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Abstract. In communication networks, if streams between two endpoints fol-
low the same physical paths for both forward and reverse direction, they are
symmetric. Routing asymmetry affects several protocols, and impacts part of
traffic analysis techniques. We propose two routing symmetry metrics to express
different meanings when talking about routing symmetry, namely, (1) the for-
ward and reverse flows coming from one node to another are exactly the same,
and (2) one single node is visited by both flows. The two metrics are termed as
identity symmetry and cross symmetry, respectively. Then, we build a model to
link the macroscopic symmetry with the microscopic routing behavior, and
present some analysis results, thus make it possible to design a routing algorithm
with some desired symmetry. The simulation and dataset study show that
routing algorithms that generate next hop randomly will lead to a symmetric
network, but it is not the case for Internet. Because the paths of Internet are
heavily dominated by a small number of prevalent routes, Internet is highly
asymmetry.

Keywords: Routing symmetry � Routing behavior model � Statistical process

1 Introduction

In communication networks, if streams between two endpoints follow the same
physical paths for both forward and reverse direction, they are symmetric [1]. Routing
asymmetry affects several protocols and impacts traffic analysis techniques. Knowing
to which degree the routings are symmetric is helpful in protocol design and traffic
analysis.

In practice, the one-way propagation time is commonly estimated to be half of the
round-trip time (RTT) between nodes, e.g., the NTP (Network Time Protocol) of
Internet [2, 3]. However, this estimate will be inappropriate if routes are asymmetric.
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Today’s communication protocols rely heavily on the estimate of link condition to
exploit available communication resources effectively, which is especially the case in
wireless communications. The estimate is usually based on measurement of the sta-
tistical parameters of incoming packet, which will not infer the real condition of the
outgoing link in situations of routing asymmetry.

Some traffic analysis techniques [4–6] are embedded in an assumption that routings
are symmetric, i.e., all the packets of a session on both directions can be monitored by a
sniffer located on a specific link. But it is not the case in practice [7, 8]. Routing
asymmetry has a significant impact of these techniques [9, 10].

A common cause of routing asymmetry is that routing is selected independently for
each flow, and at each node, taking many factors into account, including load-
balancing and congestion controlling, which varied among nodes. This cause is
especially prominent in the case of multipath routing. Another commonly mentioned
cause is the “hot-potato routing”, which is a business practice of passing traffic off to
another autonomous system (AS) as soon as possible. By autonomous system, we
mean a domain in which the routers and hosts are unified by a single administrative
authority, and a set of interior gateway protocols [11].

2 Related Works

Literatures contain many studies of routing protocols, but considerably few studies of
routing behavior [2, 3]. But recently there is a growing research of macroscopic
properties of the network routing, including routing asymmetry, by studying datasets or
modeling network behavior.

It is more than ten years since Paxson revealed that about 50% of the time an
Internet path includes a major asymmetry [12]. In the past few years, it became clearer
that this phenomenon has a significant impact on network measuring, modeling, and
managing. [9] studied impact that asymmetric routing can have on statistical traffic
classifiers. [8] pointed out that over 60% of AS-level paths are asymmetric, and path
asymmetry will increasingly spread in the future. [12] studied the path stability and
symmetry in 6 levels of granularity: router, point of presence (PoP), address prefix
(AP), autonomous systems (AS), city and country. [1] used passively captured network
data to estimate the amount of routing symmetry on a specific link, and [5, 13, 14]
made an impractical assumption of traffic symmetry in tools and analysis.

Most work quantified the asymmetry with the number of different nodes between
the forward and reverse paths, or classified a path as either asymmetric or symmetric,
without considering quantifying the degree of symmetry [2, 3]. [7] proposed an
approach to quantify the magnitude of routing asymmetry, measuring the dissimilarity
between a pair of routes by aligning the two routes together and counting the minimal
total cost incurred in aligning them. [15] defined the similarity coefficient as the number
of similar nodes divided by the total number of distinct nodes in the two paths. [12, 16]
quantified the difference between two routes (at any level) by calculating their Edit
Distance [17] value. The metric defined in [16, 17] are different because the only
operation considered in the former was aligning, while the latter considered inserting,
deleting, and modifying.
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These metrics of symmetry/asymmetry are not suited for modeling the behavior of
routing theoretically, since they can only be calculated by algorithm or program. Some
metrics [15, 16] does not meet the reality, because routing symmetry means different
things under different contexts: (1) when estimating path condition, it means whether or
not the forward and reverse path coming from a specific node to another specific node
are exactly the same; (2) when talking a sniffer can or cannot monitor flows from both
directions, it means whether or not a specific node is visited by both flows. So,
accordingly, we will define 2 metrics, which will be called identity routing symmetry
and cross routing symmetry.

