
Gun Identification Using Tensorflow

Mitchell Singleton, Benjamin Taylor, Jacob Taylor,
and Qingzhong Liu(&)

Department of Computer Science, Sam Houston State University,
Huntsville, TX 77341, USA

{mitchellsingleton,benjamin.taylor,

jacobtaylor,liu}@shsu.edu

Abstract. Automatic video surveillance can assist security personnel in the
identification of threats. Generally, security personnel are monitoring multiple
monitors and a system that would send an alert or warning could give the
personnel extra time to scrutinize if a person is carrying a firearm. In this paper,
we utilize Google’s Tensorflow API to create a digital framework that will
identify handguns in real time video. By utilizing the MobileNetV1 Neural
Network algorithm, our system is trained to identify handguns in various ori-
entations, shapes, and sizes, then the intelligent gun identification system will
automatically interpret if the subject is carrying a gun or other objects. Our
experiments show the efficiency of implemented intelligent gun identification
system.

Keywords: Tensorflow � Gun detection � Video surveillance

1 Introduction and Background

Automatic video surveillance is utilized by many people and organizations in the video
surveillance category of their physical security protocol. CCTV and webcams are used
in many products, from specialized doorbells with cameras and microphones that allow
for two-way communication and recording when an event is triggered, or Closed-
Circuit Television’s (CCTV) which are used to aid security personnel in preventing or
helping mitigate an incident. These systems use video in some form of method to
record what the camera sees. While it may be easy for a homeowner to review a single
system that has 1 or 2 cameras, the task becomes an arduous and tedious even when
combing through multiple video streams if they implement a larger array of cameras.
Depending on an organization’s footprint and their implementation of their physical
security plan, security personnel may be monitoring 100’s of video streams [1, 2].
These streams should be prioritized in order of importance to determine the number of
personnel needed and how many streams can be observed per personnel.

Recently, there has been an increasing number of incidents involving handguns in
various situations. To detect handguns, in [3], several models were utilized to detect
pistols. These models used the VGG-16 based classifier and then classified the
detection of the gun with either the sliding window or the region proposal approach.
The authors went with the region proposal approach due to its faster detection speed –

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
L. Meng and Y. Zhang (Eds.): MLICOM 2018, LNICST 251, pp. 3–12, 2018.
https://doi.org/10.1007/978-3-030-00557-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00557-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00557-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00557-3_1&domain=pdf

but also tested against the sliding window approach. To achieve a real-time outdoor
concealed-object detection with passive millimeter wave imaging [4], the authors used
a passive millimeter wave (MMW) imaging system ran at or around 94 GHz with 1 Hz
frame rate. To attain automatic recognition, they used both global (aligning the body
and the background together) and local (inside of the body is processed) segmentation
levels to find the concealed objects. To automatically detect firearms and knives in a
CCTV image, the authors in [1] used an approach utilizing MPEG-7 visual descriptions
and a principal component analysis (PCA). They took each frame and removed
everything except the foreground of the image which included the erosion and dilation.
To detect weapons in surveillance camera images [5], the authors improved detecting
weapons in CCTV via the Histogram of Oriented Gradients (HOG) method for clas-
sification. In [6], a framework was developed to identify general objects in video using
still image processes along with object tracking through the 4th dimension of time. In
[7], a real-time detection, tracking and classification of natural video was examined.
The method uses background subtraction and maximally stable extremal region
(MSER) detection. However the method didn’t successfully reach real-time. Recently a
method to detect visual gun by using Harris interest point was proposed [2], the author
uses a visual gun detection based on FREAK descriptor to recognize guns. The system
processes an image, performs color segmentation, performs a boundary extraction and
compares against a similarity higher than 50% and then executes an alarm. This
algorithm was accurate 84.26% of the time and shows promise.

In this paper, we focus on detecting guns vs no guns. We propose a detection
method that is built on a lean convolutional neural network optimized for speed. This
paper is organized into four additional sections. Section 2 explains the definitions and
tools where we will explain the CNNs and tools used to train our algorithm. Section 3
describes the methodology and the effectiveness of our algorithm, followed by our
conclusions in Sect. 4.

2 Definitions and Tools

Tensorflow (https://www.tensorflow.org/) is a platform that is based on dataflow graphs
and is useful in training with deep neural networks [8]. Tensorflow was created by
Google and it is used in their native applications and in dozens of machine learning
projects such as: facial recognition, image processing, speech recognition, and
extracting information such as license plate numbers. Tensorboard, a web application,
is a visualization for understanding Tensorflow trainings and monitoring the training
progress in a web browser [9]. It showcases visualizations such as: graphs, scalars, and
images. Tensorboard shows cross entropy and accuracy depicted into a graph for
convenient visualization of training results. Tensorboard can be started from an Ana-
conda prompt and uses port 6006 on the localhost for its process.

