
Smartphone Application Identification
by Convolutional Neural Network

Shuang Zhao(B) and Shuhui Chen

College of Computer, National University of Defense Technology, Changsha, China
Zhaos abby@163.com, shchen@nudt.edu.cn

Abstract. Mobile traffic has received much attention within the field
of network security and management due to the rapid development of
mobile networks. Unlike fixed wired workstation traffic, mobile traffic is
mostly carried over HTTP/HTTPS, which brings new challenges to tra-
ditional traffic identification methods. Although there have been some
attempts to address this problem with side-channel traffic information
and machine learning, the effectiveness of these methods majorly depends
on predefined statistics features. In this paper, we presented an approach
based on convolutional neural network without explicit feature extraction
process. And owing to no payload inspection requirement, this method
also works well even encrypted traffic appears. Six instant message appli-
cations are used to verify our approach. The evaluation shows the pro-
posed approach can achieve more than 96% accuracy. Additionally, we
also discussed how this approach performed under real-world conditions.

Keywords: Application identification
Convolutional neural network · Mobile traffic · Encrypted traffic
Network management

1 Introduction

With the proliferation of mobile devices and applications, the composition and
diversity of network traffic changes tremendously. SmartInsights [1] points out
that mobile devices dominate total minutes spent online and Apps drive dom-
inant share of mobile time in all markets. China Statistical Report on Internet
Development [2] reports that mobile internet users account for 96.3% of internet
users in China. Consequently, mobile traffic has overtaken traditional worksta-
tion traffic and occupied a major portion of network traffic. Therefore, mobile
traffic monitoring becomes a real concern for individuals, business and related
organizations.

For instance, with the aid of mobile traffic identification technology, ISP could
figure out which application is using the most bandwidth. Intrusion detection
system could identify malicious traffic, and enterprises could identify and limit
the use of related apps during office hours. It is worth mentioning that only
passive traffic monitor is required during the analysis process.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018

L. Meng and Y. Zhang (Eds.): MLICOM 2018, LNICST 251, pp. 105–114, 2018.

https://doi.org/10.1007/978-3-030-00557-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00557-3_11&domain=pdf

106 S. Zhao and S. Chen

There are some problems when handling mobile traffic by traditional identi-
fication methods. Unlike traditional workstation traffic, mobile traffic has some
special characteristics: (1) Mobile traffic is mostly carried over HTTP/HTTPS
which indicates that port-based identification method nearly useless. (2) The
effectiveness of DPI-based methods is diminishing because of encrypted HTTPS
traffic. (3) Traditional workstation traffic has too coarse-grained identification
targets such as protocols or services, while mobile traffic is required to match
with Apps or even particular activities. (4) Technologies include clouding host,
CDN (content distribution network), and third libraries also make server domain
less reliable and the generated traffic more similar. (5) Mobile App markets grow
fast, and Apps update frequently, so the identification method must be scalable.
These features reveal that it is necessary to propose new identification methods
for dealing with mobile traffic.

In recent years, some notable work has used machine learning and traffic
patterns leaked through side-channel information such as packet sizes or time-
related features to identify traffic [3–5]. These methods only employ traffic statis-
tics features and do not involve payload, thus overcoming the problems raised
by random ports and encryption techniques. However, the effectiveness of these
methods depends on the handcrafted features heavily. On the one hand, it’s
difficult to extract abstract traffic features manually. On the other hand, the
classifier’s ability is limited by distinguishing all applications with the same set
of features, given that different application has different distinguishable features.
In addition, most features are complete flow related making real-time identifica-
tion impossible.

To solve the mentioned problems, in this paper, we propose a real-time
mobile traffic identification approach based on two-dimensional convolutional
neural network (2D-CNN). This method only needs raw data as input without
decrypting traffic. And 2D-CNN could extracts features automatically. The main
process is as follows. The raw traffic is first separated into flows according to 5-
tuple (SrcIp, DstIp, SrcPort, DstPort, protocol), and then only the application
layer data of the first five packets with at least a byte of TCP data payload
is reserved. Next, the data is transformed into a two-dimensional image as the
2D-CNN model’ input. In the end, 2D-CNN model gives the prediction.

