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Abstract. With the increasing interests on received signal strength
(RSS) fingerprint-based Wi-Fi localization, the requirement of record-
ing reliable and accurate RSS fingerprints for radio map construction
becomes a significant concern. The neighbor matching and Bayesian esti-
mation is recognized as the two most representative algorithms for RSS
fingerprint-based indoor Wi-Fi localization. To guarantee the accuracy
performance of neighbor matching and Bayesian estimation algorithms,
we introduce several method to eliminate RSS sample noise for the sake
of improving the distance dependency of Wi-Fi RSS fingerprints.
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1 Introduction

A large amount of attention has been paid to the design of indoor highly-accurate
and reliable localization systems in recent ten years with the significant growth
of interests on the ubiquitous context-awareness and mobile computing [1–3].
Due to the requirements of special infrastructures and devices by ultrasonic
wave (UW) [4], ultra-wideband (UWB) [5], infrared ray (IR) [6], radio frequency
identification (RFID) [7], Bluetooth [8], and inertial navigation system (INS)
[9] based localization systems, the received signal strength (RSS) fingerprint-
based Wi-Fi localization system is more preferable owing to the advantages of
sufficient accuracy in indoor localization, widely-deployed Wi-Fi infrastructures,
and free 2.4 GHz Industrial, Scientific and Medical (ISM) band [10–12]. Another
good reason to the popularization of indoor Wi-Fi localization is that the Global
Navigation Satellite System (GNSS) (e.g., GPS in USA [13], Global Navigation
Satellite System (GLONASS) in Russia [14], BD in China [15], and Galileo
Positioning System in Europe [16]) cannot work well in urban and indoor envi-
ronments due to the poor quality of RSS received from satellites. On this basis,
we compare several typical indoor location systems in Table 1.
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Table 1. Comparison of several indoor location systems

Systems Accuracy Cost Infrastructures and

devices

UW [4] Cm-level accuracy but

limited within a room and

easily interfered by sound

sources

Extra infrastructures and

devices

Multiple UW emitters and

receivers

UWB [5] Cm-level accuracy but strict

time synchronization

required

Extra infrastructures and

devices

Multiple UWB emitters

and receivers

IR [6] Cm-level accuracy but

limited within a room and

easily interfered by light

sources

Extra infrastructures and

devices

Multiple IR emitters and

receivers

RFID [7] With errors less than 1m in

passive mode and with errors

between 3m and 5m in

active mode

Extra infrastructures and

devices but easily built in

Single RFID tag without

battery power in passive

mode and multiple RFID

tag with battery power

lasting for several years in

active mode

Bluetooth [8] With errors between 1m and

5m

Extra infrastructures and

devices but easily built in

Single Bluetooth beacon

for 2D localization and

multiple Bluetooth

beacons for 3D

localization with battery

power lasting for several

years

INS [9] With errors less than 1m

but easily interfered by drift

Existing function and

easily accessed

Micro-Electro-Mechanical

Systems with wide

operating temperature

range

Wi-Fi [10] M-level accuracy but easily

interfered by environmental

factors

Existing infrastructures

and devices

Single access point for

proximity localization and

multiple access points for

fingerprintbased and

propagation model-based

localization

Up to now, there are three typical categories of Wi-Fi localization algorithms:
RSS fingerprint-based, time of arrival (TOA) and angle of arrival (AOA)-based,
and propagation model-based localization. Based on the consideration of local-
ization accuracy and computation and maintenance cost, RSS fingerprint-based
localization algorithm is preferred [17–19]. However, the existence of burst noise,
e.g., the adjacent-channel interference from cordless phones, Bluetooth devices,
and near field communication devices and the human body and indoor infras-
tructure shadowing, is recognized as one of the most significant drawbacks of
Wi-Fi RSS fingerprint-based localization [20,21]. In response to this compelling
drawback, we propose as a new approach to eliminate the RSS samples which
are interfered by burst noise for the sake of improving the accuracy of neighbor
matching and Bayesian estimation algorithms in Wi-Fi localization. Much dif-
ferent from many of the existing fingerprint filtering approaches, there is no need
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to record RSS statistics (e.g., RSS mean, median, maximum, and minimum) and
RSS distributions (e.g., Gaussian fitting curves) at each reference point (RP).
The localization accuracy is examined in a typical indoor scenario, a straight
corridor, which is also used in [17,35,37,38]. The location target is moving in
a normal course and only two RSS samples are recorded at each location for
the testing. The rest of this paper is organized as follows. Section 2 shows using
Wi-Fi technique on Wi-Fi localization. Section 3 shows that Network Deploy-
ment and Fingerprint-based Wi-Fi localization system, TOA and AOA-based
Localization, Propagation Model-based Localization respectively. Experimental
result is discussed In Sect. 3. Finally, we conclude this paper in Sect. 4.