3 Modeling and Statistical Analysis

3.1 Routing Symmetry Metrics

In this paper, when A and B be m � n matrices, the element-wise product of A and B is
defined by A � B½ �i;j¼ A½ �i;j B½ �i;j, for all 1� i�m; 1� j� n.

In a connected network, there are an infinite number of paths from any node s to
any other node d, i.e. path1; path2; path3; . . . when counting circles. Suppose the fre-
quency that the source node s selects these paths to route packets to be p1; p2; p3; . . .:
Similarly, there are also an infinite number of paths from node d to s; path�1

1 ;

path�1
2 ; path�1

3 ; . . ., with path�1
i we mean the reverse path of pathi, and the corre-

sponding selecting frequency q1; q2; q3; . . .: Informally, we will use p to denote the
vector p1; p2; p3; . . .½ � and q to denote q1; q2; q3; . . .½ �.
A. Identity routing symmetry
We use the normalized inner product of p and q to define identity routing symmetry:

qidðs; dÞ ¼ ðp; qÞffiffiffiffiffiffiffiffiffiffiffiðp; pÞp ffiffiffiffiffiffiffiffiffiffiffiðq; qÞp : ð1Þ

In algebra, qid is also viewed as the cosine of the angle between p and q. It is varied
in the range [0, 1]. When qid is close to 0, p and q are orthogonal to each other. So, if
for some pathi, the frequency that it is selected as the forward path, namely pi, is large,
then the frequency that path�1

i is selected as the reverse path, qi, must be small,
otherwise qid will not be close to 0. Conversely, when qid is close to 1, p and q are
parallel to one another, so for each i; pi and qi are both large or both small. This makes
qid a good choice for defining our identity routing symmetry. Note that the defined qid

is not a linear function of the angle between p and q, so we may use 1� arccos qid
� �

to
calculate the identity symmetry. As this is an increasing function of qid , they are
essentially the same metric.

In practical networks, usually a small number of paths are used to transfer packet
stream. In such cases, p and q are sparse vectors.
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B. Cross routing symmetry
Cross routing symmetry is defined by the probability that a specific node is visited by
the forward flow and the reverse flow:

qcrossðv; s; dÞ ¼ Pfv 2 pathi and v 2 path�1
j ; for any i; jg; ð2Þ

where v is different from s and d.

3.2 Modeling

The model links the macroscopic symmetry with the microscopic routing behavior,
thus make it possible to design a routing algorithm with a desired symmetry.

The routing selection is modeled as a Markov Chain. The routing probability from
node i to j is the probability that node i select a neighboring node j as the next hop to
route data packets. Figure 1 gives a further demonstration of routing probability. The
probability of data packet routed from node i to j in one hop is denoted by pij. The
routing probability matrix, or routing matrix for short, is given by using pij as the i-th
row and j-th column element. The assumptions are:

(a) Routing probability is time-invariant;
(b) Routing probability is independent of the source node, but depends on the des-

tination node.

Without the second assumption, the model is identical to the random walk model,
which is a well-known routing behavior model. Actually, this model is an extension of
random walk, so assumption (2) is not a restriction but rather a generalization. The
introduction of assumption (2) make the model more realistic, as in communication
networks, many routing protocols are designed to behave destination dependent. Thus
the subscript to specify the destination node is used as P1 and P4 in Fig. 1(d). Some
notes of Pd are:
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Fig. 1. Explanation of routing matrix (a) A network with 4 nodes; (b) Packets are destined to
node 1. Each routing probability is labeled on a directed link from a source node to a destination
node; (c) When data packets are destined to node 4, the routing probabilities are different from
(b); (d) The routing matrices of (b) and (c).
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(a) Node d is a destination node, and thus d is an absorbing state in Markov Chain, so
Pd½ �d;d¼ 1, and Pd½ �d;j¼ 0; j 6¼ d;

(b) For any i;
P

j Pd½ �i;j¼ 1.

