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Abstract. Considering the shortcomings of large storage space requirements
and high complexity in multiple-symbol differential detection algorithm in
current Multiple Input Multiple Output (MIMO) system, this paper proposes a
probabilistic sorting memory constrained tree search algorithm (PSMCTS) by
using performance advantage of sorting algorithm and storage advantage of
memory constrained tree search (MCTS). Based on PSMCTS, a pruning
PSMCTS named PPSMCTS is put forward. Simulation results show that the
performance of PSMCTS is approach to that of ML algorithm under fixed
memory situations, while the computational complexity is lower than that of
MCTS algorithm in small storage capacity conditions under low signal noise
ratio (SNR) region. PPSMCTS has more prominent advantages on reduction of
computational complexity than PSMCTS algorithm. Theoretical analysis and
simulation demonstrate that the two proposed algorithms can effectively inherit
the good feature of MCTS algorithm, which are suitable for hardware
implementation.

Keywords: MIMO � Probabilistic sorting � Memory constrained tree search
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1 Introduction

Recent years, the combination of Multiple Input Multiple Output (MIMO) technology
and Orthogonal Frequency Division Multiplexing (OFDM) technology expands the
application of MIMO system greatly, makes the system works more efficiently in
frequency selective fading environment. However, under severe channel states, for
example high-speed mobile condition, it is very difficult for the receiver to obtain the
channel state information. Therefore, differential encoded signaling combined with
low-complexity differential detection at the receiver becomes an attractive design
alternative. But 3 dB performance loss would be paid compared with traditional cor-
relation detection [1]. Then multiple-symbol differential detection (MSDD) which
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using N + 1 received symbols to detect N symbols (N is regarded as observation
window length or block length) is proposed as an effective solution to this problem.
The increasing length of observation window can effectively shorten the performance
gap of 3 dB [2].

At present, most multiple-symbol differential detection algorithms are based on
tree-searching principle [1, 3]. Maximum likelihood (ML) detection [2] is the most
representative algorithm of best performance. But the exhaustive search strategy makes
its complexity increase in an exponential relationship with the block length and the
number of antenna, which leads to a computationally intractable problem. Therefore,
some detection algorithms with lower complexity were proposed [4–9]. Around these
algorithms, there are three kinds of search strategies in general: depth-first [4, 5],
breadth-first, and metric-first. Sphere detection (SD) is a typical depth-first searching
detection algorithm. Due to its continuous backtracking, this algorithm has different
throughput when in different channel environment, which does not lend itself to par-
allel and pipeline processing. Breadth-first search strategy [6, 10, 11], such as K-BEST
algorithm, has high throughput and stable complexity, which is suitable for pipeline
processing, but the K value constraint brings loss in performance. Stack algorithm [7]
mainly based on metric-first strategy, as named as Dijkstra algorithm [8, 9], it always
extends the node with the minimum metric value in measure list, so it has least visited
node number among the three search strategies.

However, the hardware implementation of these algorithms usually has high
computational complexity and requires large storage capacity. But in practice, the
storage space is confining, which limits the algorithm performance. MCTS (Memory
Constrained Tree Search) proposed in paper [12] gave a solution to this problem. It can
approximate the performance of ML algorithm under any storage space situation. When
the storage space is set as minimum value or maximum value, the performance of the
MCTS algorithm approaches to that of the SD algorithm and stack algorithm respec-
tively. Moreover, the average computational complexity reduces with the increasing of
storage space. It possesses a good compromise between memory requirement and
computational complexity. But, the complexity is still high when in small memory
space because of approximating SD strategy.

DSPS (Dijkstra Search with Probabilistic Sorting) algorithm is a new tree search
algorithm proposed by Chang [13, 14]. Compared with the Dijkstra algorithm of full
search, DSPS greatly reduces the number of visited nodes and effectively enhances the
bit error ratio (BER) performance by using mathematical statistical probability on the
nodes. It has high research value in respect of saving storage space and reducing
complexity.