2 Using Wi-Fi Technique

With the remarkable growth of location-based services (LBSs), the work on
indoor localization has attracted significant attention in recent decade. The LBSs
have ranged from the military to public uses, like the emergency rescue, guid-
ance in airports and unfamiliar buildings, and entity management inside modern
buildings, libraries, and warehouses [22,23]. To achieve these goals, the Wi-Fi
technique is suggested as a reliable and cost-efficient way to provide the highly-
accurate, cost-efficient, and real-time indoor LBSs due to the two main reasons
below.

The first main reason is that in many indoor and underground environments,
GPS signals cannot be received due to the serious shadowing effect by the build-
ings and ground. Although the cellular network (e.g., WCDMA) can help to
improve accuracy and reduce acquisition time of GPS receiver, the requirement
of the additional radio frequency (RF) transceiver modules designed for cellular
network significantly increases the device cost and power consumption of GPS
receiver. As an alternative to indoor localization, the INS relies on accelerom-
eter, gravimeter, compass, and many other sensors to infer the targets speed,
height, orientation, and other actions [9]. The accuracy and scalability of INS
are suffered from the error accumulation which is caused by sensor noise and
the limited availability of motion sensors. Since the Wi-Fi networks are widely
deployed in public hotspots and enterprise locations, the Wi-Fi fingerprint-based
localization and tracking become more popular. The average errors by Wi-Fi
fingerprint-based localization generally fall into the range between 2 m and 10 m
with the response time in a few seconds.

The second main reason of using Wi-Fi technique to conduct indoor localiza-
tion is that the target can calculate its own locations by itself, namely the mobile-
based localization mode, or rely on the network to obtain its locations, namely
the network-based localization mode. In network-based localization mode, the
access points (APs) relay the received signals to a central location server to do
location calculation and then send the localization results back to the target.
Since the target is not involved in signal processing and location calculation
process, there is no need to modify the conventional Wi-Fi network interface
card (NIC) which can be easily designed and embedded into the existing mobile
devices.
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3 Network Deployment

Since the indoor Wi-Fi localization is normally based on the 802.11a/b/g infras-
tructures and devices, the deployment and maintenance are cost-efficient for
the widespread use [24,25]. Although the targets location can be well-estimated
based on three APs in the open environment by using triangulation algorithm,
there are always more than three APs required for indoor localization due to
the RSS refraction, reflection, scattering, and adjacent-channel and multi-path
interference [26]. The network deployment including the deployment of APs and
calibration of RPs should also be seriously considered for indoor Wi-Fi localiza-
tion.

Up to now, there are mainly three representative methods for network deploy-
ment: (1) uniform deployment by which the RPs are uniformly calibrated in tar-
get environment [27]; (2) non-uniform deployment by which the locations of RPs
and APs are optimized based on the criterion of coverage requirement [28]. For
instance, the area with high priority of coverage requirement is more likely to be
calibrated with more RPs; and (3) Zigzag deployment by which the average RSS
difference between different RPs are maximized to improve the location resolu-
tion of RSS [29]. The detailed discussion on indoor Wi-Fi network deployment
is beyond the scope of this paper. In our experiments, the RPs are uniformly
calibrated and the three APs are fixed at the left and right ends of a straight
corridor.

3.1 Fingerprint-Based Wi-Fi Localization System

Fingerprint-based localization is based on the calculation of the similarity
between the off-line pre-stored fingerprints and the on-line newly recorded sam-
ples [17,18]. As the first fingerprint-based Wi-Fi localization system, RADAR
defines the Euclidean distances between the fingerprints and the new samples
as the similarities and selects the RP with the smallest distance, namely the
nearest neighbor (NN), as the estimated position [17]. This process is named as
the neighbor matching. If there are RPs to be selected as the NNs, namely the
K nearest neighbors (KNN), the targets position can be estimated at the geo-
metrical center of the KNN [17,30], [47]. The accuracy of the original RADAR
system is about 4 m with probability [17], while the enhanced RADAR system
by using the Viterbi-like algorithm [31] achieves the accuracy around 2.37 m to
2.65 m over 50 percentile and 5.93 m to 5.97 m over 90 percentile. In RADAR
system, the response time is mainly determined by the time cost for the traversal
of radio map to search for the NN(s). This cost increases dramatically with the
dimensions of radio map. For instance, if there are RPs calibrated in target area
and sample (of dimensions) recorded at each RP, the number of sample values
stored in radio map equals to (Ns * M) * Nr.