A. Identity routing symmetry
Let nodes s and d be any two different nodes of a connected network. There is only one
possible path from s to d in the network with length 1, which is s,d. This path will be
chosen to transfer packets with probability Pd½ �s;d (if path s,d does not exist, Pd½ �s;d will
be zero). There are (N-2) possible paths in the network with length 2, chosen with
probability Pd½ �s;h1 Pd½ �h1;d ; h1 ¼ 1; 2; . . .;N and h1 6¼ s; d. There are (N-2)2 paths in the
network with length 2, chosen with probability Pd½ �s;h1 Pd½ �h1;h2 Pd½ �h2;d ; h1; h2 ¼
1; 2; . . .;N and h1; h2 6¼ s; d. And the rest can be deduced by analogy. So the inner
product of previously mentioned vectors p and q is

ðp; qÞ ¼ ½Pd �s;d � ½Ps�d;s þ
X
h1 6¼s;d

½Pd �s;h1 ½Pd�h1;d � ½Ps�d;h1 ½Ps�h1;s þ
X

h1;h2 6¼s;d

½Pd�s;h1 ½Pd �h1;h2 ½Pd �h2;d � ½Ps�d;h2 ½Ps�h2;h1 ½Ps�h1;s þ � � � :
ð3Þ

All pi’s are not larger than 1 and the sum of all qi’s is 1, so the partial sum of the
RHS (right-hand side) of (3) is less than 1, and the sequence of partial sums are
incremental. So the RHS of (3) is convergence.

Use the definition of element-wise product operator ‘◦’, Eq. (3) can be written in
another form:

ðp; qÞ ¼ ½
X1
i¼1

ðPðsÞ
d � ðPðdÞ

s ÞTÞi�s;d: ð4Þ

Matrix P sð Þ
d is Pd with s-th column replaced by a zero vector, and similarly, P dð Þ

s is
Ps with d-th column replaced by zero vector.

[10] in appendix makes it possible to write (4) with a closed form. The only

requirement is I � PðsÞ
d � PðdÞ

s to be invertible. Suppose this requirement is satisfied,
then

ðp; qÞ ¼ ½ lim
n!1ððI � PðsÞ

d � ðPðdÞ
s ÞTÞ�1ðPðsÞ

d � ðPðdÞ
s ÞT � ðPðsÞ

d � ðPðdÞ
s ÞTÞnþ 1ÞÞ�s;d : ð5Þ

Because the d-th column and d-th row of ðPðsÞ
d � ðPðdÞ

s ÞTÞ are all zeros, so for any n,

the term ðPðsÞ
d � ðPðdÞ

s ÞTÞnþ 1 will have d-th column be zeros. So,

ðp; qÞ ¼ ½ðI � PðsÞ
d � ðPðdÞ

s ÞTÞ�1ðPðsÞ
d � ðPðdÞ

s ÞTÞ�s;d: ð6Þ

With some similar but simpler steps, we get
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ðp; pÞ ¼ ½
X1
n¼0

ðPðdÞ
d � PðdÞ

d ÞnðPd � PdÞ�s;d ¼ ½ðI � PðdÞ
d � PðdÞ

d Þ�1ðPd � PdÞ�s;d ; ð7Þ

ðq; qÞ ¼ ½
X1
n¼0

ðPðsÞ
s � PðsÞ

s ÞnðPs � PsÞ�d;s ¼ ½ðI � PðsÞ
s � PðsÞ

s Þ�1ðPs � PsÞ�d;s: ð8Þ

Finally,

qid ¼ ½ðI � PðsÞ
d � ðPðdÞ

s ÞTÞ�1ðPðsÞ
d � ðPðdÞ

s ÞTÞ�s;dffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðI � PðdÞ

d � PðdÞ
d Þ�1ðPd � PdÞ�s;d

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðI � PðsÞ

s � PðsÞ
s Þ�1ðPs � PsÞ�d;s

q : ð9Þ

B. Cross routing symmetry
With the aforementioned assumptions, the forward routing process is independent of
the reverse routing process. So, the cross routing symmetry is

