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Abstract. With the development of movement sensors, activity recognition
becomes more and more popular. Compared with daily-life activity recognition,
physical violence detection is more meaningful and valuable. This paper pro-
poses a physical violence detecting method. Movement data of acceleration and
gyro are gathered by role playing of physical violence and daily-life activities.
Time domain features and frequency domain ones are extracted and filtered to
discribe the differences between physical violence and daily-life activities.
A specific BPNN trained with the L-M method works as the classifier. Alto-
gether 9 kinds of activities are involved. For 9-class classification, the average
recognition accuracy is 67.0%, whereas for 2-class classification, i.e. activities
are classified as violence or daily-life activity, the average recognition accuracy
reaches 83.7%.
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1 Introduction

In recent years, movement sensor techniques have developed very rapidly. Benefit from
this, activity recognition based on movement data becomes more and more popular.
Commonly used movement sensors are accelerometers and gyroscopes, and the cor-
responding data are acceleration and gyro, respectively.

Existing activity recognition research work mainly focuses on the recognition of
daily-life activities. For example, Cheng et al. [1] recognized daily-life activities of
standing, sitting, walking, turning left, turning right, going upstairs, going downstairs,
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jogging, and jumping. Nakano et al. [2] recognized daily-life activities of walking,
walking upstairs, walking downstairs, sitting, standing, and lying. Hegde et al. [3]
recognized daily-life activities of lying down, sitting, standing, walking driving, des-
cend stairs, ascend stairs, and cycling.

In 2014, Alasaarela [4] argued that activity recognition with movement sensors can
also be used for school violence detection, i.e. with wearable movement sensors such as
smartphones embedded with accelerometers and gyroscopes, one can detect school
violence events. As members of his research group, Ye et al. [5] designed their first
experimental classifier FMT (Fuzzy Multi-Threshold) with some simple activities.
Later they [6] involved more kinds of activities and different ages of actors and
actresses, and designed a more compatible Instance-Based classifier. Besides move-
ment features, physiological features such as ECG (electrocardiogram) [7, 8] and HRV
(heart rate variability) [9] were also used for school violence detection, but they are not
considered in this paper.

As a continuation, this paper improves the authors’ previous work by involving
more features and designing a more proper classifier. Besides, more kinds of activities
are tested compared with the authors’ previous work. The remainder of this paper is
organized as follows: Sect. 2 describes the extracted movement features; Sect. 3
describes the classifier and the training method; Sect. 4 shows the simulation results;
Sect. 5 draws a conclusion.

2 Movement Features Extraction

Movement data of physical violence and daily-life activities are gathered by role
playing. Nine kinds of activities are acted, namely beating, pushing, pushing down,
walking, running, jumping, falling down, playing, and standing. The first three kinds of
activities are physical violence events, and the remaining six are daily-life activities.
A Butterworth filter is used before feature extraction to remove high frequency jitters.

The authors’ previous work [5, 6] only extracted time domain features of the
activities, but this paper extract both time domain features and frequency domain ones.
The extracted time domain features are given in Table 1, whereas the extracted fre-
quency domain features are shown in Table 2.

In this experiment, the y-axis is the vertical direction, so the horizontal combined
vector means the combination of the x-axis and the z-axis. The combined vector means
the combination of all the three axes. MAD is the Median Absolute Deviation, and
MAD ¼ median jxi �median Xð Þjð Þ; where X ¼ x1; x2; . . .; xnf g. VarDir describes the
change of horizontal movement direction, and Areay is the accumulation of movement
jitter in the vertical direction [6].

The frequency domain features are extracted by FFT (Fast Fourier Transform). The
maximum or minimum of the frequency means the frequency with the maximum or
minimum amplitude. The horizontal combined vector and the combined vector have
the same meanings with those of the time domain feature vectors.

