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Abstract. The non-line-of-sight (NLOS) error is a major error source in
wireless localization. Therefore, an improved constrained least-squares (CLS)
algorithm is put forward to tackle this issue, where the positioning problem is
formulated as a mathematical programming problem. And then, the cost func-
tion of the optimization is studied and a new one is proposed. Finally, through
the presented optimization, we try to minimize the positioning influence of
NLOS errors. Moreover, the studied method does not depend on a particular
distribution of the NLOS error. Simulation results show that the positioning
accuracy is significantly improved over traditional CLS algorithms, even under
highly NLOS conditions.
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1 Introduction

With the rapid developments of mobile Internet, smart city and intelligent home, the
wireless positioning technology had been an unprecedented strong concern. The
wireless positioning systems in cellular networks usually located a mobile station
(MS) by measuring radio signals between the MS and base stations (BS), which was
specifically necessary for the safety-aided positioning system. Generally, the local-
ization methods might concern the received signal strength (RSS) [1], time of arrival
(TOA), time difference of arrival (TDOA), angle of arrival (AOA), or hybrid of them
[2, 3]. Since the TOA method is most popular and simple [4], we focus on this kind of
method in our study.

If a line of sight (LOS) propagation exists between the MS and BSs, a high
localization accuracy can be achieved [5]. However, the wireless network (including
the cellular network) propagation may be affected by a lot of obstacles so as to cause
the signal refraction and scattering in the event of obstacles, i.e., the non-line-of-sight
(NLOS) propagation. There had been some literatures on how to mitigate NLOS errors,
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such as the two-step maximum-likelihood (ML) algorithm [6], which produced high
accuracy when the NLOS error is not significant [7, 8]. Besides, a robust NLOS error
mitigation method via second-order cone relaxation was studied in [9], where the worst
NLOS error model was chosen as the Gaussian distributions. In general, the algorithms
mitigating NLOS errors could be divided into two classes. The first one was to identify
BS with LOS or NLOS propagation, and then exploited only the LOS BS to estimate
the MS position [10]. However, this kind of algorithm usually required three more LOS
BSs. The second kind of algorithm was to employ the optimization theory to find the
optimal solution of MS position, as those done in [9, 11], where the performance
improvements was limited if the NLOS distribution was unknown [12].

In order to tackle above issues, we propose an improved constraint least-squares
(CLS) algorithm, where the geometric relations between MS and BS are employed as
the constraints and a new cost function is presented as well. The whole localization
problem is formulated as an optimization problem. Besides, a grouping operation is
proposed to further improve the localization performance. Thus our contributions lie on
two aspects, i.e., the new CLS model and the grouping improvement. The simulation
results show that the proposed algorithm is superior to the traditional methods.

2 Basic Model

2.1 NLOS Measurement Model

The TOA method measures the range between each BS and the MS which is to be
located. By incorporating the influences of NLOS propagation, we define the ranging
measurement as

ri ¼ di þNLOSi þ ni; i ¼ 1; 2; 3. . .;M ð1Þ

where M, NLOSi and ni represent the BS number, the NLOS error and the measurement
noise, respectively. (here the measured noise value is much smaller than the NLOS
error) Note that the noise is modeled as a zero-mean Gaussian process with standard
deviation r. In (1), we have

di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þðy� yiÞ2

q
; i ¼ 1; 2; 3. . .M ð2Þ

where ðxi; yiÞ and ðx; yÞ denote the coordinate of i-th BS and the targeted MS.

2.2 The Constrained Least Squares Algorithm

In order to mitigate the influence of NLOS error, the traditional algorithm based on the
optimization theory try to find an optimal solution within the feasible range (FR), i.e.,

minimize functionðXÞ
subject to constraints

ð3Þ
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where functionðXÞ represents the cost function. Generally, different cost functions lead
to different positioning accuracy.

If it is in the LOS environment, we have

ri ¼ di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þðy� yiÞ2

q
ð4Þ

It is equivalent to

r2i � Ki ¼ �2xix� 2yiyþ x2 þ y2 ð5Þ

where Ki ¼ x2i þ y2i .
Taking into account of NLOS environment, we have

di ¼ airi ð6Þ

Where ai � 1. Hence, the following expression can be derived as

r2i � Ki � � 2xix� 2yiyþ x2 þ y2 ð7Þ

It’s matrix form can be written as

h�Gz

where

h ¼
r21 � K1

r22 � K2

..

.

r2M � KM

2
6664

3
7775;G ¼

�2x1;�2y1; 1
�2x2;�2y2; 1

..

.

�2xM ;�2yM ; 1

2
6664

3
7775; z ¼

x

y

R

2
64

3
75 ð8Þ

where R ¼ x2 þ y2 in theory. But this equation will be broken in real-world applications
due to the influence of NLOS error and measurement noise. Accordingly, next section
we will propose a new cost function in the CLS localization.

In traditional CLS algorithm [14], the localization problem was expressed as:

min
z

ðh�GzÞTW�1ðh�GzÞ
subject to

Gz� h
ð9Þ

Where W ¼ E½wwT � ¼ 4c2BQB; B ¼ diagðd1; . . .; dMÞ

Q ¼ diagðr21; . . .; r2MÞ:
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Here Q represents the measurement error variance. As we know, in reality the
entries in the diagonal of B are unknown. Therefore, we can use measured values
instead of the true values for estimating, then using this initial solution and afterwards
get a further accurate result iterationly until it reaches convergence.