qcrossðv; s; dÞ ¼ Pfv 2 pathi; for any igPfv 2 path�1
j ; for any jg

¼ ð1� Pfv 62 pathi; for all igÞð1� Pfv 62 path�1
j ; for all jgÞ: ð10Þ

Similar to the derivation of previous section, there is only one possible path in the
network with length 1, which is s,d, chosen with probability Pd½ �s;d (if path s,d does not
exist, Pd½ �s;d will be zero). Flow that follows this path definitely will not visit node
v (which will be called “miss v” in the following). There are N-2 possible paths in the
network with length 2. Flow that follows these paths will miss node v with a probability
Pd½ �s;h1 Pd½ �h1;d respectively, h1 ¼ 1; 2; . . .;N and h1 6¼ s; v; d. There are (N-2)2 possible
paths in the network with length 2. Flow that follows these paths will miss node v with
a probability Pd½ �s;h1 Pd½ �h1;h2 Pd½ �h2;d respectively, h1; h2 ¼ 1; 2; . . .;N and
h1; h2 6¼ s; v; d. And the rest can be deduced by analogy. So qcross is

qcrossðv; s; dÞ ¼ ð1� Pfv 62 pathi; for all igÞð1� Pfv 62 path�1
j ; for all jgÞ

¼ ð1� ½Pd �s;d �
X

h1 6¼s;v;d

½Pd�s;h1 ½Pd�h1;d �
X

h1;h2 6¼s;v;d

½Pd �s;h1 ½Pd�h1;h2 ½Pd�h2;d � � � �Þ�

ð1� ½Ps�d;s �
X

h1 6¼s;v;d

½Ps�d;h1 ½Ps�h1;s �
X

h1;h2 6¼s;v;d

½Ps�d;h1 ½Ps�h1;h2 ½Ps�h2;s � � � �Þ

¼ ð1� ½
X1
n¼0

ðPðs;v;dÞ
d ÞnPd�s;dÞð1� ½

X1
n¼0

ðPðs;v;dÞ
s ÞnPs�d;sÞ:

ð11Þ

Matrix P s;v;dð Þ
d is Pd with s-th column, v-th column and d-th column replaced by zero

vectors, while matrix P s;v;dð Þ
s is Ps with s-th column, v-th column and d-th column
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replaced by zero vectors. Suppose matrix I � Pðs;v;dÞ
d

� �
and I � Pðs;v;dÞ

s

� �
to be

invertible,

qcrossðv; s; dÞ ¼ ð1� ½ lim
n!1ðI � Pðs;v;dÞ

d Þ�1ðI � ðPðs;v;dÞ
d ÞnÞPd �s;dÞ�

ð1� ½ lim
n!1ðI � Pðs;v;dÞ

s Þ�1ðI � ðPðs;v;dÞ
s ÞnÞPs�d;sÞ

ð12Þ

Finally, we get

qcrossðv; s; dÞ ¼ ð1� ½ðI � Pðs;v;dÞ
d Þ�1Pd �s;dÞð1� ½ðI � Pðs;v;dÞ

s Þ�1Ps�d;sÞ: ð13Þ

4 Evaluation and Analysis

4.1 Evaluation of Random Walk Based Routing

According to their topology, networks are usually classified into random networks,
regular networks, small world networks and scale free networks. To avoid bias
introduced by topology, three typical networks (random network, WS [18] network and
BA [19] network) are considered. In the simulation, each of these 3 networks is
composed of 128 nodes, thus there will be (128 � 127)/2 = 8128 different pairs of
nodes to be considered when evaluating identity symmetry. Cross symmetry of all
intermediate nodes of two fixed nodes is also evaluated. Three different random walk-
based routing algorithms are evaluated. There are some literatures focusing on random
walk-based routings in practical networks [20, 21].

The routing probability from node i to j of these routing algorithms is

pij ¼
dajP

k2NðiÞ
dak

; ð14Þ

but taking different values of parameter a, namely, −1, 0, and 1, respectively. Notation
dj is the degree of node j, and N(i) the set of all neighboring nodes of node i.

Results are shown in Figs. 2 and 3.