There are altogether 41 features (23 time domain features and 18 frequency domain
features) extracted for classification. However, since the authors’ purpose is to apply
the physical violence detecting algorithm on a smartphone for pratical use, the
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Table 1. Extracted time domain features

Feature Meaning From

Meany Mean of the y-axis Acceleration
MeanHori Mean of the horizontal combined vector Acceleration

MeanGyro Mean of the combined gyro Gyro
MADy MAD of the y-axis Acceleration
MADHori MAD of the horizontal combined vector Acceleration

MADGyro MAD of the combined gyro Gyro
Maxy Maximum of the y-axis Acceleration

MaxHori Maximum of the horizontal combined vector Acceleration
MaxGyro Maximum of the combined gyro Gyro
Miny Minimum of the y-axis Acceleration

MinHori Minimum of the horizontal combined vector Acceleration
MinGyro Minimum of the combined gyro Gyro

Maxdiff(y) Maximum of the differential of the y-axis Acceleration
Maxdiff(Hori) Maximum of the differential of the horizontal combined vector Acceleration
Meandiff(y) Mean of the differential of the y-axis Acceleration

Meandiff(Hori) Mean of the differential of the horizontal combined vector Acceleration
Maxdiff(Gyro) Maximum of the differential of the combined gyro Gyro

Meandiff(Gyro) Mean of the differential of the combined gyro Gyro
ZCRx Zero cross rate of the x-axis Acceleration
ZCRy Zero cross rate of the y-axis Acceleration

ZCRz Zero cross rate of the z-axis Acceleration
VarDir Variation of the horizontal movement direction Acceleration

Areay Accumulation of movement jitter of the y-axis Acceleration

Table 2. Frequency domain features

Feature Meaning From

Maxfy Maximum of the y-axis Acceleration
MaxfHori Maximum of the horizontal combined vector Acceleration

MaxfGyro Maximum of the combined gyro Gyro
Minfy Minimum of the y-axis Acceleration
MinfHori Minimum of the horizontal combined vector Acceleration

MinfGyro Minimum of the combined gyro Gyro
MADfy MAD of the y-axis Acceleration

MADfHori MAD of the horizontal combined vector Acceleration
MADfGyro MAD of the combined gyro Gyro
Meanfy Mean of the y-axis Acceleration

MeanfHori Mean of the horizontal combined vector Acceleration
MeanfGyro Mean of the combined gyro Gyro

Energyfy Energy of the y-axis Acceleration
EnergyfHori Energy of the horizontal combined vector Acceleration
EnergyfGyro Energy of the combined gyro Gyro

CenterfHori Main lob center frequency of the horizontal combined vector Acceleration
Centerfy Main lob center frequency of the y-axis Acceleration

CenterfGyro Main lob center frequency of the combined gyro Gyro
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dimension of the feature vector should be as low as possible. In this paper, the authors
choose the Wrapper method [10] for feature selection.

The authors firstly designed the entire classification system, including data gath-
ering, data pre-processing, feature extraction, and the classifier. A specific BPNN (Back
Propagation Neural Network) [11] works as the classifier. Then the authors use this
system to find out the best feature combination with the Wrapper method. In each
iteration, Wrapper adds or removes features, and compares the classification results.
Finally, Wrapper selects 11 features, including 7 time domain features, namely
MeanGyro, MaxGyro, Maxdiff(y), Maxdiff(Gyro), ZCRx, ZCRy, and VarDir, and 4 frequency
domain features, namely MADfHori, MADfGyro, MeanfHori, and Energyfy.

3 Classifier Design

In the authors’ previous work, the first classifier FMT was discarded in the second
experiment because it was difficult to find unified thresholds for the actors and actresses
of different ages due to strength difference. However, the second Instance-Based
classifier could not distinguish the activities of pushing down and falling down very
well. Therefore, the authors decide to find a more proper classifier. By comparing the
advantages and disadvantages of some commonly used classifiers, e.g. Bayesian, SVM,
KNN and KNN-based, the authors finally choose BPNN for this work. BPNN is
particularly suitable for solving complex problems with non-linear relationship
between the extracted features and classification results. Figure 1 shows the architec-
ture of a classical BPNN, where p is the input, w is the weight, b is the bias, f is the
transfer function, and a is the output.

The parameter setting of BPNN is a key factor which affects the classification
performance. Normally, the number of inputs of the network equals to the dimension of
the input feature vector. In this paper, it is 11. The number of neurons of the output
layer equals to the number of target classes, i.e. 9 in this paper. The number of neurons
of the hidden layer should be set larger than the square of the sum of the input and the
output dimensions empirically. Other parameters, e.g. the number of hidden layers, the
transfer functions of the hidden layers and the output layer, will be set experimentally
according to the simulations.

