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Abstract. In recent years, location-based services LBS have received
extensive attention from scholars at home and abroad, and how to obtain
location information is a very important issue. The creation of systems
for solving problems of positioning and navigation inside buildings is a
very perspective, actual and complicated task, especially in a multi-floor
environment. To improve the indoor localization performance, we pro-
posed a three-dimensional (3D) indoor localization system integrating
WiFi/Pedestrian Dead Reckoning (PDR), where extended Kalman filter
(EKF) is used to estimate target location. The algorithm first relies on
MEMS in our mobile phones to evaluate the speed and heading angle of
the test nodes. Second, for two-dimensional (2D) localization, the speed
and heading angle as with as the results of the WiFi Fingerprint-based
localization are utilized as the inputs to the EKF. Third, the proposed
algorithm works out the height of the test nodes by utilize a barome-
ter and geographical data which have been recorded in real time. Our
experimental results in a real multi-layer environment indicate that the
proposed WiFi/PDR integrated system algorithm means that the local-
ization accuracy error is at least 1 m lower than WiFi and PDR itself.

Keywords: Wi-Fi fingerprinting · PDR · Extended Kalman Filter
Multi-floor positioning

1 Introduction

Indoor localization technology is widely used in shopping mall navigation, smart
home, personnel search and rescue and other fields, with great commercial value
and broad application prospects. High-precision indoor localization technology
can bring immeasurable value to the enterprise. GPS [1] can provide good posi-
tioning accuracy for outdoor localization, but the satellite signal is seriously
attenuated indoors [2], which is difficult to meet indoor localization needs and
makes indoor localization technology a major challenge. Many indoor localiza-
tion technologies utilize integrated sensors to assist in indoor localization sys-
tems to improve localization accuracy. Among them, Kalman filter is one of
the widely used data fusion methods, but due to indoor multipath effect and
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wall attenuation, Kalman filter is difficult to accurately describe indoor signals.
Compared with outdoor scenario, indoor localization and navigation methods
usually require higher accuracy and better environmental adaptability. In this
situation, many localization technologies have been studied and even utilized in
many special scenarios, such as WiFi fingerprinting, RFID (Bluetooth RFID)
and other technologies [3–5].

It is well known that due to the low cost of equipment, extensive infrastruc-
ture deployment and high positioning accuracy, WiFi fingerprint based localiza-
tion technology is very popular in indoor and underground environments [6–10].
However, complex indoor environments can cause blocking, attenuation, and
multipath effects on Received Signal Strength Indication (RSSI) measurements.
And RSSI is difficult to reflect accurate location information, which degrades the
accuracy of fingerprint-based positioning. In order to solve this problem, some
positioning technologies integrating WiFi fingerprint recognition and MEMS sen-
sors are proposed in [11–15].

MEMS sensor based positioning techniques have been widely adopted for
most mobile terminals currently integrate different types of sensors, such as
accelerometers, magnetometers and barometers. In most cases, MEMS sensor-
based positioning has low infrastructure costs and satisfactory positioning [16–
19]. However, cumulative errors associated with MEMS sensor based positioning
have long been considered one of the most important issues.

The main contributions of this paper are as follows. First, we use gait detec-
tion to optimize the speed calculation. In addition, we use the quaternion algo-
rithm to improve the accuracy of the heading angle calculation. Second, we
designed an extended Kalman filter (EKF) to reduce the cumulative error based
on MEMS sensor positioning and large errors based on WiFi fingerprint recog-
nition. Finally, in order to achieve 3D positioning in multi-layer scenes, a calcu-
lation algorithm based on floor height is proposed.

The rest of this paper is organized as follows. The second part introduces the
integrated WiFi/PDR positioning algorithm and the high degree of calculation
method. In the third part we integrated the data from wifi fingerprinting and
MEMS sensors to verify our algorithm in a multi-layer scenario. In the fourth
part, the experimental conclusions are utilized in the 3D indoor localization
WiFi/PDR integrated system.

2 System Description

As shown in Fig. 1, the WiFi/PDR fusion multi-floor 3D positioning algorithm
mainly includes four parts: the WiFi fingerprinting positioning, the PDR part,
where speed and heading where determined, the EKF part, and the height cal-
culation part. Firstly, we obtained WiFi fingerprinting based positioning, then
the speed and heading information of the pedestrian were calculated through the
measurement information obtained by the MEMS sensors, and then the com-
bined data was used as the input of the Extended Kalman Filter (EKF). In the
fourth step, the height information measured by the barometer. Finally, we got
the 3D positioning result of the pedestrian.
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Fig. 1. System scheme.