OpenCV (https://opencv.org/) is an open source computer vision library that con-
tains image processing functions and over 2,500 algorithms used for things like facial
recognition [10]. OpenCV can accelerate CUDA and OpenCL GPUs. OpenCV sup-
ports deep learning platforms like Tensorflow. OpenCV is built using a layering

4 M. Singleton et al.

https://www.tensorflow.org/
https://opencv.org/

process. You have the OS, then the languages and algorithms, the core of OpenCV, and
at the bottom the hardware acceleration layer (HAL) [11].

MobileNet is a collection of vision models for Tensorflow that are mobile-oriented
and used to enhance visual recognition [12]. It is essentially a convolutional neural
network (CNN). MobileNet, unlike a typical CNN, separates the convolution into a
3 � 3 depth wise convolution and a 1 � 1 pointwise convolution. The reason Mobi-
leNet is used more than a traditional CNN is the computation time is much quicker with
their architecture, however the accuracy can be slightly lower. Depending on the
architecture, such as MobileNet_0.50.224 or 0.50.192, it can change the width mul-
tiplier and the image resolution. The image resolution is the 192 or 224 and the width
multiplier is the .50. This will help the object detection computation time of the image
processing the smaller the image resolution. The width multiplier can be ranged from
0.25, 0.50, 0.75, and 1.0. The image resolution can be 128, 160, 192, or 224.

ImageNet (http://www.image-net.org/) is a very large dataset of images (over 14
million) with about 22,000 categories and are collected by human labelers [13]. Ima-
geNet compiles hundreds of thousands of thumbnails and URLs of images just like
Google, a search engine, does. ImageNet is organized via synsets which is a concept of
WordNet. ImageNet was created to be utilized by researchers as a primary resource for
images.

Anaconda (https://www.anaconda.com/) is used for large quantities of data pro-
cessing, predictive analytics, and scientific computing [14]. It has over 1000 packages
in its repository that can be installed, 150 of which come pre-installed with Anaconda.
It is an open-source distribution of Python used to ease and simplify package admin-
istration and distribution. The packages are managed by a package management system
within anaconda called conda.

Nvidia Compute Unified Device Architecture (CUDA) is utilized by many as their
primary method to process images because it essentially groups the cores of GPUs into
a vector and can then be programmed to decrease processing time on the large sets of
data versus CPUs that do not run on a parallel throughput architecture [15].

Shi-Tomasi corner point detection is an enhancement to the Harris corner detector.
The way Harris corner detection works is that the pixel is calculated and if above a
precise value then it’s marked as a corner. To score it, two eigen values are used to
check if it’s a corner during detection and then inputted into a function which
manipulates them. Shi-Tomasi decided to enhance this method and only rely on the two
eigen values, not the entire Harris formula. This is because their model relies solely on
the tracker’s accuracy [16].

3 Methodologies

The dataset pictures were gathered from the Sun database [17], Internet Movie Firearm
Database [18], Pixabay [19], ImageNet [20] and reduced in number to 3363 gun images
and 11834 non-gun images. The dataset was trained several times adding or removing
pictures from the datasets to improve accuracy.

The method utilized in this paper was to retrain multiple object detection models
(inception_v3, MobileNet_0.50_192, MobileNet_0.50_224, MobileNet_1.0_224) for a

Gun Identification Using Tensorflow 5

http://www.image-net.org/
https://www.anaconda.com/

binary classification of an object into either gun or no gun using a training dataset
composed of firearms and non-firearm pictures. See Fig. 1 for the MobileNet archi-
tecture training flow chart.

The use of Tensorboard allowed watching the progress of the retraining and in
Figs. 2 and 3 the visualization of the progress of the retraining can be seen from step 60
to step 4000 respectively.

Once the retraining was complete, Shi Tomasi key point detection was used to
identify the parts of a picture that should be looked at by the binary classification. The
assumption being that the key points would be less than the number of sliding windows
across the whole picture.

The key point locations are then each used to crop out a section of the image and
the retrained model is called to determine if the cropped section contains a gun or not.
If a gun is found, then the cropped section has a rectangle drawn on the picture in the
same location as the cropping. In the next section, we will review the results of our
current models and some examples of identified pictures in the gun category and
correctly identified pictures in the non-gun category.

