
A Dual SIS Epidemic Model for Virus Spread
Analysis in Cluster-Based Wireless

Sensor Networks

Shensheng Tang1(&) and Chenghua Tang2

1 Missouri Western State University, St. Joseph, MO 64506, USA
stang@missouriwestern.edu

2 Guilin University of Electronic Technology, Guilin 541004, China
tch@guet.edu.cn

Abstract. In this paper, we propose a dual SIS epidemic model to study the
dynamics of virus spread for a cluster-based wireless sensor network (WSN).
The dual SIS model consists of two groups of general sensor nodes (SNs) and
cluster heads (CHs) and describes the dynamics of virus spread through the
interactions among the SNs and CHs. We transfer the proposed model to a
nonlinear system of differential equations and perform detailed analysis about
equilibrium points and stability. We develop the system stability conditions (i.e.,
R0 and R1) and draw the conclusions for the proposed system. Under specific
conditions, the epidemic (virus spread) in both groups will either die out with
any number of initial infectives or remain endemic and the number of infectives
in each group will approach a nonzero constant positive level. We provide
numerical results to validate our analysis. The proposed model and analysis is
applicable to different types of networks with multiple groups of users.

Keywords: Wireless sensor network � SIS epidemic model � Susceptible node
Infective node � Equilibrium point � Stability

1 Introduction

Recently, wireless sensor networks (WSNs) have received great attention due to their
wide applications and the advances in micro-electro-mechanical systems (MEMS)
technology. WSNs typically consist of a large number of sensor nodes (SNs) with
limited signal transmission range. Cluster-based WSNs [1] can be managed locally by
cluster heads (CHs). SNs in a cluster collect data and send them to its CH. An SN may
exchange information with its neighbor SNs that are within its signal transmission
range. Each CH manages the SNs in its cluster and relays the collected data to other
CHs or the sink. A CH is located within the signal transmission range of all the sensors
of its cluster and can communicate with its neighbor CHs at farther places. Thus in
some applications, CHs may be more powerful than the SNs in terms of energy,
bandwidth and memory [2] and provide inherent optimization and data aggregation/
fusion.

Sensors are resource-restrained devices with low defense capabilities and become
vulnerable to software attacks such as sensor worm [3] or virus attack. Thus, security is
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of great importance to WSNs. One promising method of analyzing virus spread in
WSNs is to use the epidemiological models due to the similarity between software
virus spread and epidemic disease transmission. In epidemic modeling, the total pop-
ulation is generally divided into three groups: susceptibles S, infectives I, and removed
or immune R. Group S are the individuals that may be infected with a desease. Group
I are the individuals that have been infected and can infect susceptibles. Group R are
the individuals that have recovered from the desease and are immune to further
infection. A model composed of the above three groups is referred to as a susceptible-
infective-recovered (SIR) model. For some deseases, such as malaria, the recovered
individuals are not immunized and can be infected again. These deseases are usually
described by susceptible-infective-susceptible (SIS) models, where there are only two
groups of population: S and I. Susceptibles become infectives due to infection,
recovered after some infectious period due to medical or other factors, and become
susceptibles again. Much research on epidemic modeling has been done for WSNs [4–
9].

In [4], an SIR-M model was proposed to characterize the dynamics of virus spread
process from a single node to the entire network. The proposed model can capture both
the spatial and temporal dynamics of the virus spread process. In [5], a modified SIS
epidemic model was proposed for virus spread analysis and an adjustable virus spread
control scheme was developed to effectively restrain the virus outbreak. In [6], a
susceptible-infected-quarantine-recovered-susceptible (SIQRS) model was proposed to
describe the dynamics of worm propagation in WSNs. In [7], a hop-by-hop worm
propagation model was proposed in mobile sensor networks and the worm infection
capability was analyzed under a carryover epidemic model. In [8], a susceptible-
infectious-quarantine-recovered (SIQR) model was proposed to describe dynamics of
worms propagation with quarantine and to study the attacking behavior of possible
worms in WSNs. In [9], an energy efficient susceptible-infected–terminally infected-
recovered (SITR) model was formulated to analyze the attacking behaviour of worms
in WSNs as well as the existence of equilibrium points and stability.

In this paper, we propose a dual SIS epidemic model to study the dynamics of virus
spread for a cluster-based WSN. The dual SIS model describes the behavior of indi-
vidual SNs and CHs and the interactions among them as well as incorporates specific
WSN parameters such as number of neighbor nodes of an SN/CH. Based on the
proposed model, we answer two basic questions under the occurrence of some initial
viruses in SNs and/or CHs: (1) Under what conditions will the viruses in both SNs and
CHs die out? (2) Under what conditions will the viruses in both groups of SNs and CHs
remain endemic and if so, will the number of infectives in each group approach a
constant positive level?