2.1 WiFi Fingerprinting-Based Positioning

The indoor fingerprinting technology based on location fingerprint mainly
includes two stages: offline phase and online phase. In offline phase, the loca-
tion information and corresponding signals, such as RSSI, AOA, TOA, etc., are
collected at the reference point (RP) of the target area. Then we calculate the
distribution corresponding to the signals received by different RPs, and then
construct an offline location fingerprint database. In online phase, the signals
are collected in real time in the target area and the distribution of real-time
signals is calculated, and then we compare it with the fingerprint database to
find the target location. The best match RP is regarded as the estimated target
position.

This paper uses the k-nearest neighbor (KNN) algorithm for localization. The
KNN algorithm is a basic classification and regression method. For a training
set, input new data, and find k data nearest to the data in the training set. If
most of the k data belong to a certain class, the data belongs to this class.

The signal information received by the ith RP can be denoted as [20]

Ti =

⎡
⎢⎢⎢⎣

Pr(A1O1| Pti) Pr(A2O1| Pti) · · · Pr(AnO1| Pti)
Pr(A1O2| Pti) Pr(A2O2| Pti) · · · Pr(AnO2| Pti)

...
...

. . .
...

Pr(A1Ov| Pti) Pr(A2Ov| Pti) · · · Pr(AnOv| Pti)

⎤
⎥⎥⎥⎦ (1)

Where A represents AP information, O represents the value obtained by the
RSSI experiment, and Pt represents the position information of the RP. The
mathematical expectation of the signal strength from each AP is calculated in
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the RP. The experimental results were utilized to build the required fingerprint
database. The fingerprint for the ith RP can be expressed as:

Ti =
[
S̄i|Pti

]
=

[
Pr(A1Ō) Pr(A2Ō) · · · Pr(AnŌ)|Pti

]
(2)

If the WiFi signal strength detected by the mobile device of the user under
test is S, hen the distance between the current WiFi signal location feature
parameters and the fingerprint database can be calculated by the following
matching algorithm.

di =
∥∥S− S̄i

∥∥ (3)

Using the K-nearest neighbors algorithm, the K smallest values of di are
used to compute the coordinates of the target point by

L̄ =
∑
i∈C

Li

di
(4)

where C is the set made up by the K smallest values of di and Li means the
coordinates of RP.

2.2 PDR (Pedestrian Dead Reckoning)

PDR (Pedestrian Dead Reckoning) positioning algorithm is a relative position-
ing algorithm. The basic principle of the PDR positioning algorithm is to use
inertial sensors and magnetometers to measure the acceleration, angular velocity,
and other information of pedestrian movement, so as to calculate the direction
and distance of the pedestrian movement, and together with the known pedes-
trian position information from the previous moment, to calculate the present
moment pedestrians location information. Therefore, when the pedestrian’s ini-
tial position is known, the pedestrian’s position information can be calculated
continuously in real time. The basic principle is shown in the Fig. 2.

Fig. 2. Illustration of walking path.



WiFi/PDR Integrated System for 3D Indoor Localization 455

If the position of the pedestrian at the initial time t1 is known (x0, y0), the
initial heading angle θ0 is the distance measured by the inertial sensor d0, and
the position of the pedestrian at the moment (x1, y1) can be calculated as

{
x1 = x0 + d0 cos θ0
y1 = y0 + d0 sin θ0

(5)

In the same way, the position of the pedestrian (x1, y1) at the moment t1 can
be calculated by using the heading angle and the position (x2, y2) of the moment
t2 as {

x2 = x1 + d1 cos θ1 = x0 + d0 cos θ0 + d1 cos θ1
y2 = y1 + d1 sin θ1 = y0 + d0 sin θ0 + d1 sin θ1

(6)

According to this calculation, we can calculate the position (xk, yk) at the
moment tk by

xk = x0 +
k−1∑
i=0

di cos θi

yk = y0 +
k−1∑
i=0

di sin θi

(7)

In the formula, di it is the time ti−1 to ti forward displacement, which is the
heading θi of the pedestrian position at the time of i.

