
An Adaptive Solution for Images Streaming
in Vehicle Networks Using MQTT Protocol

Ming-Fong Tsai1(&), Thanh-Nam Pham2,3, Fu-Hsiang Ching2,
and Le-Hung Chen4

1 Department of Electronic Engineering, National United University,
Miaoli, Taiwan

mingfongtsai@gmail.com
2 Department of Information Engineering and Computer Science,

Feng Chia University, Taichung, Taiwan
3 Department of Electronics and Communications Technology,

Thai Nguyen University of Information and Communications Technology,
Thái Nguyên, Vietnam

4 Image Processing Section, Advanced Engineering Division,
Hua-chuang Automobile Information Technical Center Company,

Taichung, Taiwan

Abstract. In this study, we explored solutions to improve the quality of real-
time image transmission in vehicle networks. We deployed multiple cameras in
each vehicle to collect scene data on the road. Then, the collected data was
transmitted to a streaming server through a gateway and using a 4G internet
connection. We use the MQTT protocol to implement our system since this is a
protocol designed specifically for Internet of Things technologies and has sev-
eral advantages in terms of image streaming. In addition, in order to adapt to the
change in bandwidth channel due to the movement of vehicles, we propose an
algorithm to control the quality of image capture which is based on threshold
levels. This algorithm is based on the current throughput of local network nodes,
as compared with threshold values, to control the rate of sending data from each
local node in subsequent transmissions. The results of simulation show that our
proposed network significantly reduces both end-to-end delay and the delay in
arrival of messages in the network when the number of nodes increases. The
experimental results showed that the collected images are of high quality and
allow accurate analysis of the surrounding environment of the moving vehicles.

Keywords: Internet of vehicles � MQTT protocol � 4G network
Image streaming

1 Introduction

In recent years, systems for driving assistance and the monitoring of vehicles have
become increasingly prevalent, and now involve many types of applications, such as
emergency vehicle notification systems, collision avoidance systems and car navigation
systems. These systems are characterized by the use of Internet of Things (IoT) tech-
nology combined with wireless communication protocols. These protocols are generally

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Y.-B. Lin et al. (Eds.): IoTaaS 2017, LNICST 246, pp. 263–275, 2018.
https://doi.org/10.1007/978-3-030-00410-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00410-1_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00410-1_31&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00410-1_31&domain=pdf

mobile ad hoc networks (VANET) or Mesh networking for short-range communica-
tions, and WiMAX (IEEE 802.16) or Global System for Mobile Communications 3G
for long-range communications. These systems collect data from sensors and cameras
placed on vehicles or roadside units and combined with the use of a GPS device can
support driving safety applications and other related systems. However, these forms of
communication have several disadvantages such as large delays and high rates of data
loss. Today, fourth-generation telecommunications technology (4G) has been imple-
mented which has high data transmission rates. This has enabled the development of a
variety of services built for on-road users, particularly real-time video streaming ser-
vices. The 4G network covers Taiwan, and in this country we have developed and
implemented an intelligent system for monitoring vehicles, using a network of cameras
installed on the vehicles. The captured images are transmitted to a cloud streaming
server using the Message Queuing Telemetry Transport (MQTT) protocol. Unlike other
implemented systems such as [1, 3], our system uses a Raspberry Pi platform as local
nodes mounted on each individual vehicle; each node is connected to a camera, collects
data from the camera and directly transmits these data to the cloud server using the 4G
network. MQTT [7] is a publish/subscribe messaging protocol for constrained Internet-
of-Things devices and unstable networks such as VANETs, which have high latency,
low-bandwidth and unreliable channels. Thus, the MQTT protocol is an ideal approach
for machine-to-machine applications, such as those reported in [4–7]. However, in
contrast to these studies, we have used the MQTT protocol in VANETs for real-time
image streaming, with Raspberry Pi modules functioning as IoT nodes.

In this study, we organized each vehicle as a local IoT network. In particular, the
cameras as the IoT nodes are located at different locations on the vehicle to collect data
surrounding the vehicle. In each local IoT network, nodes send data to a streaming
server via a gateway and use the MQTT protocol. We deployed many Raspberry Pi
modules to monitor and control the data collection at IoT nodes. To adapt to the
changes of available bandwidth due to the constantly changing channels and movement
of vehicles, we have developed an algorithm that enables the system to automatically
control the quality of the captured image in the cameras, based on the current
throughput of capturing nodes. The total throughput of all capturing nodes on a vehicle
is divided into threshold levels. When the total throughput is small, corresponding to a
low threshold level, the quality of the captured images is reduced accordingly; when
the total throughput is large, corresponding to a high threshold level, the quality of
capturing images is increased to match. This enables the system to constantly adapt to
changes in the channel.

Since there are a high number of captured images from the cameras, the use of a
traditional server by the system would require too much processing time, making it
slow to respond in real time. However, the recent development of cloud computing
technology allows the processing of large amounts of data and fast responses in real
time. The proposed system uses a cloud streaming server to reduce response time and
allow the expansion of the management system to larger numbers of vehicles. The
remainder of this paper is organized as follows: Sect. 2 provides a description of the
proposed system architecture and its components. Section 3 describes the analysis of
the system and its performance parameters. Section 4 reports the implementation of the
system and the results of simulation. The last section presents the conclusion

264 M.-F. Tsai et al.

2 System Architecture

2.1 System Overview

Figure 1 describes the overview of the architecture of the proposed system. The system
includes local MQTT client nodes installed in a vehicle, an MQTT broker (gateway)
and a cloud server.