The main contributions of our work are as follows. Firstly, we present a real-
time mobile traffic identification method based on 2D-CNN, which omits the
feature extraction process and regardless of whether traffic is encrypted. Sec-
ondly, the experimental results show that the proposed method performs better
than the state-of-the-art method Random Forest. Afterwards we also propose
validation threshold to reduce the false positive rate. Finally, we discuss the
influence of background traffic on model accuracy.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 describes the proposed approach including data collection and model
architecture. Section 4 presents results of the experiments and outlines the post-
validation method. The influence of background traffic is discussed in Sect. 4.3.
Section 5 concludes the paper.

Smartphone Application Identification by Convolutional Neural Network 107

2 Related Work

Current mainstream research of mobile traffic identification could be categorized
into two categories. First one is to generate unique App signatures by tokens
such as User-Agent field in HTTP requests. The Other one focuses on machine
learning.

Xu et al. [6] used User-Agent field in HTTP requests to differentiate apps and
analyze the resource usage. Dai et al. [7] automatically generated apps’ finger-
prints by domain name and HTTP request tokens. AppPrint [8] also discovered
apps’ signatures by parameters in URL or cookies. The limitation of these meth-
ods is that it only works for HTTP traffic which provides these specific tokens.
Additionally, they also cannot distinguish between the traffic generated by the
same third-party effectively.

Thanks to not needing to inspect the payload of traffic, machine learning-
based identification method doesn’t have the problems of the above work. Wang
et al. [9] identified 13 apps by Random Forest with packets size and interval time
features were used. Taylor et al. [10] applied Random Forest to identify 110 apps.
They proposed burst modeling traffic and employed packet sizes as features. This
work also attempted to identify ambiguous traffic that shared among apps. Hasan
et al. [11] extracted the packet sizes patterns of the traffic produced by the first
20s when apps launched and identified thousands of apps. However, the features
used in the above work have obvious concrete sense, whereas the more abstract
features are overlooked.

As a kind of machine learning algorithm, the neural network has the advan-
tage of extracting features automatically. A few impressive studies have applied
CNN to classify mobile traffic. Chen et al. [12] encoded HTTP requests plain text
and trained a 2D-CNN model to identify 20 apps. Deep Packet [13] employed
stacked autoencoder and 1D-CNN to identify and characterize mobile traffic.
Wang et al. [14] considered mobile traffic as a sequential data and therefore uti-
lized 1D-CNN as the classification model. Work [15] comes closer to the work
in this paper, which uses 2D-CNN to classify malware traffic. But we design a
different processing method to generate the input data.

3 Methodology

3.1 Data Collection

To validate the proposed approach, a local dataset is collected by our lab mem-
bers during one month. We selected 6 popular Android instant messaging appli-
cations, and captured these Apps’ traffic by Tpacketcapture [16]. Then Network-
Log [17] is used to label the traffic accurately. Figure 1 depicts the procedure of
data preprocessing.

Firstly, packets are split into flows according to the 5-tuple with the timeout
set to 90s according to experience. Considering apps could use long connection,
so a long connection would be separated into several flows due to the time-
out limitation. We would retain flows which without SYN handshake, but flows

108 S. Zhao and S. Chen

which have less than two packets with payload are removed. Secondly, flow is
converted into an image which can be easily calculated in the 2D-CNN model.
To identify a flow rapidly, we only employ first five payload carried packets’
application layer data. The reason for retaining only the application layer data
is that the link header does not have App-related information, and IP address
and ports are also not reliable. Then, given that the MTU is mostly set to 1500
bytes, so each packet’s payload can be represented as a 1 * 1500 bytes vector.
Zero padding and Truncation are used if needed. To preserve packet’s direction
information, the bytes from client to server are normalized to [128, 255] and
bytes in the other direction are normalized to [0, 127]. Finally, five packets are
sequentially combined to a 5 * 1500 2D-vector, and converted to an 87 * 87 image
with normalized to range [0, 1]. The details of this dataset after preprocessing
are shown in Table 1.

capture device

....192.168.43.202.111.23.5.164.......

....10.8.0.1.111.23.5.164.......

..192.168.43.202...........50 4f 53 54...

.192.168.43.202.............................

..192.168.43.202..............................

.111.23.5.164................................