The remainder of the paper is organized as follows. Section 2 develops the mod-
eling of a clustered-based WSN by the dual SIS model. Section 3 presents the detailed
analysis and discussion. Section 4 presents numerical results. Finally, the paper is
concluded in Sect. 5.
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2 System Description and Modeling

The cluster-based WSN consists of a constant number of N1 SNs and N2 CHs, which
are divided into two groups: susceptibles and infectives of SNs; susceptibles and
infectives of CHs. Let S1(t) and I1(t) denote the number of susceptible and infective SN
nodes at time t; S2(t) and I2(t) denote the number of susceptible and infective CH nodes
at time t. Then, S1(t) + I1(t) = N1, S2(t) + I2(t) = N2. The N2 clusters are deployed
identically with m SNs and one CH in each cluster, i.e., N1 = mN2. SNs and CHs are
installed with anti-virus programs that check the nodes periodically and equipped with
omnidirectional antennas that have limited signal transmission range. Figure 1 shows a
model of a cluster and some of its neighbor clusters. The data sensed from individual
SNs can be transmitted to their respective CHs. Each CH can communicate with its
neighbor CHs and with all the SNs inside its cluster. An SN can also communicate with
its neighbor SNs for necessary information exchange if the neighbor nodes are inside
the signal transmission range of the SN.

In the dual SIS model without vital dynamics of population, i.e., no occurence of
births and deaths of nodes, there are a constant number of susceptibles and infectives
divided into two groups for the SNs and CHs respectively. The transition between
different groups for a certain virus may be described as follows: a susceptible SN (in
the first group, S1) may become infected inside the same group (I1) by contact with
either an infective SN (in the first group, I1) or an infective CH (in the second group,
I2), and after some infectious period, it is recovered by treatment and becomes a
susceptible SN (S1) again. Similarly, a susceptible CH (in the second group, S2) may
become infected inside its group (I2) by contact with either an infective SN (I1) or an

Fig. 1. A model of the cluster-based WSN.
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infective CH (I2), and after some infectious period, it is recovered by treatment and
becomes a susceptible CH (S2) again.

Assume that initially some SNs and/or CHs in the WSN become infected by viruses
due to software attacks. The viruses can be spread together with normal data from the
compromised node to its CH or its neighbor SNs through different communication
protocols. As the virus spread process continues and the number of infected nodes
increases, the virus spread might lead to endemic outbreak in a certain range, even the
entire network failure due to insufficient workable nodes. On the other hand, anti-virus
programs installed in SNs or CHs periodically check nodes and kill viruses for infective
nodes. Thus, infective nodes (either SNs or CHs) can become susceptible (normal)
from time to time and the viruses are possible to die out eventually in the network.

In order to formulate mathematical expressions, we make the following assump-
tions for the proposed model:

• The virus spread only happens through contact between a susceptible and an
infective. Thus, contacting a neighbor does not necessarily lead to a new infective
node. Only a susceptible neighbor of the infected node can become a new infective
node. Contacting an infected neighbor by an infective obviously does not change
the state of the system.

• The infection rate bij represents the average number of infections per unit time of an
infective in the jth group with the susceptible nodes in the ith group. For example,
b11 is the infection rate of an infectious SN with its susceptible neighbor SNs.
Similarly, b12 is the infection rate of an infectious CH with its susceptible SNs. b21
is the infection rate of an infectious SN with its susceptible CH. b22 is the infection
rate of an infectious CH with its susceptible neighbor CHs. Clearly, bij depends on
the infectivity of a virus and the communication rate of a protocol since the virus
spreads itself by piggybacking on normal data via regular communications. The
larger the value of bij, the more susceptible nodes get infected every time.

• Infective nodes in group i (i = 1, 2) recover and are removed from the infective
group at a constant rate ci (called recovery rate) proportional to the number of
infectives in the group. c1 is the recovery rate of infective SNs; c2 is the recovery
rate of infective CHs. The probability of nodes that is infected at time t0 and still
remains infective at time t0 þ t is exp(-cit), and the mean infectious period is 1=ci.

• Each SN has m1 neighbor SNs. Not all neighbors of an infective SN become
infected every time. Let p0 be the fraction of susceptible neighbor SNs infected by
an infective SN every time; p1 be the fraction of susceptible SNs infected by an
infective CH every time.

