
Deep Reinforcement Learning-Based Task
Offloading and Resource Allocation for

Mobile Edge Computing

Liang Huang, Xu Feng(B), Liping Qian, and Yuan Wu

College of Information Engineering, Zhejiang University of Technology,
Hangzhou 310023, China

{lianghuang,lpqian,iewuy}@zjut.edu.cn, xfeng zjut@163.com

Abstract. We consider a mobile edge computing system that every user
has multiple tasks being offloaded to edge server via wireless networks.
Our goal is to acquire a satisfactory task offloading and resource allo-
cation decision for each user so as to minimize energy consumption and
delay. In this paper, we propose a deep reinforcement learning-based
approach to solve joint task offloading and resource allocation problems.
Simulation results show that the proposed deep Q-learning-based algo-
rithm can achieve near-optimal performance.

Keywords: Mobile edge computing · Deep reinforcement learning
Task offloading · Resource allocation · Deep Q-learning

1 Introduction

Mobile edge computing (MEC) provides a distributed computing environment
for mobile users [1], such that users are able to offload their computing tasks
to MEC servers. When tasks are offloaded, users can obtain higher quality of
service (QoS) the adequate cloud resources. But when users offload their tasks
to the cloud, the quality of service will be interfered because of the existence of
communication delay.

Offloading data to the MEC system is convenient for mobile devices. [2]
investigated data offloading from mobile devices to MEC system and proposes a
coalitional game-based pricing scheme. A reformulation-linearization-technique-
based branch-and-bound (RLTBB) method is proposed in [3] to minimize the
energy consumption on mobile devices. When there are two mobile devices ener-
gized by wireless power transfer (WPT) in MEC system, [4] minimized the total
transmit energy of access point (AP) by a two-phase method. Multi-user MEC
systems with one task per user are addressed in [5] and [6]. [7] proposed an
advanced algorithm multi-user multi-task offloading (MUMTO) to solve joint
offloading decision and resource allocation in multi-user multi-tasking mobile
edge computing system.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

L. Meng and Y. Zhang (Eds.): MLICOM 2018, LNICST 251, pp. 33–42, 2018.

https://doi.org/10.1007/978-3-030-00557-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00557-3_4&domain=pdf


34 L. Huang et al.

To minimize the weighted sum of the costs of computation and communica-
tion energies as well as transmission and processing delays, we concentrate on
searching the optimal offloading decision and resource allocation for all users.
Specifically, we propose a deep reinforcement approach, which is an enhanced
version of Q-learning. We use deep Q network on behalf of Q value-action func-
tion [8]. Deep Q network has already been also used in the cache-enabled oppor-
tunistic IA wireless networks [9]. With this advanced reinforcement learning algo-
rithm, the almost optimal binary offloading decision and resource allocation will
be found all at once. Simulation results show that the reinforcement learning-
based algorithm obtains the almost optimal offloading decision and resource
allocation under varieties of parameter settings.

The rest of this paper is organized as follows. In Sect. 2, system model and
problem formulation are presented. Deep Q network algorithm is presented in
Sect. 3. In Sect. 4, simulation results are discussed. Finally, we present conclusions
in Sect. 5.

2 System Model and Problem Formulation

2.1 Mobile Edge Offloading

We consider an ordinary cloud access network composed by one AP, one edge
server and N mobile users, where each user has M independent tasks. The AP
is wired to the edge server, and mobile users are connected to the edge server
by wireless channels. The system model is shown in Fig. 1. Every task of each
user can be processed locally or offloaded to the edge server. Let xnm denote
the offloading decision of task m of user n, where xnm = 0 denotes that task
m of user n is processed locally and xnm = 1 denotes that task m of user n is
offloaded.