Another representative fingerprint-based Wi-Fi localization algorithm to be
discussed in this paper is the Bayesian estimation. Marylands Horus [18] is rec-
ognized as the most prominent Bayesian estimation based localization system
which is featured with high accuracy and low computation cost. Horus mainly
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focuses on the issues including the relationship between the mean of RSS and the
sample number, compensation for small-scale RSS fading, and RSS variations
with respect to spatial characteristics. In Horus system, the target is estimated
at the RP with the highest likelihood by Bayesian estimation. The experimental
results in [32] show that the Horus system can achieve the accuracy of more
than 90 percentile within 2.1 m. The increase of the number of samples at each
RP improves localization accuracy due to the better estimation of the mean
and standard deviation of the Gaussian RSS distribution at each RP. The draw-
back of Horus system is that a large amount of computation cost is required to
calculate the small-scale compensation. For instance, to achieve small-scale com-
pensation, we need to try combinations to perturb samples in our experimental
environment which is covered by 9 APs.

Similarly, Castro in [33] developed another Bayesian estimation based local-
ization system, Nibble, to infer the targets locations by using signal quality
measurements. Nibble uses a different concept of localization accuracy which is
defined as the proportion of correct readings in reading set. A correct reading
is counted when the targets actual location is located in its most likely referred
area. In [33], by consulting all the APs for each location request, the Nibble
system can achieve 97% accuracy. To save computation cost, the Nibble system
only consults three most neighboring APs to achieve 96% accuracy. Compared
to RADAR and Horus, although the computation cost for coordinate calculation
is not considered by Nibble, the recording of location frequency and frequency
updating are required. The accuracy of Nibble heavily relies on the deployment
of RPs. For instance, if the target is far away from its nearest RP, the localiza-
tion accuracy cannot be guaranteed. The major difference between Horus and
Nibble is the approach to record RSS distributions. The former one fits each RSS
distribution as a Gaussian curve and stores the parameters of the fitted Gaus-
sian curves into a database, while the latter one records the frequency of each
RSS value and constructs a RSS distribution histogram. In [20], Kaemarungsi
studied the variations of RSS distributions with respect to the interference of
device orientation and body and infrastructure shadowing. The results in [20]
can help to examine the properties of RSS fingerprints.

Besides neighbor matching and Bayesian estimation algorithms, pattern
matching algorithm can also be used for fingerprint-based Wi-Fi localization.
With the help of topological counter propagation network (CPN) and k-nearest
neighborhood vector mapping, LENSR [34] can not only improve location speed,
but also reduce computation cost. Similar work can be found in [35–37]. In [35],
Outemzabet used particle filtering to enhance the accuracy of artificial neural
network (ANN) based location system which is mounted with a digital com-
pass. A compass and particle filtering approach are applied to avoid trajectory
discontinuity and modify motion orientation respectively. In [36], the targets
location is estimated by using a modular multi-layer perceptron (MMLP) which
contains five key steps: RSS recording and outlier filtering, data normalization,
neural network training, data post processing, and regression analysis to conduct
location estimation. Different from LENSR and MMLP, a discriminant-adaptive
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neural network (DANN) is introduced in [37] to extract the most useful infor-
mation into discriminative components for neural network training. In DANN,
since most of the redundant information is discarded before neural network train-
ing, the localization accuracy and real-time capability are improved. In all, the
training process is recognized as one of the most challenging parts for the better
design of pattern matching based localization algorithm.

3.2 TOA and AOA-Based Localization

TOA and AOA-based localization are with the ideas of trilateration and tri-
angulation algorithms. To enable the localization in 2-dimensional domain, the
propagation time and arrival angles from 3 and 2 APs to the target are used for
TOA and AOA-based localization respectively [38–40].

In TOA-based localization [38], by assuming that the propagation time is
directly proportional to the distance, we apply trilateration algorithm to estimate
the targets locations based on the distances from 3 APs to the target. These
distances are calculated from the measured propagation time.

We should not only guarantee the precise time synchronization between APs
and receiver, but also label the transmitting signal by the exact timestamps for
the sake of precisely calculating the distances the signal has traveled. In concrete
terms, the estimated location is determined by the hyperbolic curve which has
the constant difference in signal arrival time from each pair of APs [39].

The two key advantages of AOA-based localization are that there are as few as
2 APs for 2-dimensional localization, and meanwhile the time synchronization is
not required [40]. The localization accuracy could be seriously deteriorated when
the signal is blocked by the walls or the target is significantly far away from APs.
In all, TOA and AOA-based location systems involve substantial changes of both
APs and receivers.

3.3 Propagation Model-Based Localization

As discussed in [41], the mean of RSS decreases logarithmically with the increase
of the distance between AP and receiver in ideal space. If the small-scale fading
dominants over the large-scale fading or the propagation models are not pre-
dicted precisely, the accuracy of propagation model-based localization could be
degraded. Ahn [42] studied the integration of Wi-Fi, UWB, and ZigBee tech-
nologies for indoor localization and introduced a new way to the prediction of
finer propagation model corresponding to the target domain by using an iterative
model modification process.