• Similarly, each CH has m2 neighbor CHs. Not all neighbors of an infective CH
become infected every time. Let p2 be the fraction of susceptible neighbor CHs
infected by an infective CH every time.

For tractable analysis, we normalize the proper differential equations on dI1 tð Þ=dt
and dI2 tð Þ=dt by dividing every I1 tð Þ and I2 tð Þ the population size N1 and N2 respec-
tively, then the meanings of the variables I1 tð Þ and I2 tð Þ are changed to be the fractions
of the total population in each group. Thus, the basic differential equations that describe
the rate of change of the infective nodes in different groups are determined as:
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I 01ðtÞ ¼ b11I1
p0m1

m
S1 þ b12I2

p1
N1

S1 � c1I1; ð1Þ

I 02ðtÞ ¼ b21N1I1
S2
N2

þ b22I2
p2m2

N2
S2 � c2I2; ð2Þ

S1 þ I1 ¼ 1; S2 þ I2 ¼ 1; ð3Þ

and initial condition

I1ð0Þ ¼ I10; I2ð0Þ ¼ I20: ð4Þ

Note that in the above differential equations, we omit the parts of S01ðtÞ and S02ðtÞ
due to the relationship in (3).

3 Analysis

We rearrange the above equations via a series of mathematics and obtain the following
nonlinear system of differential equations:

I 01ðtÞ ¼ aI1 þ bI2 � ðaþ c1ÞI21 � bI1I2; ð5Þ

I 02ðtÞ ¼ cI1 þ dI2 � cI1I2 � ðdþ c2ÞI22 ; ð6Þ

where a ¼ b11
p0m1
m � c1; b ¼ b12p1

N2
N1
, c ¼ b21

N1
N2
; d ¼ b22

p2m2
N2

� c2.
We can write the above Eqs. (5) and (6) in a vector form:

~I 0ðtÞ ¼ A~IðtÞþ~GðtÞ; ð7Þ

where ~I 0ðtÞ ¼ I 01
I 02

� �
, A ¼ a b

c d

� �
, ~IðtÞ ¼ I1

I2

� �
, ~GðtÞ ¼ G1

G2

� �
, G1 ¼ �ðaþ c1ÞI21 �

bI1I2; and G2 ¼ �cI1I2 � ðdþ c2ÞI22 .
Therefore, the analysis of the virus spread in the proposed dual SIS model has been

transferred to the analysis of a nonlinear system of differential equations represented by
(7). In general, it may not be possible to find solutions for such a nonlinear system in
terms of elementary functions. However, we can analyze some interesting questions
without finding an explicit solution for the system. For example, what is the equilib-
rium point (or equilibrium solution) of the system? Is the equilibrium point stable?
Under what condition does the equilibrium point converge to the origin or at a constant
positive level on the phase plane?

3.1 Origin and Stability

An equilibrium solution of the nonlinear system (7) is a point (I�1 , I
�
2 ) on the phase plane

(i.e., I1I2 plane) that makes I 01ðtÞ ¼ 0 and I 02ðtÞ ¼ 0, which is also called critical point,
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stationary point or rest point. By observation, it is easily determined that the point (I�1 ,
I�2 ) = (0, 0) is an equilibrium solution. This point denotes that no virus of SNs and CHs
exists eventually (the viruses die out) and thus is referred to as a virus-free equilibrium.
The proposed nonlinear system may have several equilibrium points. However, it is
difficult to find them in terms of elementary functions. All the equilibrium points
should be in the rectangular region D bounded by the I1 and I2 axes:

D ¼ I1; I2 0� I1; I2 � 1; I1 þ S1 ¼ 1; I2 þ S2 ¼ 1jf g: ð8Þ

In order to find the local behavior of the proposed nonlinear system and determine
the stability property of equilibrium points, one of the most useful methods is to
approximate the nonlinear system with a linear system around the equilibrium points,
which is referred to as linearization of the nonlinear system. We observe that the
proposed system is almost linear system [10] since the vector~I 0ðtÞ is a continuously
differentiable function and the Jacobian matrix of the system at this equilibrium point is
invertible (i.e., its determinant is not equal to zero). The Jacobian matrix is calculated
by respectively differentiating (5) and (6) with respect to I1 and I2 [11]:

J ðI1;I2Þ¼ð0;0Þ
�� ¼ @F1=@I1 @F1=@I2

@F2=@I1 @F2=@I2

� �
¼ a b

c d

� �
: ð9Þ

Equation (9) also verifies that J = A in the almost linear system [10]. The char-
acteristic equation associated with (9) is

k2 � ðaþ dÞkþ ad � bc ¼ 0

with the characteristic roots are given by

k1;2 ¼ ½ðaþ dÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� dÞ2 þ 4bc

q
�=2: ð10Þ

From the stability properties of differential equations [10, 11], if the characteristic
roots are distinct and both are negative, then the equilibrium point is asymptotically
stable. That is, if k2\k1\0, (I1, I2) approaches the equilibrium point (0, 0) as t
approaches infinity. The condition can be easily transferred to the following condition:

aþ d\0 and ad � bc� 0: ð11Þ

From the above condition and substituting in (11) by the specific arguments of a, b,
c and d, we derive the following theorem.

Theorem 1. For the dual SIS model in (7), if the two thresholds R0 < 1 and R1 � 1,
then the epidemic (virus) will die out in both groups for any number of initial infectives
(i.e., the origin is asymptotically stable in the rectangular region D in (8)). The
thresholds are defined as follows.
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R0 ¼
b11

p0m1
m þ b22

p2m2
N2

c1 þ c2
; ð12Þ

R1 ¼ b11b22p1
ðb11 p0m1

m � c1Þðb22 p2m2
N2

� c2Þ
: ð13Þ

3.2 Endemic Equilibrium Point and Stability

If ad – bc < 0, we can check from (10) that the characteristic roots k1 and k2 will have
one positive and one negative. Note that this result is obtained regardless of the sign of
(a + d). From the stability properties of differential equations [10, 11], if the charac-
teristic roots have different signs, then the equilibrium system state will get away from
the origin. In this case, the point (0, 0) is called a saddle point and is obviously
unstable. Then another question arises, under this condition (i.e., ad – bc < 0), is there
any other equilibrium point at some positive level in the region D for the proposed
system (7)?

We observe that in the system, the number of infectives in each group at a positive
equilibrium point is impossible to be 1 (for example, if I1 = 1 in (5), then I 01ðtÞ\0).
The only equilibrium point where the stable value is zero is the origin (for example, for
I 01ðtÞ ¼ 0 with I1 = 0, we have I2 = 0). Thus, we limit the analysis of equilibrium points
to the region:

D0 ¼ I1; I2 0\I1; I2\1; I1 þ S1 ¼ 1; I2 þ S2 ¼ 1jf g: ð14Þ

Consider our analysis in the I1I2-plane. For 0 < I2 < 1, applying I1 = 0 to (7), we
have I 01ðtÞ I1¼0j ¼ bI2 [ 0; applying I1 = 1 to (7), we have I 01ðtÞ I1¼1j ¼ �c1\0.

Therefore, there exists a value I�1 2 ð0; 1Þ such that I 01ðtÞ I1¼I�1

��� ¼ 0 and the value is

unique. The following gives the proof of uniqueness.
Assume that there is another nonzero equilibrium solution K1 2 ð0; 1Þ in (7) that is

not equal to I�1 . Without loss of generality, we let I�1\K1, then we have

0 ¼ aI�1 þ bI2 � ðaþ c1ÞðI�1 Þ2 � bI�1 I2 ¼ aK1 þ bI2 � ðaþ c1ÞK2
1 � bK1I2 : ð15Þ

Multiplying K1=I�1 on both sides of the first equation and noting that a, b, and c1 are
all positive, we have

0 ¼ aK1 þ bI2
K1

I�1
� ðaþ c1ÞK2

1
I�1
K1

� bK1I2 [ aK1 þ bI2 � ðaþ c1ÞK2
1 � bK1I2 : ð16Þ

There is a contradiction for (16) and (15), so there is only one equilibrium solution
of I1(t) in (7) in D0.
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Similar result can be shown that there is a unique equilibrium solution I�2 2 ð0; 1Þ
of I2(t) in (7) in D0. The earlier condition ad – bc < 0 can be converted as R1 > 1. The
expression of R1 is referred to as (13). We give the following theorem to summarize the
above analysis.

Theorem 2. For the dual SIS model in (7), if the threshold R1 > 1, then the epidemic
(virus) will remain endemic in both groups for any number of initial infectives and the
number of infectives in each group will approach a nonzero constant positive level (i.e.,
a unique equilibrium point exists inside the region D0 in (14)).