In this context, we focus on using efficient methods to improve MCTS algorithm,
which aiming to reduce the computational complexity of MSDD MIMO system,
especially under memory constrained situation. We make the following contributions:

1. We propose a new memory constrained search algorithm - PSMCTS (probabilistic
sorting memory constrained tree search), in which the DSPS merges into the MCTS
algorithm to reduce the access node number and improve the decision accuracy of
the MCTS algorithm.
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2. To enhance the PSMCTS’s advantage of low complexity under small memory size,
a pruning algorithm is applied into PSMCTS. The improved scheme is called
PPSMCTS. The key work here is how to decide the pruning threshold and use it to
prune the searching tree layer by layer.

The rest of the paper is organized as follows. Section 2 presents the system model
and signal construction. Section 3 introduces the PSMCTS algorithm applied in our
MSDD MIMO system. In Sect. 4, PPMCTS algorithm is proposed. Section 5 provides
system complexity and performance analysis, and Sect. 6 concludes the paper.

2 System Model

We consider a MIMO-OFDM system with NR receive and NT transmit antennas and
communicating over a quasi-static, frequency-flat fading channel. The system diagram
is shown in Fig. 1, in which the MSDD block is the focus of our research.

In Fig. 1, the space-time block coding (STBC) module is constructed on Alam-
outi’s transmit diversity scheme when NT ¼ 2. Other scheme can also be used,

depending on the number of antennas. Define information matrix St ¼ s1;t s2;t
�s�2;t �s�1;t

� �
,

where S1;t and S2;t belongs to a L-PSK modulation constellation collection V and

V ¼ fej2pðm�1Þ=Ljm ¼ 1; 2 � � � ; Lg ð1Þ

Fig. 1. Block diagram of MIMO system
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St satisfies StSHt ¼ I2; ð�Þ� means conjugate. For differential coding, setting reference

matrix C0 ¼ 1=
ffiffiffi
2

p
1=

ffiffiffi
2

p
�1=

ffiffiffi
2

p
1=

ffiffiffi
2

p
� �

, the coding rule is

Ct ¼ StCt�1 ð2Þ

where Ct denotes differential coding matrix. After differential coding, the data is
transmitted through the space-time matrix using different multipath channel model.
Now the receive signal at t time is

Rt ¼ CtHt ¼ Wt ð3Þ

where Rt ¼ r1;t
r2;t

� �
;Ct ¼ c1;t c2;t

�c�2;t �c�1;t

� �
;Ht ¼ h1;1

h2;1

� �
is channel matrix, in which

each element hi;1 i ¼ 1; 2ð Þ follows Gauss distribution with 0 mean and variance

r2H ;Wt ¼ w1;t

w2;t

� �
is a noise matrix, in which each element follows Gauss distribution

with mean 0 and variance r2W .
Assuming the window length of multiple-symbol differential detection (MSDD) is

N + 1, namely the receiver continuously receives N + 1 symbols to detect N symbols.
The ML decision criterion is based on the following formula (proof see Appendix A)

V̂ML ¼ argmin
Vtþ 1;...;VtþN

XN
i¼1

XNþ 1

l¼iþ 1

jjR½lþ t � 1� � ð
Ylþ t�1

m¼iþ t

V ½m�Þ � R½iþ t � 1�jj2F ð4Þ

where t denotes the start time of detection.

3 PSMCTS Algorithm

In MCTS algorithm, (4) is used as metric decision, and the visiting node selection is
restricted to the storage space and the metric value. It visits the node with minimum
metric value per time. This feature can reduce the requirement of storage space. But in
small storage space condition, MCTS tends to use a depth-first search strategy, like
sphere detection (SD) algorithm, which still needs to backtrack to visit a large number
of nodes and the computational complexity is still large.

To optimize formula (4), we use the cumulative distribution function of [10] as the
decision metric

F̂ ¼ argminFðD; kÞ ¼ argmin
cðk=2;D=r2Þ

Cðk=2Þ ð5Þ

where D ¼ PN
i¼1

PNþ 1

l¼iþ 1
jjR½lþ t � 1� � ð Qlþ t�1

m¼iþ t
V ½m�Þ � R½iþ t � 1�jj has k-dimensional

chi-square distribution (proof see Appendix B).
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Based on MCTS and (5), combined with Dijkstra algorithm characteristic, we
propose a probabilistic sorting memory constrained tree search algorithm (PSMCTS),
its search procedure is as follows:

1. According to the system requirements, modulation constellation size is L. Initialize
the available storage space number with M;M� N � 1ð Þ L� 1ð Þþ 1. Initialize
multiple window length with N, and send the receiving signals with block size
N + 1 into PSMCTS decoder.

