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Abstract. For the tracking of multiple maneuvering targets under radar
observations, the Cardinality-Balanced Multi-Bernoulli based Sequential
Monte-Carlo Filter (SMC-CBMeMBer) tracking algorithm gets its shortcomings
that the estimation of number is inaccurate and the state estimation accuracy is
degraded. This paper presents an improved tracking algorithm based on SMC-
CBMeMBer smoothing filter. In the prediction process, the algorithm uses
Multi-objectIve Particle Swarm Optimization (MOPSO), combined with the
measured values at the current moment, to move the particles to the location
where the posterior probability density distribution takes a larger value; Besides
the smooth recursive method is used to smooth the filter value with multi-target
measurement data, and the estimation accuracy of the algorithm is improved on
the basis of sacrificing certain operation efficiency. The simulation results show
that compared with the traditional filter and smoothing methods, the proposed
algorithm performs better in terms of the accuracy of the estimation of the
number of maneuvering targets and the accuracy of the target state estimation.
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1 Introduction

Multi-target Multi-Bernoulli (MeMBer) filter [1] is another multi-target tracking
method based on RFS proposed by Mahler after PHD [2] and CPHD [3] filter. For
multi-objective nonlinear filtering, B-N Vo gives advantages of MeMBer [4] over the
other two algorithms in terms of filtering accuracy and computational complexity, and
on this basis, an improvement, i.e. Cardinality Balanced Multi-target Multi-Bernoulli
(CBMeMBer) filter [5] was proposed to dispose the overestimation of the number of
targets caused by MeMBer. The literature [6] proposed using Bernoulli random finite
set to model the single-target motion state and complete forward-backward smoothing.
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Bernoulli forward-backward smoothing improves the recognition accuracy of the
disappearance of the target and the accuracy of the state estimation. In addition, it
validates the feasibility of the Bernoulli filtering forward-backward smoothing filter.

Based on the known background, this paper proposes an improved multi-target
tracking method based on CBMeMBer smoothing, which consists of forward filtering
and backward smoothing. Forward filtering uses CBMeMBer filtering. Multi-objective
particle swarm optimization is added between prediction and updating step. Particles
move in the direction of higher posterior probability density; backward smoothing still
uses CBMeMBer probability density to approximate the multi-objective smooth states,
and obtain the backward recursive formula of CBMeMBer probability density
parameter, thereby achieving multi-targets Backward recursive calculation of smooth
state probability density. Finally, the simulation experiments show that the tracking
performance of the newly proposed algorithm is better than the previous algorithm in
the multi-objective maneuvering scenario.

2 CBMeMBer Smoothing Filter

In contrast to MeMBer filtering, the probability generation functional of CBMeMBer is
more accurate than that of MeMBer in the updating process, which averts a potential
cardinality deviation. The implementation of CBMeMBer filtering needs to satisfy the
following assumptions: (1) the RFS of the newborn target state is formed by a multi-
Bernoulli random finite set; (2) the clutter obeys the multi-target Poisson process, and
the clutter density is not too large; (3) The target has a higher detection probability.

The CBMeMBer forward-backward smoothing filter utilizes more measurement
information, and can improve the estimation performance of the target number and the
targets’ state.

2.1 Forward Filtering Process

Prediction. Suppose that Multi-objective posterior probability density at time k � 1 is
a form of multiple Bernoulli RFS.

pk�1 ¼ r ið Þ
k�1; p

ið Þ
k�1

� �n oMk�1

i¼1
ð1Þ

So as to the Multi-objective predict probability density is of the same form,

pkjk�1 ¼ r ið Þ
P;kjk�1; p

ið Þ
P;kjk�1

� �n oMk�1

i¼1
[ r ið Þ

C;kjk�1; p
ið Þ
C;kjk�1

� �n oMC;k

i¼1
ð2Þ

where

r ið Þ
P;kjk�1 ¼ r ið Þ

k�1 p ið Þ
k�1; pS;k

D E
ð3Þ
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p ið Þ
P;kjk�1 ¼

fkjk�1 xj�ð Þ; p ið Þ
k�1pS;k

D E
p ið Þ
k�1; pS;k

D E ð4Þ

fkjk�1 �jnð Þ denotes single-target transfer probability at time k, pS;k denotes the

survival probability. r ið Þ
C;kjk�1; p

ið Þ
C;kjk�1

� �n oMC;k

i¼1
refers to Bernoulli RFS newborn

parameters at time k.