3 Improved Constrained Least-Squares Algorithm

3.1 The New Cost Function in CLS Mode

As indicated previously, if the cost function of (9) is changed, the resulted new opti-
mization problem will produce different positioning accuracy. Moreover, we have
mentioned that R equals x2 þ y2 in theory, but the non-ideal factors, such as NLOS
error and measurement noise, make the equation be broken. Besides, the higher extent
of non-ideal factor lead to the larger deviation. Hence, our study takes into consider-
ation a novel cost function as:

function ¼ zTpzþ qz ð10Þ

where

p ¼
1 0 0
0 1 0
0 0 0

2
4

3
5; q ¼ 0 0 �1½ �; z ¼ ðx; y;RÞT ð11Þ

Here z is a vector containing unknowns, then the improved CLS algorithm can be
rewritten as:

min
z

zTpzþ qz

subject to
Gz� h

ð12Þ

Figure 1 presents a preliminary performance for (12), where the standard deviation
of measurement noise is 20 m and the NLOS error is uniformly distributed in 0–300 m.
We can compare the positioning accuracy of the constrained least squares algorithm
under two different objective functions. After simulation comparison, we clearly see
that the performance of model (12) outperforms that of model (9). For example, when
the cumulative distributed probability is 0.9, the localization error of model (12) is
about 180 m, while it is 240 m for model (9).

Figure 2 further compares the performance of two CLS methods. However, we find
different observations from those of Fig. 1. From Fig. 2, we explicitly see that these
two methods produce nearly the same performance, which means that the proposed
new cost function is not suitable for three more BSs.
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3.2 The Grouping Improvement

According to the above analysis and observation, we must release the limitation of BS
number for model (12). A simple grouping method can be applied here, i.e.,

(1) Participating the BSs into N three-BS groups. In our study, N ¼ C3
5.

(2) Estimating MS positions for every BS groups through the linear line of position
(LLOP) algorithm [14].

(3) Calculating the cost function (10) for each BS group.
(4) Sorting the cost function values.
(5) Choosing five BS groups with least costs. Since each BS group produces a MS

position estimation, there are five MS estimates:

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

localization error(m)

pr
ob

ab
ili

ty

original CLS
new CLS

Fig. 1. Comparisons of two CLS methods: three BSs
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Fig. 2. Comparisons of two CLS methods: four BSs
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MS1 : ðx̂1; ŷ1Þ;
MS2 : ðx̂2; ŷ2Þ;
MS3 : ðx̂3; ŷ3Þ;
MS4 : ðx̂4; ŷ4Þ;
MS5 : ðx̂5; ŷ5Þ;

ð13Þ

(6) Averaging all MS estimates to obtain the final MS estimation, i.e.,

bx ¼ bx1 þbx2 þbx3 þbx4 þbx5
5

by ¼ by1 þby2 þby3 þby4 þby5
5

ð14Þ

4 Simulation and Analysis

In the simulations, we concern the classical five BS topology [11]. Moreover, we divide
this topology into two cases to study effects of BS number:

• Case 1: three BSs at

ð0; 0Þ; ð1=2 � r;
ffiffiffi
3

p
=2 � rÞ; ðr; 0Þ

• Case 2: five BSs at

ð0; 0Þ; ð1=2 � r; ffiffiffi
3

p
=2 � rÞ; ðr; 0Þ;

ð�r; 0Þ; ð�1=2 � r; ffiffiffi
3

p
=2 � rÞ

where r denotes the cell diameter, and it is 1000 meters in our simulations. Note
that the topology of case 1 is the same as that applied for Figs. 1 and 2. Moreover, the
standard deviation of measured noise leads to r ¼ 20m, and the NLOS error is
modeled as a random variable uniformly distributed in 150– 450 m. We must point out
that the NLOS scenario employed here is much worse than that in Fig. 1. Besides, the
MS position is randomly produced in the area enclosed by the base stations.

There are four algorithms are compared, such as the TOA least squares (TOA LS)
algorithm, the TOA CLS algorithm, the range scaling algorithm (RSA) [15] and the
proposed algorithm. The simulation results are shown as follows, where each simu-
lation includes two hundred runs.

We can see from Fig. 3 that the proposed method has more than 90% probability
that the positioning error is less than 300 m, which has higher accuracy than the
original CLS method, and produces similar performance of the RSA method. However,
since the NLOS error is obviously enlarged, the CDF of Fig. 3 is much worse than that
in Fig. 1. Hence, we need more BSs to combat the serious NLOS corruption.
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Figure 4 shows the CDF performance at five-BS topology. From it, we explicitly
see that the increase of BS number significantly improve the proposed algorithm, while
the RSA method remains nearly invariable CDF. We can concluded from Fig. 1 plus
Fig. 4 that the increase of BS number can make the proposed algorithm be workable
with more NLOS corruptions.

Next we will address the influence of the maximal NLOS error in case 2, where we
denote the maximal NLOS error as the variable MAX. Then MAX takes value from
200–500, and the standard deviation of measured noise remains 20 m.
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Fig. 3. Probability performance comparisons: three BSs
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Fig. 4. Probability performance comparisons: five BSs
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Figure 5 compares the root-mean-square-error (RMSE) of different methods, where
the proposed method performs the best among all methods. Moreover, the results
demonstrate that the CLS method is better than the RSA method for a smaller MAX.

5 Conclusion and Discussion

This paper proposes an improved CLS method to estimate the MS position in the
wireless network, where the cost function is modified compared with the conventional
CLS method. Moreover, a grouping method is proposed to further improve the CLS
method.

Through the analysis and comparison of the above simulation results, we can see
the proposed method’s positioning accuracy outperforms the other three methods,
especially for the scenarios with serious NLOS corruptions and large BS numbers.
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