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Abstract. In this paper, we study the strategy of UAV dynamic network
access in the large-scale UAVs swam. We model the master UAV provid-
ing communication coverage for the small UAVs which transformed the
large-scale UAVs communication problem into the optimization problem.
Compared to the traditional ground user network access, the character-
istic of UAV’s mobility have been considered and each UAV have chance
to move to any master UAV for better service. We propose a joint opti-
mization for the throughput and flight loss. Due to the limitation of flight
loss, the UAVs can not fly to different networks many times for learning.
We set up a load aggregator cloud to help the UAVs simulate the results
of each decision. We propose a dynamic network access algorithm based
on SLA which is proved to achieve stable solutions with dynamic and
incomplete information constraint. The simulation results show that this
algorithm can converge to the optimal solution. Also, it is shown that
the algorithm has strong robustness and can get good utility than other
algorithms regardless of how the environment changing.
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1 Introduction

The application of the intelligent unmanned aerial vehicles (UAVs) is expanding
with the development of the UAV technology [1]. Nowadays, large-scale UAVs
and UAV-assisted communication are playing important roles in various fields.
In 2017, nearly 300 UAVs flied together to create a dreamlike stage in the USA
super bowl. Recently, the company EHang has also achieved the formation of
1000 UAVs. However, the focus of large-scale UAVs is more on the collaborative
control [2]. UAV-assisted communication is also only considered as the air base
station to assist ground communication [3–7]. However, how to solve the problem
of large-scale UAVs’ inter-domain communication and how to deal with the
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relationship between the master UAV and the other small UAVs are not having
clear answers. There is still relatively little research on the combination of large-
scale UAVs and UAV-assisted communication.

In the large-scale UAVs scenario, the communication between UAVs is inter-
active, resulting in a series of coupling optimization problems. Most of the exist-
ing studies have looked at how the UAVs serving ground users. The paper [8]
assigns UAV to specific region as the relay, thus enhancing the communication
capability of heterogeneous wireless network. However, the work in paper [8] is
limited to the uniform distribution of ground users, and does not fully consider
the fairness of users’ choice in the case of network congestion. In the paper [9],
the base station which associated with UAV is determined with the goal of min-
imizing UAV’s transmit power and satisfying the user’s rate requirement. The
UAV has been used as a mobile base station to serve ground users, and achieves
the goal of maximizing the minimum throughput of each ground user by access-
ing different users in [10]. The authors [11] considered the multi-UAV system
and added power control based on the paper [10]. Most of the current researches
only consider the UAV as the aerial base station to serve the ground users. The
communication problem of the UAV itself is not considered.

In order to solve the problem of large-scale UAVs communication, the rela-
tionship between the small UAV and its upper master UAV is analogous to the
relationship between the user and the network in the traditional network access
scenario. That is, the master UAVs provide communication coverage for the small
UAVs. The network connectivity of a UAV-assisted network has been optimized
in [12] and [13]. However it does not consider the situation of master UAVs
assisting the small UAVs with communication. And there is a lack of research
on network access in multi-UAV system. In our paper, the communication prob-
lem of the large-scale UAVs is transformed into the optimization problem of
the network access. Different from the traditional network access problem, only
users in the overlapping areas of the network can choose the access network [14].
Because of the mobility of the UAV, no matter where it is currently located, it
can move to the range of any master UAVs to find better service. Such a scenario
is more equitable than the original scenario, not just the users in the network’s
overlapping areas but every one has opportunity to make decisions.