For training BPNN, this paper chooses the Lenvenberg-Marquardt (L-M) method
[12]. Compared with other training methods such as the Newton method and the
Gradient Descent method, the L-M method can avoid calculating a Hessian matrix
which will cause large computational cost. Instead, the Hessian matrix is approximated
by H ¼ JTJ with the gradient g ¼ JTe where J is a Jacobian matrix containing the first

order derivative of the training error e. In each iteration, xkþ 1 ¼ xk � JTJþ lI
� ��1

JTe.
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4 Simulations

The authors recorded altogether 1160 fragments of the 9 kinds of activities, and the
amount of each kind was similar. The movement sensors (accelerometers and gyro-
scopes) were fixed on the actors’ and actresses’ waists. Ten-fold cross validation was
used for the simulations, i.e. the authors split each kind of activity into 10 groups, 9 of
which were used as the training set whereas the remaining 1 as the testing set. Repeat
this procedure 10 times and change the testing set each time. The final result was the
average of the 10 results.

Then the authors set the parameters of BPNN experimentally: there are 6 neurons in
the hidden layer; the transfer function of the hidden layer is logsig, whereas that of the
output layer is purelin. Figure 2 shows the architecture of this specific BPNN.

Fig. 1. Architecture of a classical BPNN

Fig. 2. Architecture of the employed BPNN
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Firstly, the 9 kinds of activities were classified into 9 classes. The confusion matrix
is given in Table 3.

Then, considering the theme of this paper, i.e. physical violence detection, the 9
kinds of activities are classified into 2 classes, namely physical violence and daily-life
activities, respectively. Table 4 shows the 2-class classification confusion matrix.

Table 4 shows an intuitional result of the proposed violence detecting method, and
Table 3 may tell some details of it. Violent activities of beating and pushing down are
likely to be misclassified as the daily-life activity of playing, and daily-life activities of
falling down and playing are likely to be misclassified as violenct activities of pushing
and pushing down, respectively, because these kinds of activities have similar strenghth
and suddenness especially when playing contains confrontational actions.

The average accuracy of the proposed method is about 83.7%, which outperforms
the authors’ previous Instance-Based method by 3.7%. The first method FMT is
uncomparable because it is hardly possible to find unified thresholds for actors and
actresses of different ages due to strength difference.

Table 3. Confusion matrix of 9-class classification (%)

Classified as Beat Push Push down Walk Run Jump Fall down Play Stand

Beat 50.0 10.0 13.3 0.0 3.3 0.0 3.3 20.0 0.0
Push 8.3 68.3 8.3 0.0 1.7 6.7 6.7 0.0 0.0
Push down 0.0 3.3 40.0 10.0 0.0 3.3 10.0 23.3 10.0
Walk 2.5 1.3 7.5 43.8 0.0 0.0 0.0 42.5 2.5
Run 0.0 1.4 0.0 0.0 91.4 5.7 0.0 0.0 1.4
Jump 0.0 0.0 0.0 0.0 12.5 87.5 0.0 0.0 0.0
Fall down 0.0 20.0 6.7 0.0 0.0 0.0 66.7 6.7 0.0
Play 4.2 5.0 15.0 5.8 0.0 2.5 4.2 60.8 2.5
Stand 0.0 0.0 1.1 1.1 0.0 0.0 0.0 3.3 94.4

Table 4. Confusion matrix of 2-class classification (%)

Classified as Physical violence Daily-life activity

Physical violence 71.7 28.3
Daily-life activity 11.2 88.8
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5 Conclusion

This paper proposed a physical violence detecting method. The movement data were
gathered by movement sensors by means of role playing. Both time domain features
and frequency domain features were extracted and filtered to describe the differences
between physical violence and daily-life activities. A specific BPNN trained with the L-
M method worked as the classifier. Ten-fold cross validation was performed for sim-
ulation. The average classification accuracy was 83.7%, which showed an improve-
ment compared with the authors’ previous work.
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