Flow

application data

167 166 168 169 ...00..0.

application data

36 42 42 4000..0.

...... 00..0.

...... 00..0.

...... 00..0.

1500 bytes

87*87

.111.23.5.164........48 54 54 50

Packets

Fig. 1. The procedure of converting raw traffic to CNN input data

Table 1. The processed results of local dataset

Application Flow size

ChaoXin 7185

DingTalk 5936

MoMo 8000

TanTan 7962

WeChat 7991

YiXin 7779

3.2 2D-CNN Architecture

2D-CNN has been successfully applied in the field of image processing. It mainly
includes convolution and sampling layer, which can extract the abstract features
within structured data and then identify the targets. After sufficient experiments
and careful parameters tuning, the 2D-CNN model proposed in this paper is illus-
trated in Fig. 2, which contains two convolution layers and three full connection
layers. Table 2 gives the detailed parameters of each layer.

Smartphone Application Identification by Convolutional Neural Network 109

Fig. 2. The procedure of converting raw traffic to 2D-CNN input data

Table 2. Parameters of 2D-CNN model

a) Convolution layer parameters

Layer Activation Function Filter Max-pooling Dropout

1 ReLU 32(3*3) 2*2 /

2 ReLU 64(3*3) 2*2 0.25

b) Full connection layer parameters

Layer Node Activation Function Dropout

3 Flatten ReLU /

4 128 ReLU 0.25

5 6 Softmax /

4 Experiments and Evaluations

We use the mentioned local dataset to evaluate our approach and compare with
the results of the stat-of-the-art method Random Forest. 80% of the dataset are
randomly sampled as training set and the rest is test set.

2D-CNN model is implemented using Keras library [18] with TensorFlow as
backend. Training batch size is set to 64, loss function and optimizer use cross
entropy and Adadelta optimizer built in Keras. The final model is obtained after
100 epochs.

Random Forest is implemented by data mining tool Weka [19]. Like the
input data preprocessing of 2D-CNN, at most first five payload carried packets
are used to extract 37 statistical features for each flow, as listed in Table 3. Since

110 S. Zhao and S. Chen

Random Forest itself has the function of feature selection, no feature selection
is performed. The final model contains 100 trees and the rest of the parameters
remain the default of Weka.

Table 3. Features used in random forest

Feature type Description Number

Port Port number in unidirection 2

Packet size First three payload carried packets size in
unidirection. Min, Max, Mean, Std Dev of payload
carried packets size in unidirection and flow

18

Inter-packet Time Max, Min, Mean, Std Dev of inter packet time in
unidirection and flow

12

Packets Packets number transferred in unidirection. The ratio
of the payload carried packets transferred in
unidirection

4

Bytes The ratio of volume bytes transferred in two directions 1

4.1 Local Dataset Evaluation

Four evaluation metrics including recall, precision, F-measure and overall accu-
racy are used. The results show that the overall accuracy of 2D-CNN model is
96.94%, and Random Forest is 96.08%. Tables 4 and 5 display the experimen-
tal results of 2D-CNN model and Random Forest. Table 6 shows the confusion
matrix of two models.

From the above Tables, we can observe that the performance of 2D-CNN in
each class higher than that of Random Forest, which indicates 2D-CNN could
extract more abstract and effective features.