We model the application scenarios as a master UAV has been crashed, and
the small UAVs in it are not served. We command the access of small UAVs to
other networks through ground control center. The small UAVs of other mater
UAVs can also change their location for better service after receiving the impact
from outside small UAVs. This brings us more challenges to the study of network
access problems. How to define the flight loss of UAV is the first problem to be
faced with UAV’s mobility. The paper [15–17] considered the UAV energy saving
communication but did not consider the flight energy required by the movement.
The flight loss have been considered in [18] to solve the problem of energy-efficient
UAV communication, but our paper focuses more on the completion of UAV’s
communication task. We combine the traditional network access throughput
optimization with the flight loss of UAV which becomes a joint optimization for
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the throughput and flight loss. We propose a dynamic network access algorithm
based on SLA [19] to find the tradeoff between throughput and UAV flight loss.
Due to the limitation of flight loss, the UAVs can not fly to different networks
many times for learning. We set up a load aggregator cloud to help the UAVs
simulate the results of each decision. The main contributions of our work can be
summarized as follows:

– We solve the problem of UAV group communication by clearing the relation-
ship between the master UAV and the small UAV. We model the master UAV
providing communication coverage for the small UAVs which transformed the
large-scale UAVs communication problem into the optimization problem of
the network access. We solve the problem as some master UAVs have been
crashed, how the small UAVs to make decisions to guarantee the communi-
cation quality.

– We consider the characteristic of UAV’s mobility and we make it possible
for each UAV to move to any master UAV for better service. We combine
the traditional network access throughput optimization with the flight loss of
UAV which becomes a joint optimization for the throughput and flight loss.

– A dynamic network access algorithm based on SLA has been proposed to
get the Nash equilibrium and find the tradeoff between throughput and UAV
flight loss. Due to the limitation of flight loss, the UAVs can not fly to different
networks many times for learning. We set up a load aggregator cloud to help
the UAVs simulate the results of each decision.

The remainder of this paper is organized as follows. In Sect. 2, we present
the system model and problem formation. In Sect. 3, we propose a cloud-assisted
learning algorithm based on SLA to solve the problem. Further, we present
the simulation results and performance analysis in Sect. 4. Then, we draw the
conclusion in Sect. 5.

2 System Model and Problem Formulation

2.1 System Model

We consider a UAV formation consisting of N = {1, 2, ..., N} master UAVs and
M = {1, 2, ...,M} small UAVs. The master UAVs provide communication cov-
erage for the small UAVs. The small UAVs are denoted as users which share the
master UAVs’ resource to send information. Each small UAV has communica-
tion tasks to finish, so it must be covered by the master UAV. In this paper,
we only consider the case that the number of small UAVs is much larger than
the number of master UAVs, so we put three master UAVs N1, N2 and N3 in
the system which serve this areas’ small UAVs. We denote two kinds of small
UAVs in this system. One of them are already in the range of a master UAV,
the others do not covered by any master UAVs because their master UAVs have
been crushed. In traditional network access scenarios, users are not able to access
the network if they are outside of the communication coverage. But this is not a
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question in the UAV system. Because of the dynamics of UAVs, we can deploy
the small UAVs through the control center to move to the coverage of any mas-
ter UAVs to get service. Due to the addition of external users, the small UAVs
which originally in the range of some master UAVs may get less resources for
communication. Therefore they also can move to the coverage of different master
UAVs to achieve better payoff. Each small UAV has multiple available master
UAVs, but the small UAVs can only access one master UAV at any time (Fig. 1).

Fig. 1. Dynamic network access system consist of three master UAVs and two kinds
of small UAVs. One of the UAVs are already in the range of a master UAV, the others
do not covered by any master UAVs because their master UAVs have been crushed.

2.2 Problem Formulation

In our model there are two actions of each small UAV: Firstly, the small UAV
is in the coverage of any master UAVs and it does not want to change the
master UAV. The throughput of the small UAV accesses the network depends
on a number of factors, including the physical layer data transmission rate, the
load connect to the network, and the resource allocation strategy adopt by the
access network. This paper considers a resource allocation strategy which based
on proportional equity. Under this mechanism, the average throughput of the
small UAV m to access the master UAV n can be achieved as [14].

gm = θm =
wmRm,n

Wn
, (1)

where Rm,n is the peak data rate between small UAV m and master UAV n,
wm is small UAV m’s load, and Wn =

∑

i∈Mn

wi is the total weight of small

UAVs that accessed master UAV n. This above model combines many practical
considerations. The peek data rate Rm,n reflects physical characteristics such
as wireless channel quality and modulation encoding. Secondly, the discount
factor wm

Wn
reflect the characteristics of the users sharing the network’s resources.
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The user’s weight can distinguish the application types of different small UAVs
in the same network. Such that the reconnaissance UAV need to send some
photos and videos, so it needs more resources. The attack UAV only needs to
receive real-time message, so it has low throughput requirements. In conclusion,
the weight of the small UAV depends on the type of the task it needs to do.