4 Numerical Results

In this section, we present numerical results to validate our analytic results for the dual
SIS model. We study the phase portraits in the I1I2-plane to visualize how the tra-
jectories traced by the solutions of the proposed system would behave in the long run
as well as the number of infective SNs and CHs I1(t) and I2(t) with respect to time
t. The evaluation is performed under a WSN of m = 40 identical clusters with 25 SNs
and one CH in each cluster. The values of other parameters are shown in individual
figures. Note that all parameters are given in dimensionless units, which can be mapped
to specific units of measurement.

Figure 2 shows the direction field for our system of differential equations along
with two trajectories on the phase plane. Two starting points (I10, I20) = (0.55, 0.25)
and (0.25, 0.15) are evaluated respectively. It is clearly observed that the equilibrium
point (0, 0) is asymptotically stable regardless of any starting points. The trajectories of
two different starting points eventually converge to the origin. This verifies the result of
Theorem 1. The thresholds under the given parameter configuration are obtained as
R0 = 0.0145 < 1; R1 = 0.1238 < 1. Note that the arrows from the top left of the tra-
jectories go down towards to the origin, while the arrows from the bottom right of the

Fig. 2. A direction field and some trajectories for the dual SIS system with origin equilibrium
point (Parameter values: p0 = 0.2; p1 = 0.3; p2 = 0.1; m1 = 5; m2 = 4; b11 = 0.3; b12 = 0.5;
b21 = 0.7; b22 = 0.4; c1 = 0.5; c2 = 0.6).
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trajectories go up along with the trajectories to the origin. The arrows in the direction
field [11] are tangents to the actual solutions to the differential equations, in which we
can learn the solution property of the nonlinear system. The direction field can also be
used to find information on the long term behavior of the solution.

Figure 3 shows the numerical simulations of the virus spread dynamics of I1(t) and
I2(t) with respect to time for the dual SIS system with origin equilibrium point. We
observe that under the current system configuration, I1(t) decreases with respect to
time; while I2(t) first increases with respect to time and when it goes to a certain
infection level, it begins to decrease. Both I1(t) and I2(t) eventually approach to the
origin (0, 0), which means the infectives eventually die out regardless of their initial
conditions.

Figure 4 shows the direction field for the nonlinear system along with two tra-
jectories on the phase plane. Two starting points (I10, I20) = (0.55, 0.25) and (0.10,
0.10) are evaluated respectively. It is observed that the system state approaches to a
constant positive equilibrium point. Each group of SNs and CHs has a different con-
stant value. The equilibrium point is asymptotically stable regardless of any starting
point. This verifies the result of Theorem 2. The threshold condition in this case is
obtained as R1 = 4.9205 > 1.

Figure 5 shows the numerical simulations of the virus spread dynamics of I1(t) and
I2(t) with respect to time for the dual SIS system with a positive equilibrium point. We
observe that under the current system configuration, when the starting point is (I10,
I20) = (0.55, 0.25), I1(t) decreases from its initial value to a constant positive value
(endemic of SNs); I2(t) first increases from its initial value and when it goes to a certain
infection level, it begins to decrease to another constant positive level (endemic of
CHs). When the starting point is (I10, I20) = (0.10, 0.10), I1(t) increases from its initial
value to a constant positive value (endemic of SNs); I2(t) also increases from its initial
value to another constant positive level (endemic of CHs).

Fig. 3. The dynamics of I1(t) and I2(t) for the dual SIS system with origin equilibrium point (See
Fig. 2 for the parameter values).
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5 Conclusions

We proposed a dual SIS epidemic model to study the dynamics of virus spread for a
cluster-based WSN. The dual SIS model consists of two groups of SNs and CHs and
describes the dynamics of virus spread through the interactions between SNs and CHs.
We performed detailed analysis about equilibrium points and stability and developed
the system stability conditions. Finally, we drew the conclusion for the proposed
system: if the two thresholds R0 < 1 and R1 � 1, then the epidemic (virus) will die out
in both groups for any number of initial infectives; if the threshold R1 > 1, then the
epidemic (virus) will remain endemic in both groups for any number of initial infec-
tives and the number of infectives in each group will approach a nonzero constant

Fig. 4. A direction field and some trajectories for the dual SIS system with endemic equilibrium
point (Parameter values: p0 = 0.8; p1 = 0.8; p2 = 0.1; m1 = 5; m2 = 2; b11 = 0.7; b12 = 0.8;
b21 = 0.1; b22 = 0.15; c1 = 0.15; c2 = 0.45).

Fig. 5. The dynamics of I1(t) and I2(t) for the dual SIS system with endemic equilibrium point
(See Fig. 4 for the parameter values).
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positive level. We provided numerical results to validate our analysis. The proposed
model and analysis is applicable to different types of networks with multiple groups of
users.
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