Table 4. Results of 2D-CNN model

Apps Precision Recall F-measure

ChaoXin 97.22% 95.21% 96.20%

DingTalk 91.79% 97.10% 94.37%

MoMo 98.67% 97.56% 98.11%

TanTan 97.69% 98.55% 98.11%

WeChat 98.27% 96.61% 97.43%

YiXin 96.94% 96.44% 96.69%

Mean 96.76% 96.91% 96.83%

Smartphone Application Identification by Convolutional Neural Network 111

Table 5. Results of random forest model

Apps Precision Recall F-measure

ChaoXin 95.9% 94.4% 95.1%

DingTalk 92.5% 95.1% 93.8%

MoMo 97.2% 96.8% 97.0%

TanTan 96.8% 97.7% 97.2%

WeChat 97.5% 96.4% 96.9%

YiXin 95.7% 95.7% 95.7%

Mean 95.93% 96.02% 95.95%

Table 6. Confusion matrix of 2D-CNN model/random forest model

True Pred

ChaoXin DingTalk MoMo TanTan WeChat YiXin

ChaoXin 1331/1320 42/37 3/9 11/16 3/3 8/13

DingTalk 10/25 1140/1117 3/7 3/5 7/5 11/15

MoMo 5/6 10/14 1561/1548 11/14 3/9 10/9

TanTan 3/8 6/5 6/7 1566/1552 6/8 2/9

WeChat 5/3 19/14 7/11 7/10 1537/1533 16/20

YiXin 15/15 25/20 2/10 5/7 8/15 1490/1478

4.2 Post-validation

It’s worth noting that the last layer in the CNN model uses softmax as the
activation function, i.e., softmax function is used to output the probability of
each class. Therefore, the output of the last layer could represent the confidence
of the prediction.

From this perspective, we calculate the probability distribution of the pre-
dictions on the local data set as shown in Fig. 3. We can see that above 90% of
true positive instances have a confidence value higher than 0.9. On the contrary,
most false predictions have lower confidence value. Thus, we could use confi-
dence threshold to further confirm the prediction. If confidence is lower than the
threshold, CNN model could refuse to give a prediction.

We set the confidence threshold to 0.85, and retest the test set on the 2D-
CNN model. The experiment shows that the average precision is 99.15%, average
recall is 99.11%, and average F-measure is 99.13%. Due to the rejection of the
sample with low confidence, flow coverage decreases to 93.67%. However, this
trade-off is desirable for the scenarios where concentrate on accuracy or app
coverage rather than flow coverage.

112 S. Zhao and S. Chen

(a) Distribution of true positive (b) Distribution of false prediction

Fig. 3. Confidence probability distribution

4.3 Influence of Background Traffic

In real world, network traffic is dominated by the background traffic rather than
the target traffic. We examine the impact of background traffic on classifier
performance in this section. Based on the original output classes, we add a class
Other, and all non-target traffic belongs to Other. Therefore, the classifier can
handle background traffic.

Then we add 52853 background flows to the mentioned local dataset and
retrained the 2D-CNN model. The confidence threshold is configured to 0.85.
The results show that the average precision, recall and F-measure are 97.69%,
97.71%, 97.7% respectively. And the flow coverage is 93.64%. The confusion
matrix is shown in Fig. 4.

From the above experimental results, it can be concluded that under the
influence of background traffic, the performance of the classifier will decrease.
Furthermore, it can be speculated that the accuracy of the classifier will become
lower as time goes on because the background traffic set used in the training
phrase is incomplete. Therefore, it is necessary to continuously monitor the clas-
sifier’s performance and update the model with new traffic samples.

Fig. 4. Confusion matrix of 2D-CNN with identifying other class

Smartphone Application Identification by Convolutional Neural Network 113

5 Conclusion

Traditional traffic identification methods have been unable to handle mobile
traffic effectively. In this paper, we have studied the efficiency of 2D-CNN model
to address the mobile traffic identification. Our results proved that 2D-CNN is an
effective approach and superior to the state-of-the-art method Random Forest.
In addition, we found that the 2D-CNN model can satisfy the requirement of
the scenario where focus on accuracy simply by setting a confidence threshold.
At the end of the paper, we also discussed the impact of background traffic on
classifier performance. As future work we will continue to further study how to
handle background traffic and automatically identify new traffic classes.

References

1. Mobile Marketing Statistics compilation. https://www.smartinsights.com/mobile-
marketing/mobile-marketing-analytics/mobile-marketing-statistics/

2. The 40th China Statistical Report on Internet Development. http://cnnic.cn/
hlwfzyj/hlwxzbg/hlwtjbg/201708/P020170807351923262153.pdf

3. Gerard, D., Arash, L., Mamun, M., Ali, G.: Characterization of encrypted and VPN
traffic using time-related features. In: The International Conference on Information
Systems Security and Privacy, Italy, pp. 94–98 (2016)

4. Zhang, J., Chen, X., Xiang, Y., Zhou, W.-L., Wu, J.: Robust network traffic clas-
sification. J. IEEE/ACM Trans. Netw. 23(4), 1257–1270 (2015)