Secondly, if the small UAV is not covered by any master UAV so it needs
to move to any master UAV to look for the communication service. Some small
UAVs which already have master UAVs to access want to move to other master
UAVs for better payoff. They all have flight loss caused by movement. The cost
Ec can be denoted as [17]

Ec =
dm,n

V
(c1V 3 +

c2
V

), (2)

where dm,n equals to the distance between the small UAV and the communica-
tion coverage of the master UAV. That is also what we need to optimize. V is a
given UAV speed, c1, c2 are constant which related to the weight of the aircraft
and the external wind force. The first term in the speed loss is proportional to
the third power of the velocity, which is the resistance loss caused by air friction
during the flight. The second inverse is the energy loss to overcome the lift. So
the utility function of the small UAV m to move to access the master UAV n
can be achieved as [8]

gm =
wmRm,n

Wn
− β

dm,n

V
(c1V 3 +

c2
V

), (3)

where β is the normalized coefficient. The importance of flight loss can be
expressed by changing the size of β. If we improve the value of β means that we
do not want the small UAV to change its location. This utility function repre-
sents the intentions of each small UAV. We must find the tradeoff between the
throughput and flight loss.

We denoted the user-network correlation as M0. So we defined the utility as
the social welfare

Usocial(M0) =
∑

m∈M
gm(θm, Ec). (4)

The target of the system is to optimize the relationship between the small UAVs
and the master UAVs to maximize the net utility which is denoted as

(P1) : max Usocial(M0), (5)

3 Dynamic Network Access Algorithm

3.1 SLA: Stochastic Learning Automata

Due to the dynamic and incomplete information constraints, most existing algo-
rithms can not be applied [19]. Based on the SLA (Stochastic learning automata),
we propose a new algorithm. Stochastic learning automata is a finite machine
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that interacts with an unknown environment and tries to learn the best practices
provided by the environment [20]. SLA updates the selection probability dynam-
ically through the feedback from each learning and keeps doing the probability
update until users reach stable conditions. Due to the limitation of flight loss,
the UAVs can not fly to different networks many times for learning. We set up a
control center using the SLA algorithm to help the UAVs simulate the results of
each decision. When all users converge to Nash equilibrium, the control center
deploy the small UAVs to move to the coverage of the specified master UAVs to
get service. So as to realize the distributed solution for the original problem.

We extend the dynamic network access game to the form of mixed strat-
egy. We denote that P = (p1, ..., pM ) is the mixed strategy for all users, where
pm = (pm1, ...pmN ) is the probability vector when small UAV m access any mas-
ter UAVs. And pmn is probability of the small UAV m to access the master UAV
n. We also denote hnm(P ) as the average throughput of small UAV m when the
small UAV m access the master UAV n (am = n) and other small UAVs use the
mixed strategy.

hmn(P ) = um(a1, ..., am−1, n, am+1, ..., aM ) (6)

According to the number of small UAVs in each master UAV and the location
of each small UAV, each small UAV can achieve random return value at the end
of each time slot. The small UAV updates its mixed strategy on this basis.

3.2 A Cloud-Assisted Learning Algorithm Based on SLA

Due to the limitation of flight loss, the UAVs can not fly to different networks
many times for learning. We set up a load aggregator cloud to help the UAVs
simulate the results of each decision. Compared with the existing learning frame-
work, UAVs in the cloud support framework do not need to actually perform fre-
quent network switching, but only report the decision information to the cloud.
There is a load aggregator cloud that is responsible for collecting decision infor-
mation for all UAVs and sending “virtual network load information” to UAVs.
Unlike the centralized optimization method adopted in literature [17], the net-
work load aggregation cloud does not make any decision about the allocation of
wireless resources. Therefore, the proposed cloud learning framework can also
be applied to similar distributed learning algorithms (such as SLA) and improve
its operational efficiency. In our paper, UAVs are willing to submit all necessary
information to the cloud. Including rate information Rm,n and demand informa-
tion θm. After collecting the UAV’s information, the network load aggregation
cloud represents the benefit of the UAVs, simulating multiple UAVs to run the
SLA learning algorithm. The algorithm process is as follows:

The cloud-assisted learning algorithm based on SLA which we proposed has
the following characteristics: (i) this algorithm is not a rigid decision, but select
the strategy according to a certain probability randomly in the candidate actions;
(ii) not blindly choose the optimal utility of action, but improve the access
probability of which action has better payoff softly; (iii) the probability of the
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Algorithm 1. A Cloud-assisted Learning Algorithm based on SLA

The User Side: .
Step 1: Each user m access to any network and register in the load aggregator cloud.
Step 2: User m reports to the cloud rate information Rm,n and demand information
θm . And wait for the network selection am return from the cloud .
The Load Aggregator Cloud Side:
Step 1: Receive all user reports. Maintain a cumulative decision distribution vector
for each user.
Step 2: Run the dynamic network access algorithm based on the SLA and update
the network access probability vector until the end of a scheduled stop rule.
The SLA part:
Initialize: . Set the number of iterations k=1 and set the initial network access
probability as pmn(k) = 1/N, ∀m ∈ M, n ∈ {1, ..., N}, then generate small UAVs M =
{1, 2, ..., M} randomly within or without the range of the master UAV.
Loop for k = 0,1,...
Step 1: At the beginning of the time slot k, firstly the small UAV m which are not in
the range of any master UAVs access the master UAV am(k) according to its current
network access probability vector pm(k) . Secondly the other small UAVs do the same
steps.
Step 2: On the basis of the network access in Step1, the UAV do the network aware-
ness and access the master UAV. At the end of the current slot, the small UAV obtains
the random return which is calculated by (3) and set the return to the small UAVs.
Step 3: All the small UAVs update the probability of network access according to the
following rules:

pmn(k + 1) = pmn(k) + bgm(k)(1 − pmn(k)), n = am(k)
pmn(k + 1) = pmn(k) − bgm(k)pmn(k), n �= am(k)

(7)

where 0 < b < 1 is the iteration step length, gm(k) is the normalized throughput.
Step 4: For any small UAV, the corresponding network access probability vector has
an element that is close to 1, if greater than 0.99, and the algorithm go back to Step
2. Otherwise, go back to Step 2. Until all the small UAVs’ network access probability
are close to 1, then the algorithm ends.
Loop end

network access is updated based on the random return value of each slot. The
random return is the reinforcement signal of this algorithm. Leaving the small
UAVs more exploration space in the dynamic network access system, which can
effectively get rid of the local optimal dilemma. According to the real-time change
of the network environment, the user can improve the access probability of the
current optimal decision at each time slot. So that the probability of optimal
access will eventually converge.
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4 Simulation Results and Analysis

In this scenario we generate two circular networks as the coverage of master
UAVs with a diameter of 500 m. A circular network with a diameter of 300 m
has been set to distinguish the different kinds of master UAVs. Then we randomly
generate each 10 nodes in first two networks and 5 nodes in the third network
as the small UAVs. Twenty nodes have been set as the small UAVs which are
not in range of any master UAVs. The number of iterations is set as 500 in the
simulation. The location of each small UAV is generated randomly each time.
The distance between each small UAV and the distance from the small UAV to
the network is the decisive factor of the system. We set up a control center to
help the UAVs simulate the results of each decision. We set the speed of UAV
as V = 10dB, the constant c1 = 9.26 × 10−4 and c2 = 2250. The learning step
is set as 0.5. The link transmission peak rate of the master and the leader UAV
is calculating by the Shannon formula R = Blog2(1 + P/(B ∗ σ2)).