2.3 Extended Kalman Filter

When the WiFi signal is in an available state, the time update and the obser-
vation update are generally performed in the WiFi/PDR integrated system by
using a Kalman filter to complete the state parameter, thereby reducing the
estimation error. The time update process is expressed as

X̄i = Fk,k−1X̂k−1

P̄k = Fk,k−1Pk−1FT
k,k−1 + Qk−1

(8)

In addition, the Kalman filter observation update equation is written by

V̄k = Zk −HkX̄k

PV̄k
= HkP̄kHT

k + Rk

Gk = P̄kHT
kP

−1
V̄k

X̂k = X̄k + GkV̄k

Pk = (I−GkHk)P̄k

(9)

where X̄k is the prior probability estimate, X̂k is the posterior information esti-
mate, Gk is the gain matrix of the Kalman filter, P̄k is the covariance matrix of
prior probability State vector, Pk is the posterior probability covariance matrix
of the state vector, Rk is the covariance matrix of the observation noise vector,
and Qk−1 is the covariance matrix of the process noise. The subscript k denotes
the time, and the subscript k, k − 1 represents the forward positional feature or
covariate interference estimate from k − 1 to k.



456 M. Zhou et al.

2.4 Altitude Calculation

Under normal circumstances, pedestrians are divided into three types: walking
on flat roads, climbing stairs and descending the stairs. In these three cases, the
method of solving two-dimensional positions is the same. Only a small difference
in the size of the specified step, i.e., the step length should be set to the width
of the stair step.

This article uses only the altitude value measured by the barometer to judge
the upper and lower levels, and the actual height information is calculated by
estimating the height from the floor. Pedestrians can be divided into two types
of situations: (1) walking on the floor; (2) climbing the stairs or going down the
stairs.

3 Experimental Results

The tests were carried on the first and second floors in a building of a university.
The floors plan is described in Fig. 3, the first floor dimensions are 64.6× 18.5 m2

and second floor are 81.2× 18.5 m2. 10 D-Link DAP 2310 APs (marked in red)
are disposed in this scenario, named AP1, AP2, AP3, AP4, AP5, AP6, AP7, AP8,
AP9, and AP10. The RPs are evenly regulated with an spacing of 0.6 m.

AP1
AP5

AP2

AP3

AP4

AP6
AP7

AP8

AP9

AP10

First Floor

Second Floor

Fig. 3. Floor plan. (Color figure online)

In our experiment, the smartphone Samsung Galaxy S3 was selected as the
receiver, which integrates an accelerometer, gyroscope, magnetometer, barome-
ter, and WiFi module. We used two applications, Wifi sensors and Wifi localiza-
tion for MEMS sensors and WiFi RSSI measurements. Measured data is stored
on a Secure Digital (SD) card and the recording frequency is equivalent to 50 Hz.
Figure 4 shows the WiFi AP and the mobile phone for test.
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Fig. 4. WiFi AP and mobile phone for test.

Figure 5 shows the real path and positioning results of the test node. In
the 3D plan, the estimated path is displayed utilizing PDR (traditional MEMS
sensor-based localization method [16] and WiFi fingerprint-based localization
method [4]) and the proposed integrated WiFi/PDR positioning method. The
measurements indicate that the proposed method effectively reduces the errors
which accumulated in the PDR, thus significantly improves the 3D positioning
work in a multi-tier scenario compared to a separate WiFi and PDR system.

By adopting the proposed height work-out method, the traditional height
calculation method based on barometer [21], the height work-out method based
on K-means [22], the height estimation error cumulative distribution function
(CDF)/PDR against PDR and WiFi, respectively Compare in Fig. 6. As can
be seen from Figs. 5 and 6, the result of the calculation method based on the
barometer height is not stable, and when the test node is located in the stairway,
the efficiency of the height work-out method based on the K value is seriously
deteriorated.

Fig. 5. Localization results. Fig. 6. CDF of localization error.
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Errors of CDFs for 3D localization using PDR and WiFi/PDR integrated
systems using WiFi with Kalman filter method is also included in Table 1. As
depected in Table 1, we can see that the proposed method gets an average
positioning error of 1.6 m and a 90% error is less than 3.4 m, which is much
more precise than the performance of traditional Wi-Fi-based and PDR-based
methods.

Table 1. Comparison of algorithm performance

Largest positioning
error (m)

Mean positioning
error (m)

67% positioning
error (m)

90% positioning
error (m)

Wi-Fi 9 2.6 2 5.2

PDR 5.6 2.6 3.2 4.2

EKF 5.4 1.6 2 3.4

4 Conclusion

In this paper, we propose a innovative smartphone-based indoor WiFi/PDR
multi-layer location algorithm to locate a multi-layer environment in 3D. Experi-
mental results indicate that our method can reduce the errors accumulated by the
localization based on PDR sensors and the significant errors of WiFi Fingerprint-
based localization. Compared with traditional PDR sensor-based localization
and WiFi fingerprint-based localization methods, our method achieves higher
accuracy measurements with an average localization error of 1.6 m and a 90%
3D positioning error of less than 3.4 m. In addition, for our future work we can
adapt our system to different users by changing the step size.
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