5. Taylor, V., Spolaor, R., Conti, M., Martinovic, I.: AppScanner: automatic finger-
printing of smartphone apps from encrypted network traffic. In: IEEE Symposium
on Security and Privacy, pp. 439–454 (2016)

6. Xu, Q., Ermanet, J., Gerber, A., Mao, Z., Pang, J., Venkaraeaman, S.: Identifying
diverse usage behaviors of smartphone apps. In: Proceedings of the 2011 ACM
SIGCOMM conference on Internet measurement conference, Berlin, pp. 329–344
(2011)

7. Dai, S.-F., Tongaonkar, A., Wang, X.-Y., Nucci, A., Song, D.: NetworkProfiler:
towards automatic fingerprinting of Android apps. In: Proceeding IEEE INFO-
COM, Italy, pp. 809–817 (2013)

8. Miskovic, S., Lee, G.M., Liao, Y., Baldi, M.: AppPrint: automatic fingerprinting of
mobile applications in network traffic. In: Mirkovic, J., Liu, Y. (eds.) PAM 2015.
LNCS, vol. 8995, pp. 57–69. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-15509-8 5

9. Wang Q.-L., Yahyavi, A., Kemme, B., He, W.-B.: I know what you did on your
smartphone: inferring app usage over encrypted data traffic. In: Communications
and Networking Symposium, pp. 433–441 (2015)

10. Taylor, V., Spolaor, R., Conti, M., Martinovic, I.: Robust smartphone app identi-
fication via encrypted network traffic analysis. J IEEE Trans. Inf. Forensics Secur.
13, 63–78 (2018)

11. Alan, F., Kaur, J.: Can android applications be identified using only TCP/IP
headers of their launch time traffic? In: Wireless Network Security, pp. 61–66 (2016)

12. Chen, Z.-Y., Yu, B.-W., Zhang, Y., Zhang, J.-Z., Xu, J.-D.: Automatic mobile
application traffic identification by convolutional neural networks. In: Trust-
com/bigdatase/ispa, pp. 301–307(2017)

https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201708/P020170807351923262153.pdf
http://cnnic.cn/hlwfzyj/hlwxzbg/hlwtjbg/201708/P020170807351923262153.pdf
https://doi.org/10.1007/978-3-319-15509-8_5
https://doi.org/10.1007/978-3-319-15509-8_5

114 S. Zhao and S. Chen

13. Lotfollahi, M., Zade, R., Siavoshani, M., Saberian, M.: Deep Packet: A Novel App-
roach for Encrypted Traffic Classification Using Deep Learning. arXiv (2017)

14. Wang, W., Zhu, M., Wang, J.-L., Zeng, X.-W., Yang, Z.-Z.: End-to-end encrypted
traffic classification with one-dimensional convolution neural networks. In: IEEE
International Conference on Intelligence & Security Informatics, pp. 43–48. IEEE
Press, Beijing (2017)

15. Wang, W., Zhu, M., Zeng, X.-W., Ye, X.-Z., Sheng, Y.-Q.: Malware traffic clas-
sification using convolutional neural network for representation learning. In: 2017
International Conference on Information Networking, pp. 712–717. IEEE Press,
Da Nang (2017)

16. TPacketCapture. https://play.google.com/store/apps/details?id=jp.co.taosoftwa
re.android. Packetcapture

17. Pragmatic Software, Network Log. https://play.google.com/store/apps/details?
id=com.googlecode.networklog

18. Keras: The Python Deep Learning library. https://keras.io/
19. Weka 3: Data Mining Software in Java. https://www.cs.waikato.ac.nz/ml/weka/

https://play.google.com/store/apps/details?id=jp.co.taosoftware.android
https://play.google.com/store/apps/details?id=jp.co.taosoftware.android
https://play.google.com/store/apps/details?id=com.googlecode.networklog
https://play.google.com/store/apps/details?id=com.googlecode.networklog
https://keras.io/
https://www.cs.waikato.ac.nz/ml/weka/

	Smartphone Application Identification by Convolutional Neural Network
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Data Collection
	3.2 2D-CNN Architecture

	4 Experiments and Evaluations
	4.1 Local Dataset Evaluation
	4.2 Post-validation
	4.3 Influence of Background Traffic

	5 Conclusion
	References

