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Abstract. This paper presents a novel approach enabling communic-
ation-efficient decentralized data analytics in sensor networks. The pro-
posed method aims to solve the decentralized consensus problem in a
network such that all the nodes try to estimate the parameters of the
global model and they should reach an agreement on the value of the
model eventually. Our algorithm leverages broadcasting communication
and is performed in a asynchronous manner in the sense that each node
can update its estimate independent of others. All the nodes in the net-
work can run the same algorithm in parallel and no synchronization is
required. Numerical experiments demonstrate that the proposed algo-
rithm outperforms the benchmark, and it is a promising approach for
big data analytics in sensor networks.
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1 Introduction

In the era of big data, the goal of transforming big data into actionable insights
brings opportunities and also challenges into the community. High volume of
data is generated from all over the world everyday. At the same time, data is
coming in at a much higher speed, often close to real-time. Thus, there is a huge
demand for efficient fast data analyzing approaches. In addition, to analyze big
data, big model is always equipped in order to empower deep insights extraction.
It is known that many big data analytics problems boil down to: How to apply
advanced data analytics programs to large-scale problems with Big Data and Big
Model. Essentially, convex optimization is at the core of solving many of these
models. Convex optimization has applications in a wide range of disciplines, such
as smart grid [1-3], seismic imaging [4,5], and sensor networks [6,7]. Recently,
distributed optimization attracts a lot of attention in the optimization and com-
puting society. It has shown potential to be a promising approach for designing
scalable big data analytics solution. In general, distributed optimization can be
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categorized into synchronous optimization and asynchronous optimization. In
synchronous optimization, each node needs to wait for its slowest neighbor’s
information in order to proceed. On the contrary, asynchronous optimization
can avoid this issues allowing each node to perform its decision independently
and locally. Distributed optimization methods for asynchronous models have
been designed in [8-10]. In [8,9], the alternating direction method of multipliers
(admm) based algorithms have been proposed. Regarding their communication
scheme, every node needs to wake up one of its neighbors randomly to exchange
information in each iteration. However, the two works are based on unicast,
which is much less preferable than broadcast communication, especially in real-
world wireless sensor network scenario. Tsitsiklis [10] proposed an asynchronous
model for distributed optimization, while in its model each node maintains a
partial vector of the global variable. It is different from our goal of decentral-
ized consensus such that each node contains an estimate of the global common
interest. The first broadcast-based asynchronous distributed/decentralized con-
sensus method was proposed in [11]. However, the algorithm is designed only
for consensus average problem without “real objective function”. Nedic [12] first
filled this gap by considering general decentralized convex optimization under the
asynchronous broadcast setting. It adopted the asynchronous broadcast model
in [11] and developed a (sub)gradient-based update rule for its computation. By
replacing (sub)gradient computation with full local optimization, an improved
algorithm has been designed in terms of the number of communication rounds
[13]. In this presenting work, we propose a novel method combing neighbors’
(sub)gradient information in order to further speed up the algorithms in [13].

2 Problem Formulation

The formulation of the problem investigated in this paper can be described as
follows. Consider an undirected connected network G = (V, £) where V denotes
the node set and £ is the edge set. The size of network is m = |V| (cardinality
of the set V) and two nodes 7, j are called neighbors if (i,7) € £. Assume an
objective F; : R™ — R is only available to each node (sensor or agent) . It is the
data and acquisition process at node i. The goal is to find the global consensus
solution z € X to minimize the optimization problem as follows.

min {F(m) = ZFi(x)} . (1)

i=1

Solving (1) in (wireless) sensor networks is nontrivial. First, data is gener-
ated in a distributed manner and it would be very costly and even infeasible to
transmit all the data into a central place for post-processing due to bandwidth
and energy constraints. Each node is able to access its local data only. Second,
each node needs to exchange information with other nodes in order to obtain
the optimal solution for the whole model. However, each node is assumed to
communicate with its immediate neighbors only since multi-hop communication
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in the presenting application is very expensive and undesriable. In this work,
we adopt broadcasting in our communication scheme. Third, the key challenge
solving (1) in the network is the potential high communication cost because
each node has only partial knowledge of the whole network. Hence, designing
a communication-efficient algorithm would make decentralized data analytics in
sensor networks feasible.

Notation. Let € R™ be a column vector in problem (1), and z* € R™ be the
local copy held privately by node i for every i € V. Without further remark,
vectors are all column vectors. Subscript k is outer iteration number, which is
also the number of communication.

Problem Setup. Each sensor node is assumed to have its local clock that
ticks at a user-customized Poisson rate for unit time, which is independent of
the clocks of the other nodes. Each node broadcasts its current estimate to
its neighbors at each tick of its local clock. During broadcasting, each sensor
receives neighbors’ information subject to link failures. For example, when node
i broadcasts, its neighbor j will receive i’s iterate with probability p;;. It is
equivalent to consider a virtual global clock existing in the network for the
algorithm analysis. Since the Poisson clock of each node (suppose rate=1) is
independent of each other, it is same as a global clock with Poisson rate m. We
can then analyze the problem given that in each global iteration only one node
broadcasts its value. There are several additional assumptions adopted in this
paper as follows.