2. Set tree level K ¼ N, which represents the search starts from the tree root. If K 6¼ 2,
expend the root node to L child nodes, save them into memory storage and delete
the root node. Do search process of MCTS algorithm according to (5).
(a) Start from K ¼ N, namely from V tþN½ �. According to PSMCTS, expand L

child nodes, save them into memory storage and delete the node itself. Choose
the best node from storage which satisfies (5), then expand it to next level.
Save L expanding nodes into storage and delete the chosen best node.

(b) Expand the best node from upper level, and save L child nodes into memory
storage. In condition of low storage space, due to the stored branch node
number is small, choose the best branch node to expand directly. If K ¼ 1,
output the node with minimum value directly. If storage space is enough, retain
multiple branch nodes. Expand the best node and add L child nodes into
memory storage. Do stack algorithm in the storage. Repeat the above steps until
the best leaf node is found.

(c) Repeat the above steps until the bottom of the tree is reached. Then output the
best path.

3. If K ¼ 2, find the best leaf node, and output the best path.

Fig. 2. Tree search analysis of PSMCTS
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The search demos of PSMCTS and MCTS are shown as Figs. 2 and 3, respectively.
In the figures, 〇 denotes the branch nodes which are not visited. denotes the visited
nodes. denotes the best path node. Figure 2 shows tree search analysis of PSMCTS.
In this figure, numerical value is probabilistic metric value, which in parenthesis is
traditional metric value. After the iterative computation runs to the step when N3 is
selected, the node list contains four nodes N2, N4, N5, N6, which ordered as N2, N6,
N4, N5 by traditional metric, and N2 will be selected as the best node to iterative
computation for next round. But the four nodes will be ordered as N6, N4, N5, N2 by
probabilistic metric, N6 will be chosen directly as the best node for next round iterative
computation. Figure 3 is the chart of tree search analysis for MCTS. In this figure,
numerical value is traditional metric value. It is intuitively show that the PSMCTS
algorithm has the advantage of less visited nodes as compare to MCTS. In addition, in
order to express the search process advantage more intuitively, Tables 1 and 2 show the
specific search storage state of PSMCTS and MCTS respectively, where the bold
number denotes visited node chosen for expanding.

The two tables below show the use of storage of the two algorithms respectively.
In PSMCTS, the storage space of each layer only needs to retain 3 branch nodes, while
MCTS needs to retain 4 nodes at least. This reveals the PSMCTS algorithm has
advantage in reducing storage space requirement, and this advantage will increase
along with the number of constellation points. The tables also show the advantages of
simplified steps in PSMCTS algorithm. Because it can accurately represent node
metrics, the storage space is reduced, the number of visited nodes is reduced and the
tree search process is accelerated, which makes the algorithm more effective and fast.

Fig. 3. Tree search analysis of MCTS
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4 PPSMCTS

As introduced in Sect. 3, the PSMCTS algorithm can adjust its search strategy
dynamically according to the memory size. When the pre-specified memory size is very
small, the computational complexity cannot but become large. As the pre-specified
memory size increases, the average of the computational complexity will decrease. The
key point is to find the best trade-off between memory requirement and computational
complexity. Aiming at reducing the computational complexity further on the constraint
of small memory, this part puts forward a pruning PSMCTS algorithm called
PPSMCTS.

The PPSMCTS algorithm is proposed based on the PSMCTS algorithm. The dif-
ference is that, in PPSMCTS, we set a pre-specified pruning threshold and use it to
prune the searching tree layer by layer, only those nodes whose metric are smaller than
the pruning threshold are retained. The pruning process can reduce the total number of
visited nodes throughout detecting and it is especially effective in low SNR region with
small memory constraint. When SNR is high, the number of visited nodes can reach to
only N nodes.