Fig. 1. MobileNet 1.0 224 training flowchart

6 M. Singleton et al.

4 Results

The gun detection was trained and tested on the following datasets described in Sect. 3.
The images detected in a fast method and we would like to expand upon static images
to real time video as our algorithm is improved. MobileNet was trained in various step
counts and tested for accuracy. In one training iteration, we trained 3000 steps as seen
in Table 1 and resulting in 97.89% accuracy. In another iteration, we trained the

Fig. 2. Starting out the retraining

Fig. 3. Finished with the retraining

Gun Identification Using Tensorflow 7

MobileNet 1.0 224 model 5000 steps and the accuracy increased to 100%. Our most
accurate training algorithm was trained on 795 guns and 3944 non-guns. Testing using
the results from this training resulted in the least false-positives compared to our dataset
that included more pictures in the gun dataset. Results from this iteration of testing
gave a 96% accuracy when testing against non-gun photos with the guns filtered at
89%. When testing against photos with guns, we have an accuracy of 86.67% out of 30
photos. These calculations can be referenced in Table 1 (Fig. 4).

Our theory is accuracy will go up if we can preprocess the images with by sub-
tracting the background, but this will have to be completed in another project. Some
photos were missed because there is a limit of 25 corners maximum per image.
Increasing this number will increase the amount of time the image must be processed,
but we believe this will be minimized by removing or subtracting the background.
Increasing the quality of our gun data set should improve the accuracy of the gun
detection rate and will allow us to increase from 89% sensitivity without increasing
false alarms, which can lead to alarm fatigue. We have included examples of correctly
identified guns in Figs. 5, 6, and 7. The detection algorithm perform a gray transform.
In Fig. 5, there were three positive hits. The background was uniform and the detection
could identify the gun at least 3 times. It also correctly did not detect a gun on the
subject’s face, hair, earing, or shoulder. In Fig. 6, the subject had multiple hits on

Table 1. Model detection results

Pictures Correct Incorrect Correct

Non-gun 25 24 1 96%
Gun 30 26 4 86.67%

Fig. 4. MobileNet 1.0 224 retraining results

Fig. 5. Successful detection of a gun

8 M. Singleton et al.

various parts of the gun. In future iterations of the code, we will want to decrease the
output of overlapping gun identifiers. If it finds multiple positive hits within x pixels,
then either combine or ignore x screen draws.

In Fig. 7, you will see multiple identifiers on the base of the gun, on the barrel of
the gun, and on a pistol like device in the bottom left corner. The background is the
most difficult of the three different gun detection examples as the bricks do have similar
hard angles that can be found in a gun. None of the bricks were identified as a gun so
we are happy to report the background training with multiple forms of background
photos in non-gun dataset has improved upon our earlier training and results. Again, we
believe minimizing the number of identified boxes will clean up the display and will
aid in the time of displaying the results in real time when this algorithm is improved
and created for a real-time video system.

We have also included correctly identified photos with no guns in Figs. 8 and 9. In
Fig. 8, there are multiple hard edges in the grill and around the tires that have a gun
shape. The algorithm was smart enough to not incorrectly give a false positive in all the
dots that were run against. Other thing to note in the picture is the background was
uniform with only having shadows at the bottom of the car. The shadows did not affect
the detection of the algorithm and it performed its output correctly.

Fig. 6. Successful detection of a gun

Fig. 7. Successful detection of a gun

Gun Identification Using Tensorflow 9

Finally, our last example is shown in Fig. 9. In this example, the clouds and
background did not affect the performance of the non-gun identification. The glasses
and shadows in the pictures were also not a problem with the non-gun identifications.

5 Conclusions and Future Work

By looking at the presented photos we have successfully re-trained an existing
MobileNet Neural Network of varying granularity.

The assumption that using key points alone would allow testing fewer places in an
image proved to be inaccurate and was problematic when a test picture had more key
points than the maximum amount defined for detection or when there were many key
points that were detected in the same place. It was observed that in some cases so many
key points were detected on non-gun objects that the gun never got assigned a key
point and thus a gun was never classified because that area in the image was not
evaluated. It was also observed that when many key points were detected in the same

Fig. 8. Successful non-detection of a gun

Fig. 9. Successful non-detection of a gun

10 M. Singleton et al.

place on a gun that the classification was ran on the same area of the picture for
multiple overlapping classifications of gun.

One way to work around this issue would be to increase the maximum number of
key points, however without any mitigation this would cause the total number of places
in the picture needing to be looked at for classification to increase and remove the
benefit of using the key point detection to decrease the instances of classification versus
a sliding window over the whole picture.