Update. The predicted multi-target density at time k is still in the form of multi

Bernoulli pkjk�1 ¼ r ið Þ
kjk�1; p

ið Þ
kjk�1

� �n oMkjk�1

i¼1
, Then this posterior probability density can

be represented by a multiple Bernoulli union.

pk � r ið Þ
L;k; p

ið Þ
L;k

� �n oMkjk�1

i¼1
[ rU;k zð Þ; pU;k �; zð Þ� �� �

z2Zk ð5Þ

Where

r ið Þ
L;k ¼ r ið Þ

kjk�1

1� p ið Þ
kjk�1; pD;k

D E
1� r ið Þ

kjk�1 p ið Þ
kjk�1; pD;k

D E ð6Þ

p ið Þ
L;k xð Þ ¼ p ið Þ

kjk�1 xð Þ 1� pD;k xð Þ
1� p ið Þ

kjk�1; pD;k
D E ð7Þ

rU;k zð Þ ¼

PMkjk�1

i¼1

r ið Þ
kjk�1

1�r ið Þ
kjk�1

� �
p ið Þ
kjk�1

;wk;z

D E
1�r ið Þ

kjk�1
p ið Þ
kjk�1

;pD;k

D E� �2

jk zð Þþ PMkjk�1

i¼1

r ið Þ
kjk�1

p ið Þ
kjk�1

;wk;z

D E
1�r ið Þ

kjk�1
p ið Þ
kjk�1

;pD;k

D E
ð8Þ

pU;k x; zð Þ ¼
PMkjk�1

i¼1

r ið Þ
kjk�1

1�r ið Þ
kjk�1

p ið Þ
kjk�1 xð Þwk;z xð Þ

PMkjk�1

i¼1

r ið Þ
kjk�1

1�r ið Þ
kjk�1

p ið Þ
kjk�1;wk;z

D E ð9Þ

wk;z xð Þ ¼ gk zjxð ÞpD;k xð Þ ð10Þ

Zk denotes observation set, gk �jxð Þ and pD;k xð Þ respectively refer to single-target
measurement likelihood function and target detection probability given the state at time
k. jk �ð Þ is Poisson clutter intensity parameter.
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2.2 Backward Smoothing Process

The purpose of smoothing is to use the data at time l to estimate the state value at time
k l[ kð Þ. Given the multi-Bernoulli smoothing density parameters rkjl and pkjl �ð Þ,
backward recursion is displayed as follow [7].

rk�1jl ¼ 1� 1� rk�1jl�1
� �

aB;kjl þ bB;kjl

Z
pkjl fð Þ

pkjk�1 fð Þ bkjk�1 fð Þdf
� 	

ð11Þ

pk�1jl xð Þ / pk�1jk�1 xð Þ aS;kjl xð Þþ bS;kjl xð Þ
Z

pkjl fð Þ
pkjk�1 fð Þ fkjk�1 fjxð Þdf

� 	
ð12Þ

where

aB;kjl ¼ ð1� pbÞ
1� rkjl

1� rkjk�1
ð13Þ

bB;kjl ¼ pb
rkjl

rkjk�1
ð14Þ

aS;kjl xð Þ ¼ 1� pS;kjk�1 xð Þ� � 1� rkjl
1� rkjk�1

ð15Þ

bS;kjl xð Þ ¼ pS;kjk�1 xð Þ rkjl
rkjk�1

ð16Þ

2.3 Shortcomings of SMC-CBMeMBer Smoothing

Particle filter using Sequential Importance Sampling [8] (SIS) method, recursively
sampling according to the weights of the particles to obtain an approximate distribution
of posterior probabilities. An important flaw in resampling particles is the lack of
particle diversity. When the observation information is so accurate that the peak of the
likelihood function is narrow, the overlap space between the likelihood probability and
the prior probability distribution is extremely limited. As an end, only a small fraction
of overlapping particle weights will increase after the update. In addition, similar
problems exist when the observation probability distributed at the tail of the prior
distribution, since only a small part of the particles generated by the prior probability is
located in the high likelihood region. It is very likely that the prediction result will lose
important particles and miss good assumptions.

Another significant problem is that when faced with the actual initial state of the
system is unknown, the state estimation of the system requires a large number of
particles, which makes the calculation efficiency of particles greatly reduced.
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3 MOPSO Optimized CBMeMBer Smoothing

In order to solve the problems described in Sect. 2.3 above, this chapter proposes an
improved method that combines the particle swarm optimization algorithm with the
CBMeMBer smoothing filter to improve the problem of the particle diversity.

