rti.nowstate = rtj .nowstate �= arb, the longer route should be pruned;
(2) if rti.nowstate = rtj .nowstate = arb and rti.paststate = rtj .paststate, the

longer route should be pruned.

Proof. Suppose rti.dist < rtj .dist, the shortest qualified path from s to t is
rtj .path+p(v, t) where p(v, t) is the path from v to t (+ means to concatenate two
routes). That is, endState can be reached from rtj .nowstate (if rtj .nowstate �=
arb) or rtj .paststate (if rtj .paststate = arb) through p(v, t). As rti and rtj share
the same state (nowstate if nowstate �= arb, otherwise paststate), rti can reach
endState through p(v, t) too. Because rti.dist < rtj .dist, then rti.path+p(v, t) <
rtj .path + p(v, t), which is a contradiction. If rti.path + p(v, t) is not qualified,
neither can rtj .path+ p(v, t). So rti is always better than rtj and we can safely
discard rtj without changing the correctness of algorithms. ��

Algorithm 1 shows the details of Dijkstra-based CRPP (G,T ) algorithm.
It starts expanding nodes from s, then continuously takes the shortest path
until its nowstate reaches endState. If GQ is empty, there is no qualified
result at all. Otherwise the route will be expanded by invoking Algorithm 2
Getlinks(G,T,GQ, ndi, rti) and during expanding, attributes of expanded routes
will be set using aforementioned transition rules. Before adding to the priority
queue, pruning rules are employed to check if it is a redundant route.

Algorithm 2. GetLinks(G,T,GQ, ndi, rti)
Input: graph G, transition table T , global priority queue GQ, current node

ndi, the optimal candidate route to be extended rti
1 foreach directly linked node u of ndi in G do
2 Create rtk(rti.path.add(u), rti.dist + w(ndi, u), nowstate, paststate);
3 if u isn’t in GQ then
4 LQu.enqueue(rtk); GQ.enqueue(u);

5 else if there exists a rtj in LQu s.t. rtj .nowstate = rtk.nowstate then
6 Pruning rules are used to decide which one should be held in LQu;

7 else
8 LQu.enqueue(rtk);

Since above algorithm is equivalent to continually find the next shortest path
from s to t and check whether it is qualified for constraints, its validity is obvious.
Also, the use of pruning rules only reduces the search space and improves the
efficiency of the algorithm without deteriorating the correctness, so the validity
of Dijkstra-based CRPP algorithm is proved.
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4.3 The A* Search-Based CRPP Algorithm

In essence, A* search algorithm [16] works like Dijkstra’s except that at each step
it expands a node v with the minimal evaluation length f̂(v) = g(v)+ĥ(v), where
g(v) is the actual shortest length of the route from s to v and ĥ(v) represents
the estimated length from v to t. Hence, the process of A* search-based CRPP
algorithm is nearly the same as Dijkstra-based only to add a new attribute esdist
representing f̂(v), and redefine the priority of LQ as an ascending order of esdist.
Intuitively, the correctness of A* search-based CRPP algorithm is proved.

5 Experimental Evaluation

5.1 Experimental Settings

All algorithms are written in Java and run on an Intel Core i5-4460 3.20 GHz
CPU PC with 16 GB memory and a Windows platform.

Datasets. We use a real road network of California [4] with 68,345 nodes of
64 different categories and 137,980 edges. In order to investigate the impact of
different graph sizes and graph structures on our solutions, we randomly choose a
proportion of nodes and their relevant edges from the original graph to generate
different sizes of subgraphs. The ratio of selected nodes is represented as the
parameter num.

Queries. In order to ensure the generality of q, we set the normalized form of q as
s(c1|c2|...|ck)1()2...()j(∧(c1|c2|...|cl))t. Assuming that each query has j categories
that need to be connected sequentially, k choices for each of these categories,
and after the current route there are l categories that cannot be passed (j, k,
and l are all positive integers), generally, all constrained route queries can be
expressed as this normalized form. So for each experiment, we generate 100 basic
query instances with randomly chosen s, t and categories.