Assumption 1. The gradient of function F; is bounded such that |VF;|| < G,
where G > 0 is some positive number.

Assumption 2. The solution set of (1) is nonempty. The private local objective
function F;, ¢ € V is (sub)differentiable and convez.

Assumption 3. The constraint set X is bounded.

Assumption 4. 77 o <00, 337 k%i’“k < oo almost surely.

3 Proposed Algorithm

3.1 Local Full Minimization + Neighbor’s (sub)gradient
The main computation steps in this proposed algorithm are:

Y =02+ (1= 0) 2}y,

i s 1 i2 = w T i (2)
oh = Px |argmin § ———[lo =y} | + Fi(@) +pi | > VFulek, )T (=) | |-

ik ueEN;

The algorithm can be summarized as follows.
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Algorithm 1. Decentralized Cooperative Data Analytics (DCDA)
Algorithm

Input: Starting point zg, 22, - - , .
while each node i, i € {1,2,--- ,m} asynchronously do

if node i ’s local clock ticks now then
Node i, broadcasts its estimate z}* ; and (sub)gradient VF;(z}* ;) to
its neighbors; Node ¢ who receives node i’s broadcast updates its
solution x}, based on (2).
end
end

Remark 1. In (2), neighbor’s (sub)gradients <Zu€M @Fu(xﬂu_k)T (z — y}c)) are
incorporated in the update. Node ¢ then computes its next iterate by performing
local minimization over all the terms in second equation of (2).

Theorem 1. Let {m}c} Vi € V. k >0 be the sequence generated by DCDA Algo-
rithm and given that all the assumptions are satisfied. Then we can have:

oo
1, . .
g EHQ%A — ZTp—1]| < oo, and klim |z}, — k|| = 0 almost surely.
— 00
k=1

Theorem 2. Let {xfﬂ} ,Vi € V) k > 0 be the sequences generated by DCDA
Algorithm and given that all the assumptions are satisfied. Then the sequences
converges to a same optimal point almost surely for any node 1.

Remark 2. Theorem 1 implicates that all the nodes in the network will reach
a consensus on the solution of the global model defined in (1). In addition,
Theorem 2 indicates that the consensus solution is optimal. The attack plan
for the proof is similar to the counterpart in [13]. The difference between our
proposed algorithm and the local optimization based one in [13] is the extra item

from neighbor’s (sub)gradients (ZuENi VF, (2% )7 (v - y}c)) The main task

Tu,k
is to bound this extra item and then we can use the proof framework in [13] to
verify Theorems1 and 2. We leave the details of the proof to the longer report
due to page limit of this conference.

4 Interpretation of the Proposed Algorithms

4.1 Algorithm Interpretation

In this section, we will interpret and show the rationale of proposing DCDA
algorithm. Now assume every node 7 in the network can access all the local
objective functions Fj,i € {1,2,--- ,m}. The optimal strategy for every node i
to obtain the solution then becomes as follows.
m
xi:argminZFj (x),Vie{1,2,--- ,m}. (3)
x

j=1
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That is, each node can directly try to minimize the summation of all the local
objective functions as a “centralized” machine does (assuming all the data is
available in this centralized node). To solve (3), we can evaluate a proximal
operator as follows [14].

) 1
z' = prox,p (v) = argmin{2a|x—v|2 —|—F(a:)} Vie{1,2,---,m}, (4

with certain constant v (independent of decision variable z) and parameter a >
0. Note that each node i can obtain the optimal solution by evaluating (4),
and more importantly there is no communication needed between nodes since
F (z) contains all the information in the network. However, this is under an ideal
scenario (every node ¢ has the knowledge of all the local functions Fj) which will
not be valid in our setting of decentralized sensor networks. Considering that F;
is only available to node 7 locally (according to our assumption in this paper), if
we replace the term F (z) in (4) with F; and let v = y%, and o = «}, the update
rule for node 7 in [13] is then derived as follows.

Y. =0+ (1—0)z}_,,
1 (5)

Q4 k

o= prox,,m (5) = avgmin { oo <P + Fio) |
x

Further linearizing F; (z) in (5) yields Nedic’s algorithm as follows [12].

yi = 0z + (1= 0) )y,

i : 1 i = i

}, = argmin { 5o e = yill* + <VFz' (vr) $>} (6)
T Ak

=yp — i VE (y1,) -

The deduction of the last step in (6) is based on the optimality condition
described as follows.

1 ‘ ‘ . ,
(z}, —yi) + VF; (y;,) = 0.