3.1 Multi-objective Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a cluster intelligent global optimization algo-
rithm based on population search strategy jointly proposed by Kennedy and Eberhart
[9].

In each iteration, the individual optimal solution is updated after one iteration of the
particle pj, and the global optimal solution in the entire particle swarm gj are used,
where j ¼ 1; 2; � � � ; n, n is the maximum number of iterations.

Update each particle with the following speed update formula and position update
formula, so that we can improve the position information carried by the particles,

vi ¼ wvi þ c1rand pj � xi
� �þ c2Rand gj � xi

� � ð17Þ

xiþ 1 ¼ xi þ rvi ð18Þ

where rand and Rand are random numbers between 0 and 1, w is the inertia coefficient,
c1 and c2 are positive numbers, xi is the initial particle swarm state, vi is the updated
speed, and r is the constraint factor.

In the multi-objective optimization, this paper uses multi-objective particle swarm
optimization (MOPSO). The MOPSO screens particles based on multiple objective
functions by means of the NSGA-II algorithm [10]. The algorithm is an improvement
over conventional genetic algorithms. The key steps are the following three processes.

(1) Non-dominated sort.

The algorithm stratifies the population based on individual non-inferiority levels.
The individuals are included in the 1st front F1, and they are given the non-dominated
order irank ¼ 1; Then continue to identify non-dominated solutions and repeat this until
the whole population is assigned.

(2) Crowding distance calculation.

The individual crowding distances are calculated in order to be able to selectively
rank individuals within the same non-dominant sequence irank. For different objective
functions, we need to calculate repeatedly to obtain the individual’s crowding distance.

(3) Recombination and selection.

Firstly, the entire population is placed in new descendants in descending order of
non-dominated sorting irank until the population size exceeds the particle group N when
placed in a certain layer Fj; secondly, filling is continued in descending order of
individual crowding distances of Fj until the number of particle swarms reaches.
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Besides, in order to avoid the problem of particle swarm optimization speeding up
the convergence too quickly and causing a local optimal solution, this paper added a
mutation mechanism to the algorithm to increase the diversity of particles.

3.2 Improved Smoothing Filter Optimized by PSO

The improved process is expressed as follow.
The whole algorithm can be illustrate by Fig. 1. Firstly, we need to initialize the

essential parameters, such as existence probability r, particle state x and particle weight
w. Then the parameters will be used to describe the state of targets which is estimated
by a series of work: prediction, PSO optimization, updating and smoothing. It should
be noted that the raw observation data is utilized in the PSO optimization and updating
process. Secondly, we will prune the tracks whose existence probability r can not reach
the threshold, merge the tracks which are adjacent to each other to one track. Finally,
we resample the particles based in their weights. The existence probability r can be
used to get the targets’ number. The particles’ weights and state can be calculated to
estimate the targets’ state and can be used to join in the next filter iteration. The detailed
description is stated as follows.

Initialize 
parameters

Multi Bernoulli 
parameter 
prediction

PSO optimizes 
particle 

distribution

Multi Bernoulli 
parameter 
updating

Observation data

Multi Bernoulli 
parameter 
smoothing

Pruning and 
merging tracks

Particle 
resampling

State extraction

Output the state

Fig. 1. The flow chart of PSO optimized CBMeMBer forward-backward smoothing
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Prediction. Suppose that we have the posterior parameters at time k � 1 are given with
rk�1jk�1 and pk�1jk�1 in the form of particle filter:

pk�1jk�1 �
XNk�1

i¼1

w ið Þ
k�1dx ið Þ

k�1
xð Þ ð19Þ

Then the prediction parameters can be displayed as:

rkjk�1 � pb 1� rk�1jk�1
� �þ rk�1jk�1

XNk�1

i¼1

w ið Þ
k�1pS;kjk�1 x ið Þ

k�1

� �
ð20Þ

pkjk�1 xð Þ ¼
XNk�1 þ Jk

i¼1

w ið Þ
kjk�1dx ið Þ

k
xð Þ ð21Þ

where the particles and weights are generated as [7]:

x ið Þ
k � qk �jx ið Þ

k�1; zk
� �

; i ¼ 1 : Nk�1

sk �jzkð Þ; i ¼ Nk�1 þ 1 : Nk�1 þ Jk

(
ð22Þ

w ið Þ
kjk�1 ¼

rk�1jk�1

rkjk�1

pS;kjk�1 x ið Þ
k�1ð Þfkjk�1 x ið Þ

k jx ið Þ
k�1ð Þw ið Þ

k�1

qk x ið Þ
k jx ið Þ

k�1;zkð Þ ; i ¼ 1 : Nk�1

1�rk�1jk�1

rkjk�1

pbbkjk�1 x ið Þ
kð Þ

Jksk x ið Þ
k ;zkð Þ ; i ¼ Nk�1 þ 1 : Nk�1 þ Jk

8>>><
>>>:

ð23Þ

and pb denotes probability of target newborn or reentry, bkjk�1 x ið Þ
k

� �
is spatial density

of newborn process, qk, sk respectively denotes the survival density and newborn
density.