Fig. 2. Identity symmetry distribution
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In Fig. 2, most node pairs’ identity symmetry metrics are close to 1 in random
network and WS network, regardless of which routing algorithm is applied. This result
is consistent with assumptions that networks are symmetric. The reason for the first two
routings are symmetric is explained by an example. Consider a path s, i, j, d, the
probability that it is selected as a forward route is

pf ¼ daiP
k2NðsÞ

dak

dajP
k2NðiÞ

dak

dadP
k2NðjÞ

dak
; ð15Þ

and correspondingly, the probability that path d, j, i, s is selected as a reverse route is

pr ¼
dajP

k2NðdÞ
dak

daiP
k2NðjÞ

dak

dasP
k2NðiÞ

dak
: ð16Þ

With a little more effort we can calculate the ratio of pf to pr. In random networks or
small world networks, nodes are of similar degrees, so the ratio will be approximately
1. Thus, we can see the angle between vectors p and q will be very small, thus the
identity symmetry is close to 1. But in scale-free network, degrees of nodes are varied
significantly, thus the identity symmetry metrics are scattered.

Figure 3 shows that no matter which topology is, the routing algorithm with a = 1
will be of lowest cross symmetry, the difference of the three routing algorithms is
especially significant in scale free networks. According to the motivation that this
metric is present, a conclusion can be drawn that routing algorithm with a = 1 will be
the safest of the three, especially in a scale-free network.

Many researchers have found that a large number of networks, including Internet,
have scale free property [22]. Figures 2 and 3 shows that scale free networks are not
symmetric under either definition of symmetry.

4.2 Dataset Evaluation

We do not have sufficient evidence to conclude that some networks are asymmetric
without studying some widely deployed networks. In the rest of this section, a dataset
study of Internet is presented. The data is measured by [2, 3] (only the second set of
measurements, which is termed D2 there, is suitable and thus used in this paper for
symmetry analysis), using a computer program called trace route, which can display
the route path. The measurement is conducted on Internet, including nodes (computers)

Fig. 3. Cross symmetry distribution
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from one hundred or so cities of different countries. To reduce complexity and make it
tractable for symmetry metric calculation, we choose the method used by [2, 3],
abstracting computers from the same city with a single node, thus constructing a new
network with a relatively small number of nodes. The constructed network contains
101 nodes, with 27 nodes have route to them. The identity symmetry metrics are
evaluated of any possible pairs of these 27 nodes.

To show the difference of the measured data and the data generated by random
walk, we use an algorithm, similar to the algorithm of random redistribution of link
weights [22], to randomize the originally data. First, for each destination d, by ana-
lyzing the data, we get the routing probability matrix Pd. Then, for each row of Pd, the
non-zero entries are divided into a smaller unit D. Each unit is extracted randomly with
probability p, unless it is the last unit of this entry. Lastly, we equiprobably lay back
each extracted unit to all non-zero entries in the same row. The parameter p controls the
degree to which the routing probability is randomized, without changing the topology
of the network.

The result is shown in Fig. 4. The curve corresponds to the original data (p = 0)
shows that routing in Internet is highly asymmetric, with almost all the pairs’ identity
symmetry metrics centered in the range (0, 0.2). While p increases, the metrics are
gradually moves to 1. When p = 1, similar to the result of the previous simulation
(Fig. 2), most node pairs’ identity symmetry metrics are close to 1. This implies that
routing algorithms that generate next hop randomly will lead to a symmetric network,
and that Internet does not work in this way. The routing is not random but rather
specialized, consistent with [2], which shows that Internet paths are heavily dominated
by a small number of prevalent routes.

Fig. 4. Identity symmetry distribution of internet
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5 Conclusions

In this work, we propose two routing symmetry metrics to express different meanings
when talking about routing symmetry, namely, (1) the forward and reverse flows
coming from one node to another are exactly the same, and (2) one node is visited by
both flows. Then, we build a model to link the macroscopic symmetry with the
microscopic routing behavior, thus make it possible to design a routing algorithm with
a desired symmetry. The simulation and dataset study shows that routing algorithms
that generate next hop randomly will lead to a symmetric network, but Internet does not
work in this way, because the paths of which are heavily dominated by a small number
of prevalent routes, it is highly asymmetry.
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