The pruning threshold is a key fact. If the value is too large, the memory will
contain lots of useless nodes and will not be able to reduce the complexity. And if the
value is too small, the probability of removing the maximum likelihood solution will be
increased. It will affect the performance of detection.

Table 1. PSMCTS search state

Visited node Memory nodes metric (level) Visited level

(1) 0.86(4), 1.19(4) 4
(2) 1.01(3), 1.21(3), 1.19(4) 3
(3) 1.33(2), 0.57(2), 1.21(3) 2
(4) 0.24(1), 0.33(1) 2
(5) 0.24(1) 1

Table 2. MCTS search state

Visited node Memory nodes metric (level) Visited level

(1) 0.91(4), 1.05(4) 4
(2) 1.01(3), 1.03(3), 1.05(4) 3
(3) 1.03(3), 1.63(2), 2.21(2), 1.05(4) 2
(4) 1.06(2), 1.52(2), 2.21(2), 1.63(2) 3
(5) 0.31(1), 0.71(1), 1.52(2) 2
(6) 0.31(1) 1
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In PPSMCTS algorithm, from formula (A.3 in Appendix A), the metric (i.e.,
weight) of the node S nð Þ atn 1� n�Nð Þ level of weighted L-ray tree is

dn ¼
XNR

nR

RH
nRðnÞK�1

n RnRðnÞ ð6Þ

where Kn ¼ SðnÞðCR;n 	 INT ÞSHðnÞ. For the root node, d0 ¼ 0. Thn denotes the cor-
responding pruning threshold of the n-level. The retained probability of node SðnÞ after
pruning operation is taken as Pr dn � Thnf g ¼ 1� e. In order to ensure the BER per-
formance, the pre-specified probability can be set as P0 ¼ 1� e. Then the pruning
threshold Thn should satisfy

Pr dn ¼
XNR

nR

RH
nRðnÞK�1

n RnRðnÞ� Thn

( )
¼ P0 ¼ 1� e ð7Þ

where RnRðnÞ meets CN 0;Knð Þ distribution, and its quadratic form 2RH
nRðnÞK�1

n RnRðnÞ
meets v22ðnþ 1ÞNT

distribution of 2ðnþ 1ÞNT degree of freedom. Owing to the statistical

independence of RnRðnÞ; nR ¼ 1; 2; . . .;NR; 2dn ¼ 2
PNR

nR
RH
nRðnÞK�1

n RnRðnÞ meets

v22ðnþ 1ÞNTNR
distribution of 2ðnþ 1ÞNTNR degree of freedom. Substitute these data into

(7), we get

Thn ¼
v22ðnþ 1ÞNTNR

ðP0Þ
� ��1

2
ð8Þ

Here, the superscript ‘−1’ represents the inverse of Chi square distribution. (9) is
then obtained according to the Chi square distribution of 2ðnþ 1ÞNTNR degree of
freedom.

Za

0

1
2ðnþ 1ÞNTNRC nþ 1ð ÞNTNRð Þx

ðnþ 1ÞNTNR�1e�
x
2dx ¼ P0 ¼ 1� e ð9Þ

Here, e is very small, such as 0.1, 0.01, etc. a can be obtained from (9), which is

equivalent to v22ðnþ 1ÞNTNR
P0ð Þ

� ��1
. In order to find ML solution, all children of the

root node will remain without being pruned. We adopt the pruning threshold which is
expressed as

Thn ¼ n
2
a; n ¼ 1; 2. . .;N ð10Þ

Where a can be obtained from (9), and n is an empirical value related to the tree
level which is set to increase the threshold value [16].
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5 Complexity and Performance Analysis

In order to verify the effectiveness of PSMCTS, we analyze the complexity and the bit
error ratio (BER) performance in this section, where the noise is a Gaussian white noise
with a mean 0 and a variance of 1, the channel is quasi-static frequency flat fading
channel and it remains constant within an observation window.