Optimization. The particle swarm optimization algorithm is applied after the predic-
tion step of the multi-Bernoulli filtering, combining the current time measurement,
taking into account the distance between the particles and the measurement points. For
the nth measurement, the objective function value of the ith particle is as follows.

fitni ¼ exp � 1
r2

parn �measið Þ2

 �

; i ¼ 1; � � � ; length measð Þ; n ¼ 1; � � � ;N ð24Þ

where r2 denotes observation noise variance, meas denotes observation set, measi
refers to the ith observation value, N is the total particle number. The particle swarm
optimization algorithm motivates all particles to the Pareto optimal solution set by
calculating the objective function value.

The optimized particle weights need to be redistributed by considering the parti-
cle’s objective function values, and then normalized.
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wn ¼
X

i
fitni ;wn ¼ wnPN

n¼1 wn
ð25Þ

The optimization process makes the particles far away from the real state move to
the areas which have higher posterior probability and improves the effect of each
particle. Even when the initial state is unknown, the problem of particle filtering that
requires a large number of particles for accurate state estimation is also attenuated.

Updating. After the optimization, the particle state, weight, and probability of exis-
tence rkjk�1 participate in the update [11].

rkjk ¼
rkjk�1

PNk
i¼1 ~w

ið Þ
k

1� rkjk�1 þ rkjk�1
PNk

i¼1 ~w
ið Þ
k

ð26Þ

pkjk xð Þ �
XNk

i¼1

w ið Þ
k d

x ið Þ
k

xð Þ ð27Þ

~w ið Þ
k /lk zkjx ið Þ

kjk�1

� �
w ið Þ
kjk�1 ð28Þ

In order to maintain the diversity of particles in the next smoothing process, the re-
sampling operation is not performed after the update is completed, and is performed
after the smoothing is completed.

Smoothing. Given rkjl and pkjl ¼
PNkjl

i¼1
w ið Þ
kjldx ið Þ

kjl
xð Þ, we

rk�1jl � 1� 1� rk�1jk�1
� �� 1� rkjl

1� rkjk�1
1� pbð Þþ rkjl

rkjk�1
pb

XNkjl

j¼1

w jð Þ
kjj

bkjk�1 x jð Þ
kjl

� �
pkjk�1 x jð Þ

kjl
� �

0
@

1
A

ð29Þ

pk�1jl xð Þ �
XNk�1jk�1

i¼1

~w ið Þ
k�1jldx ið Þ

k�1jk�1
xð Þ ð30Þ

~w ið Þ
k�1jl /

1� rkjl
1� rkjk�1

1� pS;kjk�1w
ið Þ
k�1jk�1

� �
þ rkjl

rkjk�1

XNkjl

j¼1

pS;kjk�1w
jð Þ

kjl
fkjk�1 x jð Þ

kjl jx ið Þ
k�1jk�1

� �
pkjk�1 x jð Þ

kjl
� � w ið Þ

k�1jk�1

ð31Þ

pkjk�1 x jð Þ
kjl

� �
¼

XNk�1jk�1

i¼1

w ið Þ
k�1jk�1fkjk�1 x jð Þ

kjj jx ið Þ
k�1jk�1

� �
ð32Þ
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Track Pruning and Resampling. Only the track whose probability of existence gets
greater than the threshold can be preserved. In the meanwhile, we need to select and
reproduce particles with large weight values, i.e. resample the particle set.

xki ;
1
N

� N

i¼1
¼ xki ;w

k
i

� �N

i¼1 ð33Þ

4 Simulation

4.1 Maneuvering Target Cooperative Turning Model Establishment

In this CT model, the maneuvering target is a collaborative turn CT model. The state
equation and measurement equation are as follows [12–14]:

X kð Þ ¼ F kð ÞX k � 1ð ÞþC k � 1ð Þv k � 1ð Þ ð34Þ

Z kð Þ ¼ H kð ÞX kð ÞþW kð Þ ð35Þ

F kð Þ ¼

1 sinxT
x 0 cosxT�1

x 0
0 cosxT 0 � sinxT 0
0 1�cosxT

x 1 sinxT
x 0

0 sinxT 0 cosxT 0
0 0 0 0 1

2
66664

3
77775 ð36Þ

C k � 1ð Þ ¼
T2=2 T 0 0 0
0 0 T2=2 T 0
0 0 0 0 0

2
4

3
5

0

ð37Þ

H kð Þ ¼ 1 0 0 0 0
0 0 1 0 0


 �
ð38Þ

4.2 Experimental Simulation

Suppose that the radar was located in the origin point; the detection area was defined as
[−2000 m, 2000 m] � [−500 m, 2000 m]; sampling interval T ¼ 1 s and the total
tracking time was set as 100 s. As for the CT model, the detection probability
pD;k ¼ 0:98. Assume that there are multiple targets in the detection area for continuous
motion within the detection area, and the ith target’ state at time k was

xk;i ¼ xk;i; yk;i; _xk;i; _yk;i;x
� �T ; the survival probability pS;k ¼ 0:99. Table 1 has set the

initial state of each target and its starting and ending time, where the w was positive for
a clockwise turn and negative for a counterclockwise rotation [15]. Figure 2 has dis-
played the true tracks of the simulation.
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In the particle swarm optimization process, the number of iterations gen ¼ 10 and
the fitness function threshold Thfit ¼ 0:01 are counted at a time t. In the state extraction
process, the track pruning threshold Thprune ¼ 10�3 and the maximum track number
Tmax ¼ 100 are set; the combined threshold Thcap ¼ 10�5 of the track is set, the
merging distance D ¼ 4m; the maximum number of particles Jmax ¼ 1000, and the
minimum Jmin ¼ 300.

Assume that the location of clutter points is uniformly distributed in the detection
area at each time, and its number obeys a poisson distribution with an average value of
20. Under the condition of a clutter density of kc ¼ 2� 10�6m�2.

After 100 times monte carlo experiments, the simulations found that all three can
accurately estimate the number of targets, but the details can be seen at Fig. 3. when the
number of targets changes, the new proposed algorithm is better than the general
smoothing algorithm, both are better than the traditional filtering algorithm.

Table 1. The initial state, start and end time of targets

No Start time (s) End time (s) Initial state

1 1 100 [1000, −10, 1500, −10, p/36]
2 10 100 [−250, 20, 1000, 3, −p/225]
3 10 100 [−1300, 11, 300, 10, −p/90]
4 10 70 [−1500, 43, 250, 0, 0]
5 20 80 [−250, 11, 750, 5, p/180]
6 40 100 [−500, −12, 1000, −12, −p/90]

Fig. 2. Target actual movement status
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From the Figs. 4 and 5, we can thoroughly analyze the standard deviation and
OSPA error [16] of the three methods’ estimation. In terms of specific estimation
indicators, we can see that the two smoothing algorithms have better improvement
effects than the traditional filtering methods in terms of estimation accuracy; while in
the accuracy of the estimation number, the smoothing method has a certain degree of
improvement over the filtering method. While the improved smoothing method again

Fig. 3. Comparison of the number estimation of three tracking methods

Fig. 4. Standard deviation of the three methods’ estimation
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suppresses the standard deviation at the same level comparable to filtering. However,
inevitably, the improved smoothing algorithm is longer in terms of running time than
the former two kinds of algorithm. For more details, the numerical data was given in
Table 2.

5 Summary

In order to deal with the tracking problem of multiple maneuvering targets, an SMC-
CBMeMBer forward-backward smoothing filter with multi-objective particle swarm
optimization was proposed. The simulation results show that the introduction of the
particle swarm optimization algorithm improves the convergence performance of the
CBMeMBer forward-backward smoothing filter algorithm for the maneuvering target,
which improves the accuracy of the estimated number and position. In the next study,
the predicted particles are selectively optimized, and the adaptive optimization is
completed by setting the threshold of the objective function, focusing on improving the
efficiency of the particle swarm optimization and saving the calculation cost.

Fig. 5. OSPA error of the three methods’ estimation

Table 2. The mean value of the standard deviation, OSPA error and running time

Mean value CBMeMBer
filter

CBMeMBer
smoothing

PSO-CBMeMBer
smoothing

Standard
deviation

1.1606 1.2139 1.1882

OSPA error(m) 16.6089 15.0336 12.6689
Running time(s) 10.7 16.7 24.3
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