Narzullaev [43] compared the performance of three representative propaga-
tion models: (1) log-distance model which is based on the assumption that the
mean of RSS varies logarithmically with respect to the propagation distance;
(2) multi-slope model which gives better estimation of RSS distributions and
saves the effort for RSS recording; and (3) multi-wall model which provides the
finest prediction of RSS in indoor environments. More studies on propagation
model-based Wi-Fi localization can be found in [44,45]. Finally, Table 2 briefly
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Table 2. Comparison of several indoor location solutions

Solutions Algorithms Accuracy Main cost Availability

RADAR

[17]

KNN and

Viterbi-like

enhanced

KNN

4m within 50% by

KNN;2.37m–2.65m

within 50% and

5.93m–5.97m within

90% by Viterbi-like

enhanced KNN

Traversal of radio map

to find the nearest

neighbor(s)

On the same floor in a

3-storey building with

dimensions of 43.5m by

22.5m and all the 70RPs

calibrated in linear

corridors

Horus [32] Bayesian

estimation

2.1m within more

than 90%

Small-scale

compensation

On the fourth floor in a

building with dimensions

of 68.2m by 25.9m and

110 RPs and 62RPs

calibrated in linear

corridors and rooms

Nibble [33] Bayesian

estimation

97% accuracy by

using all APs and

96% accuracy by

using 3 neighboring

APs

Recording of the

frequency the target is

at a certain location

and the updating of

frequency

On the second floor in a

building with dimensions

of 224 by 9 feet including

40 offices, three clusters

of cubicles, and several

conference rooms

LENSR [34] CPN with

KNN

1m within 90.6% and

1.5m within 96.4%

Creation of the

theoretical propagation

model

Simulation environment

with dimensions of 20m

by 20m and all the RPs

calibrated with the

interval of 1m

Outemz

abet [35]

Enhanced

ANN

39% and 50%

accuracy

improvement by

using nonlinear and

linearized filtering

compared to Kalman

filtering

Particle filtering On the fifth floor in a

building which has a

trapezoidal shape with

dimensions of 95m, 70m,

and 40m and all the

555RPs calibrated in

linear corridors

MMLP [36] MMLP 0.1258m error in

average and the

maximum error of

2.1667m

Filtering of the timely

nonregular patterns for

neural network training

On the third floor in a

building covering an area

of 286m2 and 24RPs and

39RPs calibrated in

linear corridors and

rooms

DANN [37] DANN 4m within 88.6% and

2.5m within 70.48%

Extraction of the most

useful information into

discriminative

components for neural

network training

On the same floor in a

building with dimensions

of 24.6m by 17.6m and

all the 45RPs calibrated

in linear corridors with

the interval of about 2m

TOA [38] TrilaterationAverage

root-mean-square

error (RMSE) of

1.1m

Precise time

synchronization

between APs and

receiver

In a linear corridor with

an AP mounted on one

end of the corridor and

the RPs calibrated at 2m

increments

Ahn [42] Propagation

model

Most of the errors

falling into the range

of [2m, 4m]

Integration of Wi-Fi,

UWB, and ZigBee

technologies

In an office with 5

reference transmitters

and mobile reference tags

fixed 3m height

Narzullaev

[43]

Propagation

model

Average error of

5.9m, 5.3m within

50%, 7.3m within

67%, and 9.6m

within 90%

Optimization of

calibration procedure

In an office with

dimensions of 18m by

12m and 51RPs

calibrated in a 2m-grid
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compares the previously mentioned location solutions in terms of algorithms,
accuracy, main cost, and availability.

4 Conclusion

In this paper, we have reviewed and studied several comparisons of the computa-
tions to improve the distance dependency of Wi-Fi RSS fingerprints and enhance
the location accuracy of neighbor matching and Bayesian estimation for Wi-Fi
localization. Because it is cannot work well in urban and indoor environment
due to the poor quality of RSS received from satellites. There are three typi-
cal categories of Wi-Fi localization algorithms: RSS fingerprint-based, time of
arrival (TOA) and angle of arrival (AOA)-based, and propagation model-based
localization. In this paper can be considered of localization accuracy and com-
putation and maintenance cost, RSS fingerprint-based indoor Wi-Fi localization
algorithm is preferred. The major contribution of this paper is that based on
autocorrelation property of the real Wi-Fi RSS sequences, we present to elimi-
nate the unstable RSS samples which are much likely to be interfered by burst
noise. A reliable approach to be used to detect the existence of burst noise in
each RSS sequence forms another interesting direction.
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