2.2 Cost of Remote Processing

The input data size of task m of user n is denoted by Ld
nm while the output

data size is denoted by Lu
nm. When mobile users offload their tasks to the edge

server, the energy consumption of task m of user n is divided into two parts, data
transmission and receiving, which are denoted by Et

nm and Er
nm, respectively. For

the wireless transmission among mobile users and the edge server, we denote the
uplink and downlink bandwidths assigned to user n by Cu

n and Cd
n. The uplink

transmission time is denoted by T u
nm = Lu

nm/Cu
n, accordingly, and the downlink

transmission time is denoted by T d
nm = Ld

nm/Cd
n. The values of Cu

n and Cd
n are

limited by the abilities of the corresponding wireless links, and the total uplink
and downlink bandwidths are denoted by CU and CD, respectively.

The cloud processing time is denoted by

TC
nm =

Ld
nmNC

nm

f c
(1)



DRL Task Offloading and Resource Allocation for MEC 35

Fig. 1. System model

The cloud processing rate f c is pre-fixed for every user. The size of TC
nm only

lies on the size of each task of mobile users. In this paper, NC
nm denotes the

number of processing cycles for every input data. When some or all tasks of user
n are offloaded to the remote cloud, the system utility cost is denoted by Cc

nm.
Because of the overlaps in the time of communication and processing, for making
it acceptable, the offloading decision is set to be the offloading delay. Thus, we
first provide the worst-case delay formulation:

TW
n �

M∑

m=1

(
T u

nm + T d
nm + TC

nm

)
xnm,∀n, (2)

which is a summation of all delays of transmission and processing.

2.3 Cost of Local Processing

When task m of user n is decided to be processed locally, the corresponding
energy consumption per data bit is denoted by el. Therefore, the energy con-
sumption of task m of user n is denoted by El

nm = Ld
nmel, where the local

processing time per data bit is denoted by tl. Thus, the processing time con-
sumption of task m of user n is denoted by T l

nm = (Ld
nm + Lu

nm)tl.

2.4 Problem Formulation

We aim to reduce the total energy cost and keep the quality of service of every
user at the same time. Our objective is to minimize the weighted sum of the
costs of computation and communication energies as well as transmission and
processing delays. The optimization problem is given as follows:



36 L. Huang et al.

min
xnm,Cu

n,Cd
n

N∑

n=1

[
M∑

m=1

(El
nm(1 − xnm) + Ec

nmxnm) + ωn max{TL
n , TW

n }
]

, (3)

subject to:
N∑

n=1

Cu
n ≤ CU, (4)

N∑

n=1

Cd
n ≤ CD, (5)

Cu
n, Cd

n,≥ 0,∀n, (6)
xnm ∈ {0, 1},∀n,m, (7)

where

Ec
nm � (Et

nm + Er
nm + λCc

nm), (8)

and

TL
n �

M∑

m=1

T l
nm(1 − xnm). (9)

In the formula above, Ec
nm is the weighted sum of transmission energy, receiving

energy, and system utility cost when task m of user n is offloaded to the remote
cloud. λ is the corresponding weight, TL

n is the processing delay when task m of
user n is processed locally, and ωn is the weight between energy consumption and
processing delay in the whole system cost. The uplink and downlink bandwidth
are limited by constraints (2) and (3).

It is difficult to solve the mixed-integer programming problem in (3) in a
general way. In the next section, we propose a reinforcement learning algorithm
based on deep Q network.

3 Deep Reinforcement Learning

3.1 Deep Q Network

Reinforcement learning is a machine learning algorithm, composed by an envi-
ronment and an agent. The agent is a brain, which selects the most appropriate
action from the state given by the environment. The role of the environment is
to generate the state of the next step and the reward generated after the action
is taken by the agent. Then, the agent updates its parameters according to the
reward, so as to improve its prediction accuracy. Deep Q network is an advanced
reinforcement learning algorithm, which is evolved from Q-learning, by replac-
ing the Q table of Q-learning with a deep neural network. It can solve complex
problems with lager state space. The Q-function is updated as:

Qθ(st, a) = r(st, a) + γ max Q′(st+1, a
′; θ′), (10)



DRL Task Offloading and Resource Allocation for MEC 37

where st is the system state at time shot t, and r(st, a) is the reward after the
agent choices action a at state st. Qθ(st, a) is the Q value under selecting action
a at state st. The larger Qθ(st, a) is, the more reward to taking action a in its
current state st.