QG k

The first step in (5) and (6) takes the weighted average of node 4’s solution
and neighbor i;’s solution which is the most recent broadcast received. This
averaging step aims to mix the neighbor’s information and enforce consensus
of solutions among all the nodes in the network. Next, the proximal step in
(5) forces the new solution x to be close to y! (the weighted average) and opti-
mizes the local objective function F; simultaneously. Parameter «;  controls the
trade-off between the aforementioned two objectives. To speed up the process of
decentralized consensus optimization, we are motivated to propose algorithms
by adding the following item into the proximal steps in (5).

S VR )T (2 3h) (7)

uENi
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The term in (7) contains node 4’s neighbors’ (sub)gradient information
and it can be seen that (7) is a linear approximation to - Fu. Compar-
ing (2) with (5) we can see that in (2) node ¢ is (approximately) optimizing
Fi (%) + >, en, Fu (z) while (5) is optimizing local objective function F; (z)
only. Hence, (2) is a better approximation to the ideal case in (4). In order to
execute the computations in (2), node i, needs to broadcast its estimate z}* |

and (sub)gradient VF;(xi ) to its neighbors.

1 2
Ly, P12 L Iteration k 12 3 4 s 6
VAQE) V fa R i
1 | Node 1 ; | i i | i
P13 1 P24 Node 2 T ]
; : Node 3 i | i
@ @t e
34
st Vf4 Time

Fig. 1. Network model and asynchronous computing. Left: An example of decentralized
sensor network. Right: Asynchronous computing model.

4.2 An Example of Executing the Proposed Algorithm

We assume the algorithms are performed in a decentralized sensor network illus-
trated in Fig. 1. There are four nodes in this cyclic network and it is clear to see
that A7 = {2,3}, No = {1,4}, N3 = {1,4}, Ny = {2,3}. The algorithms run as
follows.

Tteration 1: Node 2’s clock ticks and it broadcasts 23 and Vfa (23). Node 1

and 4 receive the broadcast and use 2 and V fa (23) to update z1 and x}
based on (2), respectively. Set 2% « 22, 23 «— .

Tteration 2: Node 1’s clock ticks and it broadcasts =} and Vf; (z1). Node 2
and 3 receive the broadcast and use z1 and Vf; (z1) to update 23 and 3
based on (2), respectively. Set 3 «— z1, z3 « z7.

Iteration 3: Node 4’s clock ticks and it broadcasts 3 and V /4 (m%) Node 2
and 3 receive the broadcast and use z3 and vV (m%) + Vs (:v%) to update
22 and 3 based on (2), respectively. Set x3 «— 2, 25 «— x3.

Tteration 4: Node 3’s clock ticks and it broadcasts z3 and V fs (z3). Node 1

and 4 receive the broadcast and use z3 and V f, (z3) + Vs (23) to update
x} and z7 based on (2), respectively. Set 73 «— z3, 23 «— z3.

It can be seen that after four iterations, each node has gathered all its
neighbors’ (sub)gradient information. As the algorithm goes on, the neighbors’
(sub)gradient information will be updated for each node.
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Fig. 2. Comparison of convergence speed. Application in decentralized regularized
least-squares (a—b). Decentralized logistic regression problem (c—d).

5 Numerical Tests

In this section, we test and analyze the performance of the proposed DCDA algo-
rithm. Two types of objective functions are adopted: regularized least-squares
and logistic regression. Sensor networks are generated randomly with certain
average node degrees (with 200 nodes in total). We investigate the performance
of the proposed DCDA algorithm by showing the curve of average objective value
and node consensus versus the number of communication rounds.

In decentralized regularized least-squares, node i’s local objective function is
Fi(z) = ||A;z — b3 + Nil|z[|3, where the regularization parameter ); is set
to 1/200, A; and b; (same dimension for each i) are data points available in
node 7. In this scenario, the size of A; is 800 x 3000 and the dimension of b; is
set accordingly. In decentralized logistic regression, the local objective function

_ \T L \T
(of node @) Fj is set to Fj(z) = 30", <10g {1 + exp ((af) :r)] — b (ai) x)

\T .
where p; = 10, n = 200, (af) represents j-th row of A; and b/ is the j-th entry
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of b;. We generate A; € RPi*™ Vi randomly except the first columns are set to
1. Binary vector b; € R?? is generated randomly.

In Fig. 2, we compare the performance of the proposed DCDA with the decen-
tralized algorithm in [13]. It is clear that DCDA outperforms the benchmark in
both applications, in terms of the speed to reach optimal objective function value
as well as consensus among the nodes in the network.

6 Conclusion

We proposed a broadcast-based asynchronous decentralized optimization mecha-
nism for data analytics in sensor networks. Our mechanism leverages the compu-
tational capability of each node and let all the nodes in the network cooperate to
solve the problem of big data analytics with big model. Our future work includes
evaluation of the proposed algorithm using more realistic measures.
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