Adding a processing step after the key point detection to remove key points by
using a geometric density algorithm would allow keeping the number of classifications
to a minimum. For example, in our test pictures, many of our key points are close
enough that any gun detection boxes are overlapping.

Using a second step to remove key points would benefit both busy test pictures
where the maximum number of key points was preventing a gun object from getting
any key points and non-busy test pictures where all the key points are close to each
other.

Adding another pre-processing step to remove the backgrounds would greatly
increase the gun detection and decrease the false-positives. Finally, obtaining more
pictures and continually training the dataset will allow it to continually learn and be
more accurate.

To conclude, we have presented an early gun identification algorithm that we
believe can be improved upon to allow detection of guns in images, video, and other
applications. The goal is to give security personnel extra time to respond to a real gun
alert.

References

1. Grega, M., Matiolański, A., Guzik, P., Leszczuk, M.: Automated detection of firearms and
knives in a CCTV image. Sensors 16, 1–16 (2016). https://doi.org/10.3390/s16010047.
ISSN 1424-8220

2. Tiwari, R.K., Verma, G.K.: A computer vision based framework for visual gun detection
using harris interest point detector. Procedia Comput. Sci. 54, 703–712 (2015). https://doi.
org/10.1016/j.procs.2015.06.083

3. Olmos, R., Tabik, S., Herrera, F.: Automatic Handgun Detection Alarm in Videos Using
Deep Learning. arXiv:170205147 cs (2017)

4. Yeom, S., et al.: Real-time outdoor concealed-object detection with passive millimeter wave
imaging. Opt. Express 19, 2530–2536 (2011). https://doi.org/10.1364/OE.19.002530

5. Vajhala, R., Maddineni, R., Yeruva, P.R.: Weapon Detection in Surveillance Camera Images
(2016)

6. Kang, K., Ouyang, W., Li, H., Wang, X.: Object Detection from Video Tubelets with
Convolutional Neural Networks. Presented at the June (2016)

7. Ray, L., Miao, T.: Towards Real-Time Detection, Tracking and Classification of Natural
Video. Presented at the June (2016)

8. Abadi, M.: TensorFlow: learning functions at scale. In: Proceedings of the 21st
ACM SIGPLAN International Conference on Functional Programming, p. 1. ACM, New
York (2016)

Gun Identification Using Tensorflow 11

http://dx.doi.org/10.3390/s16010047
http://dx.doi.org/10.1016/j.procs.2015.06.083
http://dx.doi.org/10.1016/j.procs.2015.06.083
http://dx.doi.org/10.1364/OE.19.002530

9. Angermueller, C., Pärnamaa, T., Parts, L., Stegle, O.: Deep learning for computational
biology. Mol. Syst. Biol. 12, 878 (2016)

10. Pulli, K., Baksheev, A., Kornyakov, K., Eruhimov, V.: Real-time computer vision with
OpenCV. Commun. ACM. 55, 61–69 (2012). https://doi.org/10.1145/2184319.2184337

11. Kaehler, A., Bradski, G.R.: Learning OpenCV 3: Computer Vision in C++ with the OpenCV
Library. O’Reilly Media, Sebastopol (2016)

12. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications. arXiv:170404861 cs (2017)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. Commun. ACM 60, 84–90 (2017). https://doi.org/10.1145/3065386

14. Kadiyala, A., Kumar, A.: Applications of Python to evaluate environmental data science
problems. Environ. Prog. Sustain. Energy 36, 1580 (2017)

15. Saha, M.D., Darji, M.K., Patel, N., Thakore, D.: Implementation of image enhancement
algorithms and recursive ray tracing using CUDA. Procedia Comput. Sci. 79, 516–524
(2016). https://doi.org/10.1016/j.procs.2016.03.066

16. Shi, J., Tomasi, C.: Good Features to Track. Cornell University, Ithaca (1993)
17. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: large-scale scene

recognition from abbey to zoo. In: 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). pp. 3485–3492. IEEE (2010)

18. Internet Movie Firearm Database. http://www.imfdb.org/
19. Pixabay. https://pixabay.com
20. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale

hierarchical image database. In: IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2009, pp. 248–255. IEEE (2009)

12 M. Singleton et al.

http://dx.doi.org/10.1145/2184319.2184337
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1016/j.procs.2016.03.066
http://www.imfdb.org/
https://pixabay.com

	Gun Identification Using Tensorflow
	Abstract
	1 Introduction and Background
	2 Definitions and Tools
	3 Methodologies
	4 Results
	5 Conclusions and Future Work
	References