3.2 Formulation of the Network’s Optimization Problem

In our system, there are N mobile users, each with M tasks, and each task can
be offloaded to the remote server. Each user’s task size is different. When the
task is offloaded to the remote server, the corresponding speed may be different,
and there is a limit to their uplink and downlink direction. To minimize energy
consumption, we use deep Q network to find the almost optimal offloading deci-
sion xnm of task m of user n as well as resource allocation Cu

n and Cd
n of user n.

xnm, Cu
n and Cd

n are programmed into the system state as input for Q network.
The output of the Q network is the Q value of the corresponding action. Each
time the agent chooses the appropriate action with respect to the Q value. The
execution result of the action is to make corresponding adjustment to offloading
decision xnm and resource allocation Cu

n and Cd
n.

In deep Q network, there are two networks, specifically, an evaluation network
and a target network. Their inputs are the current state and the next state after
the action execution respectively. The output of the target network that has
been modified by reward will be used as a label of evaluation network. Then, a
gradient descent algorithm is applied to the error between them. By continuously
reducing the error and updating the parameters of the evaluation network, it
can predict more accurately. The structures of the evaluation network and the
target network are completely consistent but with different parameters. After
every other N cycles, all the parameters of evaluation network will be assigned
to the target network to cut off the relevance between them.

There is a replay memory structure in the deep Q network. The system
records a memory (st, at, rt, st+1) every step after performing an action. During
the network training, a small batch of memory is extracted from the memory
pool, so that the Q network can learn the previous experience. An ε-greedy
policy is used to determine the intensity of exploration and learning, i.e., how
likely it is to take advantage of existing knowledge or to try new actions. The
training process of deep Q network is described in Algorithm 1.

In order to get the optimal offloading decision and resource allocation, we
need to appropriately design the system state, action and reward mechanism,
which are described below:

System State. The current state of the system x(t) represents the location of
the agent, determined by the state of N users and their M tasks. The system
state at time slot t is defined as,

s(t) = {x11(t), x12(t) . . . xij(t) . . . xNM (t), Cu
1 (t), Cd

1 (t) . . . Cu
l (t),

Cd
l (t) . . . Cu

N (t), Cd
N (t)} (11)



38 L. Huang et al.

The system state is consisted of two parts, offloading decision xnm of task m
of user n and resource allocation Cu

n and Cd
n of user n. The offloading decision

xij(t) ∈ {0, 1}, where i = 1, 2, . . . N , j = 1, 2, . . . M . The subscript l stands for
the lth user, and l = 1, 2, . . . N . The number of system states is proportional
to the number of users. When the number of system states is very large, the
advantage of replacing Q-function with Q network emerges.

System Action. Each action of the system determines which of the user’s tasks
are processed in the remote server, and what are their speed assignments when
they are processed in the remote server. The selected action a(t) of the agent is
denoted by

a(t) = {a1(t), a2(t) . . . ak(t) . . . aNM (t), a1(t), a2(t) . . . ag(t) . . . a2N (t)} (12)

We first pull all the tasks in the system into one dimension. ak(t) represents the
decision of the kth task i.e., ak(t) = 1 represents processing in the remote server,
and ak(t) = 0 represents local processing. ag(t) represents the speed distribution
when processing in the remote server. Speed adjustment is achieved by stride,
they meet the condition

∑N
g=1 ag(t) ≤ CU when the action adjusts the uplink

speed. This restriction also occurs when the downlink speed is adjusted.

Reward Function. System rewards represent our optimization goals. We save
the calculation result St−1 of formula (4) with the current parameter, before
executing the action. After executing the action, we get the latest calculation
result St, if St is smaller than St−1 we give a positive reward r(t) = +1, if St

is bigger than St−1 we give a negative reward r(t) = −1, otherwise, r(t) = 0.
This allows the agent to constantly search the optimal offloading decision and
resource allocation to minimize total energy consumption.