5.1 Complexity Analysis

In MCTS algorithm, M must has a minimum bound to ensure the MCTS algorithm can
be achieved. According to the proof about M minimum bound in [12], set M value as
N � 1ð Þ L� 1ð Þþ 1 in multi-symbol differential system, where L is the number of
constellation. Here, window length N ¼ 4, with QPSK modulation L ¼ 4, and
M� N � 1ð Þ L� 1ð Þþ 1. For ML algorithm, the visited node number is L0 þ . . .

þ LN�1 ¼ LN � 1ð Þ= L� 1ð Þ. The visited node number of MCTS and PSMCTS are
shown in Figs. 4 and 5 respectively.

In Fig. 4, all kinds of comparisons are discussed in the condition that the window
length is 4. The horizontal and vertical coordinates denotes signal-to-noise ratio and
visited nodes number respectively. The result shows that under the same window
length and storage space, for the same kind of modulation, PSMCTS shows more
advantages compared with MCTS, especially in low SNR, which is conductive to a
lower average complexity. Furthermore, based on pruning algorithm, PPSMCTS has
the lowest calculate complexity among the four mentioned algorithms.
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Fig. 4. Complexity analysis comparison chart
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5.2 Performance Analysis

This part mainly conducts performance simulation and analysis on algorithms in the
test environment. In Alamouti STBC system, the binary bits is modulated to signal set
S = exp 2pj i� 1ð Þ=M½ �f g after MPSK mapping, where i ¼ 1; . . .;M. After differential
coding and 2 � 2 matrix transformation, each group symbol denotes as St, and 2 pair

symbols s1;t � s2;t
� �

and �s�2;t; s
�
1;t

h i
are sent through two different antennas. Assuming

the MPSK signal amplitude is A, single antenna transmit power P ¼ A2. Total transmit
power is PT ¼ A2. If Rayleigh channel h1 and h2 keep unchanged in the two symbol
times, the received signals are:

r1 ¼ h1s1 þ h2s2 þ n1
r2 ¼ �h1s

�
2 þ h2s

�
1 þ n2

ð11Þ

where n1; n2 is AWGN channel with zero mean, and r1; r2 is received signals at two
time slots.

s01 ¼ h�1r1 þ h2r�2 ¼ as1 þ h�1n1 þ h2n�2 ð12Þ

s02 ¼ h�2r1 � h1r
�
2 ¼ as2 þ h�2n1 � h1n

�
2 ð13Þ

where a ¼ h1j j2 þ h2j j2. Refer to MPSK theoretical bit error rate formula in Ref. [17],
we have
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Fig. 5. Performance analysis diagram

420 X. Jin et al.



SER ¼ M � 1
M

�
2a 2a2 þ 3ð Þ tan�1

ffiffiffiffiffiffiffiffiffiffiffi
�cs�2a2

2a2 þ 2

q	 

4p a2 þ 1ð Þ3=2

þ
a sin 2 tan�1

ffiffiffiffiffiffiffiffiffiffiffi
�cs�2a2

2a2 þ 2

q	 
	 

4p a2 þ 1ð Þ3=2

þ a 2a2 þ 3ð Þ
4 a2 þ 1ð Þ3=2

0
BB@

1
CCA

ð14Þ

where a ¼ ffiffiffiffiffiffiffiffiffi
�cs=2

p
sin p=Mð Þ;�cs ¼ 2A2=N0 is average SNR.

The simulation results are shown in Fig. 5. Using theoretical BER for comparison,
ML algorithm which has best performance is most close to theoretical BER. Under the
same storage space, both PSMCTS and PPSMCTS have certain performance
improvement compared with MCTS and are more approximate to ML, this is due to the
use of probabilistic sorting algorithm effectively.

6 Summary

Considering the large computational complexity problem under the condition of the
hardware storage space constraints and the small storage space, this paper proposed
PSMCTS algorithm, which effectively provides better performance by using the
advantage of DSPS algorithm and MCTS algorithm. Overall, PSMCTS algorithm not
only has low storage space demand and easy hardware implementation, but also
reduces the computational complexity in the low SNR region, which reduces the
average system complexity. With using pruning algorithm, PPSMCTS has more
obvious advantage in reducing complexity. At the same time, the detection perfor-
mance of the two algorithms this paper proposed approach ML algorithm. Therefore,
PSMCTS and PPSMCTS both are good detection algorithms.