The simulation results mainly include the following two parts. The first part
is the convergence of the simulation algorithm. In particular, for any selected
user, we study the change of the network access probability with the iteration
number. In addition, in order to reflect the overall convergence of the system,
we also study the change of the number of users in different networks and give
the convergence network topology. The second part gives the performance eval-
uation of the algorithm and compares the utility function of the four methods:
(i) The dynamic network access algorithm based on SLA, (ii) The centralized
algorithm, (iii) Random access and (iv) The closet network access algorithm. In
the centralized algorithm, we assume that each user knows all the message of
the system. They know the rewards of access any network and all choose the
best one to access. As the users only know the location of the network, the ran-
dom access algorithm choose the network as the same probability and the closet
network access algorithm choose the closet network to access are all feasible.

4.1 Convergence Behavior

Firstly, we study the variation of network access probability with iteration num-
ber. Simulation of a dynamic network access system with twenty-five dynamic
loads, twenty dynamic users and three networks. And the bandwidth between
this three networks is 2:2:1 which represents the size of the communication cov-
erage. The UAV’s flight loss is several orders of magnitude larger compared with
the throughput. The goal of this paper is to ensure the quality of communication,
so we set the normalized coefficient β as 0.015.

The Fig. 2 gives the convergence of network access probability of any selected
user. We can see that this user’s network access probability vector is approxi-
mately running 140 iterations from {1/3, 1/3, 1/3} to {0, 1, 0}. That is to see,
this small UAV finally choose the master UAV N2 to access. The Fig. 4 shows the
network topology after the algorithm is convergence. Each users have network
to get service. Some users originally in the N1 may move to N2 and N3 to find
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Fig. 2. The convergence process of arbitrary user network access probability.

better service, some users do not change their location. The number of the users
in each network is related to the network capacity.

4.2 Performance Analysis

In this section, we study how the different parameters influence the algorithms.
Figure 3 represents the relationship between the number of the dynamic users
with the social welfare. All these four algorithm, we do 500 independent simula-
tions and then take the average. As can be seen form the figure, the algorithm we
proposed is far more efficient than the random access algorithm and the closet
network access algorithm no matter how many dynamic users in this system.
The algorithm we proposed also get the same social welfare as the centralized
algorithm at any time. The reasons are as follows: (i) The proposed algorithm
can converge to the optimal solution, and the users will be scattered on differ-
ent networks. (ii) In the random access algorithm, as the number of dynamic
users increases, it is possible to make unreasonable decisions. So this situation
may make low throughput and high flight loss. (iii) In the closet network access
algorithm, as the number of dynamic users increases, some networks may be
accessed by multiple users which make the congestion of the network.

In Fig. 4, we change the normalized coefficient β of the flight loss. This change
only has a little effect on our algorithm. The dynamic network access algorithm
based on SLA can also get high social welfare like the centralized algorithm.
With the low level of the normalized coefficient β, the random access algorithm
and the closet network access algorithm may get the social welfare close to the
algorithm we proposed. But effected by the improve of the normalized coefficient
β, the social welfare get by the random access algorithm and the closet network
access algorithm all drop faster. It can be seen, the algorithm we proposed has
strong robustness and can get good utility regardless of the environment change.
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Fig. 3. The utility comparison of the four algorithms with different user numbers.
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Fig. 4. The utility comparison of the four algorithms with different normalized coeffi-
cient β of the flight loss.

5 Conclusion

This paper put forward the network scenario of the master UAVs serving the
small UAVs for communication. We transformed the UAV group communication
problem into the optimization problem of the network access. We consider the
characteristic of UAV’s mobility and make it possible for each UAV to move to
any master UAV for better service. We combine the traditional network access
throughput optimization with the flight loss of UAV which becomes a joint
optimization for the throughput and flight loss. We proposed a dynamic network
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access algorithm based on SLA to get the Nash equilibrium. Due to the limitation
of flight loss, the UAVs can not fly to different networks many times for learning.
We set up a load aggregator cloud to help the UAVs simulate the results of each
decision. The simulation shows that the algorithm we proposed can get good
utility than other algorithms regardless of how the environment changes. The
algorithm realizes the robust optimization in dynamic unknown environment.
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