4 Performance Evaluation

We use TensorFlow to evaluate the performance of deep reinforcement learning.
Then, Matlab is used to demonstrate greedy algorithm performance. We assume
that the number of mobile users N = 5, and the number of tasks for each user
M = 4. Detailed parameters for reinforcement learning are listed in Table 1. We
set the local computation time of the mobile device as 4.75 × 10−7 s/bit, and
processing energy consumption as 3.25 × 10−7 J/bit. We assume that the input
data size of all tasks is randomly distributed between 10MB and 30MB, and the
output data size is randomly distributed between 1MB and 3MB.

In the simulations, we set both the uplink bandwidth and the downlink band-
width limit between the user and the edge server as 150 Mbps. The receiving
energy consumptions and transmission energy consumptions of the mobile device
are both 1.42 × 10−7 J/bit. The CPU rate of remote cloud sever is 10 × 109



DRL Task Offloading and Resource Allocation for MEC 39

Table 1. Parameter values used in the simulations

Parameter Value Description

Episode 4000 Number of main cycles

Replay memory size 2000 The size of memory pool

Frequency of learning 5 How often the training step is performed

Mini-batch size 32 How many memories are used for each training
step

Learning rate 0.0001 The learning rate of Adam optimizer

Reward decay 0.9 The degree of emphasis of previous experience

ε-greedy increment 0.005 The growth rate of ε-greedy at every training
step

Max ε-greedy 0.9 The maximum of ε-greedy

Target network update
frequency

50 How many steps the target network is updated

Pre-training steps 200 How many memories are stored before the
training begins

Fig. 2. The total cost under different λ (J/bit)

cycle/s. When a mobile user’s task is offloaded to the cloud, the system utility
cost is denoted by

Cc
n = Dd

n +
ϕ1

f c
+

ϕ2

CU
+

ϕ3

CD
(13)

where ϕ1 = 1018bit×cycle/s and ϕ2 = ϕ3 = 1016bit×bps. We further set λ =
2.5 × 10−7 J/bit, and ωn = 1 J/s refer to [7].

We compare the proposed algorithm with local processing only algorithm,
cloud processing only algorithm, and greedy algorithm. The local processing only



40 L. Huang et al.

Algorithm 1. Deep reinforcement learning algorithm in task offloading and
resource allocation

1: Initialization:
2: Initialize the evaluation and target Q network parameters with θ.
3: Initialize replay memory.
4: for episode k ≤ 1, 2, . . . , K do
5: if mod(k, 100) == 0 then
6: Change the initialization to the current best result.
7: end if
8: Choose a random probability number p.
9: if p < ε then

10: a∗(t) = arg maxa Q(s, a; θ).
11: else
12: Choose a(t) randomly.
13: end if
14: Calculate St according to (3)
15: if St < St+1 then
16: Set r(t) = 1
17: else if St > St+1 then
18: Set r(t) = -1
19: else
20: Set r(t) = 0
21: end if
22: Get the reward r(t) and next state s(t + 1) after execute a(t).
23: Save this memory formed as (s(t), a(t), r(t), s(t + 1)) in the replay memory.
24: Extract a min-batch of memories from the replay memory.
25: Calculate the target Q-value y(t) from the target deep-Q network,

y(t) = r(t) + γ maxa′ Q̂(s(t + 1), a′; θ−).
26: Perform gradient descent algorithm to minimize (y(t) − Q(s(t), a(t); θ))2.
27: Update the parameters θ of the evaluation network.
28: Copy the parameters of the evaluation network to the target network, every S

step.
29: end for

method means that all user tasks are processed locally. The cloud processing only
method processes all user tasks in the cloud. The greedy algorithm means that all
the offloading decision combinations are enumerated to select the optimal policy.
Greedy method is time-consuming, but the optimal solution can be found. In
our simulations, each simulation result is obtained through 100 repetitions, but
the data size of each input and output is randomly generated.