Acknowledgement. This work was supported by Zhejiang Provincial Natural Science Foun-
dation of China (no. LY17F010012), the Natural Science Foundation of China (no. 61571108),
the open Foundation of State key Laboratory Of Networking and Switching Technology (Beijing
University of Posts and Telecommunication no. SKLNST-2016-2-14).

Authors’ Contributions. Xiaoping Jin conceived the idea of the system model and designed
the proposed schemes. Zheng Guo has done a part of basic work in this article. Ning Jin
performed simulations of the proposed schemes. Zhengquan Li provided substantial comments
on the work and supported and supervised the research. All of the authors participated in the
project, and they read and approved the final manuscript.

Competing Interests. The authors declare that they have no competing interests.

Appendix A

On the basis of the signal model given in Sect. 2, we define an additional 2ðNþ 1Þ �
2ðNþ 1Þ information matrix as S ¼ diag Sk; Sk�1; . . .; Sk�Nf g. Within one observation
window, the received matrix R conditioned on the message matrix S has a multivariate
Gaussian conditional Probability Density Function (PDF)
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pðRjSÞ ¼ 1
p4ðNþ 1Þ detK

expf�trðRHK�1RÞg ðA:1Þ

where K ¼ SðCR 	 INT ÞSH . Here, CR ¼ r2nINþ 1 þCh is the covariance matrix of R
[18], 	 denotes the Kronecker product of two matrices or vectors and Ch denotes the
autocorrelation matrix of the channel which can be expressed as

Ch ¼
Chð0Þ � � � ChðNÞ

..

. . .
. ..

.

Chð�NÞ � � � Chð0Þ

2
64

3
75:

Thus, the ML decision metric within the observation window can be written as

SML ¼ argmin trðRHK�1RÞþ ln detðKÞ� � ðA:2Þ

Considering that detðKÞ can be ignored because it is independence with the
transmitted information, (A.2) becomes

SML ¼ argmin trðRHK�1RÞ� � ðA:3Þ

Using the results of the literature [19], (A.3) can be simplified to (A.4).

V̂ML ¼ argmin
Vtþ 1;...;VtþN

XN
i¼1

XNþ 1

l¼iþ 1

�~ci;ljjR½iþ t � 1�ð
Ylþ t�1

m¼iþ t

V ½m�ÞH � R½lþ t � 1�jj2F

¼ argmin
Vtþ 1;...;VtþN

XN
i¼1

XNþ 1

l¼iþ 1

jjR½lþ t � 1� � ~ci;lð
Ylþ t�1

m¼iþ t

V ½m�Þ � R½iþ t � 1�jj2F
ðA:4Þ

In formula (A.4), ci;l is the entity element of K [15]. Normalize ci;l as follows,
cm ¼ maxjck;kþ 1j; k ¼ 1; . . .;N or cm ¼ c N=2b c; N=2b cþ 1, ~ci;l ¼ ci;l



cm, where �b c denotes

the floor operation, j 
 j denotes the absolute value. When the channel condition
remains within an observation window, ChðnÞ ¼ 1. Therefore
~ci;l ¼ 1 i ¼ 1; 2; . . .;N; l ¼ 2; . . .;Nþ 1 and i 6¼ lð Þ. So (A.4) can be simplified to (A.5).

V̂ML ¼ argmin
Vtþ 1;...;VtþN

XN
i¼1

XNþ 1

l¼iþ 1

jjR½lþ t � 1� � ð
Ylþ t�1

m¼iþ t

V ½m�Þ � R½iþ t � 1�jj2F ðA:5Þ

When N = 1, (A.5) can be simplified to (A.6)

V̂ ¼ argmin
Vtþ 1;...;VtþN

jjR½tþ 1� � V ½tþ 1� � R½t�jj2F ðA:6Þ
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Appendix B