Parameter settings of the experiment are presented in Table 2.

Table 2. Parameter settings

Parameter Range Default value

num 25%, 50%, 75%, 100% 50%

j 1, 2, 3 2

k 1, 2, 3 2

l 0, 1, 2 0

5.2 Performance

We mainly focus on the response time and the number of expanded nodes which
indicate the processing efficiency and the size of the search space, respectively.
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In particular, we observe the number of nodes which are reduced to be extended
by non-operators. To the best of our knowledge, there’s no previous works that
solve the same constrained route planning problem as ours, so we only compare
Dijkstra-based CRPP algorithm and A* search-based CRPP algorithm, focusing
on their performance differences. Note that below ‘D-CRPP’ and ‘A-CRPP’ both
represent algorithms with pruning rules.

Effect of the Graph. We study the influence of G’s scale and structure on our
algorithms by varying num. Figures 4(a) and 5(a) show that the more number
of nodes in a graph, the more search space and processing time the algorithm
needs. It is because the average number of nodes of the shortest path in large
graphs is often more than that in small graphs.

Effect of the Constrained Route Query. Figures 4(b) and 5(b) plot the
performance when varying j. It can be seen that with the increase of j, the algo-
rithm performance has a decline, that is because the more sequenced categories
in q, the more calculations algorithm needs to check constraints.

In Figs. 4(c) and 5(c), the performance of algorithms falls with the increase
of k. The reason is that when k = 1, there is a fixed category should be passed
so it’s equivalent to narrow search scope for algorithms; then when k increases,
algorithms can only choose one among categories separated by |, which will
accelerate the processing. Consider an extreme case that all categories in G are
added as an alternative in each bracket of q, that is, k = 64, then every possible
route is qualified.

Another important concern is l. See Fig. 6, with no surprise, more nodes
are reduced to be extended because more candidate routes are excluded when l
increases. It is interesting to note that there is a performance difference between
D-CRPP and A-CRPP. With the increase of l, D-CRPP needs less processing
time as well as less expanded nodes while A-CRPP needs more. This is because
Dijkstra’s algorithm only expands routes with the minimum length based on the
current route, but A* search algorithm takes future conditions into account to
expand routes with the shortest evaluation length from s to t. While we assume
that the avoidance constraints appear at the end of the normalized form of q,
many unqualified routes are used to estimate the shortest route in A*. And if a
node on an expanded route belongs to the avoidance categories, this route will
be discarded instead of transferred to an indeterminate state, that’s why this
phenomenon only appears when varying l rather than other parameters.

Effect of Pruning Rules. Assume the response time more than 3 min is unac-
ceptable, in the process of experiment, we find that unacceptable query rates
of both Dijkstra-based and A* search-based CRPP algorithms without pruning
rules are nearly 100%, which indicates the good efficiency of pruning rules.

Comparison of Dijkstra-Based and A*-Search Based Algorithms. As
shown in above diagrams, clearly A-CRPP outperforms D-CRPP in all cases.
For the same kind of query, the performance of A-CRPP can be one order of
magnitude better than D-CRPP. Also, as the size of G or constraints in q varies,
the performance change of D-CRPP is faster than A-CRPP. However, since the
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Fig. 4. Average response time when varying num, j, k.
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Fig. 5. Average number of expanded nodes when varying num, j, k.
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Fig. 6. Performance when varying l.

estimated length in A* search may base on routes which are in conflict with
avoidance constraints, A-CRPP tends to get lower performance while D-CRPP
gets better when avoidance constraints increase.

6 Conclusion

This paper investigates the constrained route planning problem, which is first
formalized by defining the constrained route query as the regular expression,
then gives a general framework for exact solutions. Subsequently, a Dijkstra-
based CRPP algorithm and an A* search-based CRPP algorithm are proposed
while utilizes pruning rules to prune redundant routes. Finally, we demonstrate
the efficiency of our approaches through an extensive experimental evaluation.
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