The system total cost under different weights λ is shown in Fig. 2. The deep
reinforcement learning algorithm can get the almost optimal solution, where the
gap between the deep reinforcement learning and greedy algorithm is very small.
As λ increases, all user tasks tend to be processed locally.

The performance of the system cost with different learning rate is plotted in
Fig. 3. Convergence process is faster when the learning rate is 0.001, compared



DRL Task Offloading and Resource Allocation for MEC 41

Fig. 3. Convergence performance under different learning rate

to the case when the learning rate is 0.0001. However, when the learning rate
increases, it is more possible to find the local optimal solution instead of the
global optimal. Hence, we need to choose an appropriate learning rate with
respect to dedicated situations.

5 Conclusion

In a mobile edge computing system that every user has multiple tasks being
offloaded to edge server via wireless networks, all users occupy the common
communication resource when their tasks are offloaded. In order to minimize
the total consumption of computation and communication energies cost, and
transmission delays between mobile users and AP as well as processing delays
on local devices and could, we use deep reinforcement learning to find the near
optimal offloading decision and resource allocation. Compared with greedy algo-
rithm, reinforcement learning method can find an almost optimal solution.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundation of China under Grant 61572440 and Grant 61502428, in part by the
Zhejiang Provincial Natural Science Foundation of China under Grants LR17F010002
and LR16F010003, in part by the Young Talent Cultivation Project of Zhejiang Asso-
ciation for Science and Technology under Grant 2016YCGC011.

References

1. Liu, J., Zhang, Q.: Offloading schemes in mobile edge computing for ultra-reliable
low latency communications. IEEE Access 6, 12825–12837 (2018)

2. Zhang, T.: Data offloading in mobile edge computing: a coalition and pricing based
approach. IEEE Access 6, 2760–2767 (2018)



42 L. Huang et al.

3. Zhao, P., Tian, H., Qin, C., Nie, G.: Energy-saving offloading by jointly allocat-
ing radio and computational resources for mobile edge computing. IEEE Access 5,
11255–11268 (2017)

4. Hu, X., Wong, K.K., Yang, K.: Wireless powered cooperation-assisted mobile edge
computing. IEEE Trans. Wirel. Commun. 17(4), 2375–2388 (2018)

5. Chen, X.: Decentralized computation offloading game for mobile cloud computing.
IEEE Trans. Parallel Distrib. Syst. 26, 974–983 (2015)

6. Meskar, E., Todd, T., Zhao, D., Karakostas, G.: Energy efficient offloading for com-
peting users on a shared communication channel. In: Proceedings of IEEE Interna-
tional Conference on Communications (ICC), pp. 3192–3197 (2015)

7. Chen, M.H., Liang, B., Dong, M.: Joint offloading decision and resource allocation
for multi-user multi-task mobile cloud. In: 2016 IEEE International Conference on
Communications (ICC), Kuala Lumpur, pp. 1–6 (2016)

8. Mnih, V., Kavukcuoglu, K., et al.: Human-level control through deep reinforcement
learning. Nature 518(7540), 529–533 (2015)

9. He, Y., et al.: Deep-reinforcement-learning-based optimization for cache-enabled
opportunistic interference alignment wireless networks. IEEE Trans. Veh. Technol.
66(11), 10433–10445 (2017)


	Deep Reinforcement Learning-Based Task Offloading and Resource Allocation for Mobile Edge Computing
	1 Introduction
	2 System Model and Problem Formulation
	2.1 Mobile Edge Offloading
	2.2 Cost of Remote Processing
	2.3 Cost of Local Processing
	2.4 Problem Formulation

	3 Deep Reinforcement Learning
	3.1 Deep Q Network
	3.2 Formulation of the Network's Optimization Problem

	4 Performance Evaluation
	5 Conclusion
	References