When observation window N = 1, from formula (A.6), we obtain

D ¼ jjR½tþ 1� � V ½tþ 1�R½t�jj2F
¼ jjC½tþ 1�H½tþ 1� þW ½tþ 1� � V ½tþ 1�ðC½k�H½t� þW ½t�Þjj2F
¼ jjC½tþ 1�H½tþ 1� þW ½tþ 1� � C½kþ 1�H½t� � V ½tþ 1�W ½t�jj2F

ðB:1Þ

Since it is assumed that the channel remains unchanged at an adjacent interval, i.e.
H½tþ 1� ¼ H½t�, so

D ¼ jjW ½tþ 1� � V ½tþ 1�W ½t�jj2F ðB:2Þ

In this paper, the W ½n�; n ¼ t; tþ 1; . . .; tþN is a matrix with NT rows and NR
columns, each element follows Gauss distribution with 0 mean and variance r2W . It can
be seen that D=2r2w is a chi-square random variable with a degree of freedom of NRNT .
Thus, from formula (A.5), it can be deduced to (B.3) and (B.4) when the length of the
observation window is N + 1 in the multi-symbol differential detection system.

D ¼ jjC½tþN�H½tþN� þW ½tþN� � V ½tþN�C½tþN � 1�H½tþN � 1� � V ½tþN�W ½tþN � 1�jj2F
þ . . .þ jjC½tþN�H½tþN� þW ½tþN� � V ½tþN � 1�V ½tþN�C½tþN � 2�H½tþN � 2�
� V ½tþN � 1�V ½tþN�W ½tþN � 2�jj2F þ . . .þ jjC½tþN�H½tþN� þW ½tþN�
� V ½tþ 1�. . .V ½tþN � 1�V ½tþN�C½t�H½t� � V ½tþ 1�. . .V ½tþN � 1�V ½tþN�W ½t�jj2F
¼ jjC½tþN�H½tþN� þW ½tþN� � C½tþN�H½tþN � 1� � V ½tþN�W ½tþN � 1�jj2F
þ . . .þ jjC½tþN�H½tþN� þW ½tþN� � C½tþN � 1�H½tþN � 2� � V ½tþN � 1�V ½tþN�W ½tþN � 2�jj2F
þ . . .þ jjC½tþN�H½tþN� þW ½tþN� � C½tþ 1�H½t� � V ½tþ 1�. . .V ½tþN � 1�V ½tþN�W ½t�jj2F
¼ jjW ½tþN� � V ½tþN�W ½tþN � 1�jj2F þ . . .þ jjW ½tþN� � V ½tþN � 1�V ½tþN�W ½tþN � 2�jj2F
þ . . .þ jjW ½tþN� � V ½tþ 1�. . .V ½tþN � 1�V ½tþN�W ½t�jj2F

ðB:3Þ

In the derivation of (B.3), the third equal sign assumes that the channel remains
constant within an observation interval, resulting in the formula (B.4)

D ¼
XN
i¼1

XNþ 1

l¼iþ 1

jjW ½lþ t � 1� � ð
Ylþ t�1

m¼iþ t

V ½m�Þ �W ½iþ t � 1�jj2F ðB:4Þ

At this point, according to the chi-square random variable degrees of freedom of the
nature of the cumulative, D=2r2w is a chi-square random variable with a degree of
freedom of NðNþ 1ÞNRNT . So, the decision metrics distributed according to the chi-
square distribution with k ¼ 2NðN þ 1ÞNRNTr2w degrees of freedom [13]. Its cumula-
tive distribution function (cdf) is given by
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FðD; kÞ ¼ cðk=2;D=r2Þ
Cðk=2Þ ðB:5Þ

where r2 is variance of W ½lþ t � 1� � ð Qlþ t�1

m¼iþ t
V ½m�Þ �W ½iþ t � 1� in formula (B.4).

According to formulas (2) and (3), and the distribution character of channel and noise,
r2 is equal to 2r2W . Both cð:Þ and Cð:Þ are Gamma functions and show as

c s; xð Þ ¼
Z x

0
ts�1e�tdt ðB:6Þ

CðxÞ ¼
Z þ1

0
tx�1e�1dt ðB:7Þ
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