In this system, each local node (MQTT Client) is connected to a camera. Cameras
are mounted on the vehicle to capture images of the environment surrounding the
vehicle. In our experiments, between one and six cameras were installed on a vehicle.
The MQTT clients were connected to a MQTT broker through wi-fi connections.
Each MQTT client registers a topic ID in the MQTT broker, and this registration
process is referred to as subscribing. Each MQTT client sends data frequently to the
subscribed topic in the MQTT broker. Our topic is formatted as vehicles/car-ip/node-ip,
where each car has a unique identifier, and each MQTT client connected to a capturing
camera also has a unique identifier. The MQTT broker acts as a gateway in this system.
The MQTT broker receives real-time data from local nodes and forwards this to a cloud
streaming server. When data is received, the cloud server checks its format; if correctly
formatted, the server begins live-streaming data. When the user wants to view the real-
time streaming data of the car, access to the streaming server follows the URI path of

Raspberry Pi 3

Camera

Raspberry Pi 3

Camera

Raspberry Pi 3

Subscribe

Adaptive control
threshold level

Camera

Publish

4G

Local
Network
(Vehicle)

System Server

MQTT-
Broker

(Gateway)

Publish

Wi-Fi

Driver

4G

Fig. 1. Overview of the architecture of the proposed system.

An Adaptive Solution for Images Streaming in Vehicle Networks 265

resources, and users can access the system resources through a web browser running on
their smartphones. The system requires user’s smartphone to have a 4G connection. In
addition to the transmission of image data, the node also sends information about its
data speed to the gateway. The gateway is responsive to the adaptive adjustments to the
quality of image capturing at all connecting nodes. After receiving information on the
data speed of all local nodes, the gateway calculates the total current data speed over
these nodes and compares it with pre-defined threshold levels to determine whether the
image quality corresponding to that data rate is high; if not, it sends a ‘publish’ message
to all subscribed topics in all local nodes to immediately adjust the quality of image
capturing. In addition to sending image data, the gateway also sends GPS data (latitude,
longitude, time) to the cloud server. This GPS data is then associated with the live
images of specific locations along the route.

2.2 System Components

This section gives details of the components in the proposed system and their related
processes.

Figure 2 shows the details of the components and modules in the system. We can
divide the system into two major components: the IoT network placed on the vehicle
and the cloud server which stores the data of the system as a whole. The sub-
components are described below.

Cam Node 1 Cam Node 2

Cam Node 3 Cam Node 4

Information
DB

Upload Image API

Upload Information API (GPS)

System Server

4G Module

Jpg Control

Information Control

Control Module

Gateway

Jpg Control

Data Control

Cam Node 1

Jpg Control

Data Control

Cam Node 2

Jpg Control

Data Control

Cam Node 3

Jpg Control

Data Control

Cam Node 4

IoT network

Signal

Signal

JPG JPG
JPG

JPG

Signal

Signal

Signal

Fig. 2. Components/modules of the proposed system.

266 M.-F. Tsai et al.

Cam Nodes. In the proposed system, the hardware platforms used to implement these
cam nodes are the Raspberry Pi 3 and the Pi camera. First, a cam node connects to the
gateway and initializes the environment variables. When ready, the system begins a
routine periodic calculation, and the result returned is the threshold level of the sub-
scribed channel. A cam node has two primary activities: listening and publishing.
Initially, the value of threshold level is set to Level 4, which corresponds to the value of
Level 95 in the JPEG image compression standard. In view of the characteristics of 4G
channels, five threshold levels are used here to divide the quality of the input images
into Levels 1 to 5, corresponding respectively to Levels 1, 25, 50, 95 and 100 of the
JPEG standard. A greater value of the threshold level means a higher quality of image
capture. When a cam node is informed of which threshold level to use, it acquires
images with a size based on this threshold level. Finally, the local node begins pub-
lishing images to the subscribed topic ID in the MQTT broker. The number of images
captured is also published to the MQTT broker, with an average of 8–10 images per
second.

The gateway collects information about the speed of data streaming from these cam
nodes and calculates the total amount of their data throughput from which to perform
adaptive control. The control information will be sent back from the gateway to these
nodes, and the cameras will proceed to adjust the quality of the collected image based
on the control data.

Gateway. The gateway acts as a local wireless access point for the MQTT clients to
connect to it via a wi-fi connection, and then connects to the cloud server via the 4G
network. Thus, MQTT clients can send data to the online server. In addition, the
gateway also acts as a controller which can make decisions on changing the rate of data
transfer at each cam node. The hardware platform used in this system is a Raspberry Pi
3 combined with a 4G module.

The initialization processes of the gateway and the local nodes are very similar.
Firstly, several environment variables are initialized and the data rate of each local node
(node-rate) is subscribed. This subscription allows the gateway to monitor the current
throughput of each node, indicated by the parameter node-rate. Following this, the
gateway evaluates the information from all existing nodes, and determines whether the
total throughput is higher or lower than the current threshold value. Following this, the
new threshold level is decided based on this comparison. The gateway then publishes
the new threshold level to all the connecting nodes. On receiving the new threshold
level, local nodes adjust the image capturing based on this level. In addition to sending
data to the server, the gateway also includes GPS data (latitude, longitude) to the
MQTT server to provide information about the current location of the vehicle on the
road.

System Server. The system server is a streaming server. Streaming server will receive
data from the MQTT clients and display in real time to users through a web interface.
The streaming server is composed of three functional components: the blackhole
function, the streaming function and the GPS function. The blackhole function checks
the format of the uploaded images. If the format is correct, these images will be saved
in the storages. The streaming function is responsible for displaying real-time image
data to the user with very small latency. The GPS function helps to store geographic

An Adaptive Solution for Images Streaming in Vehicle Networks 267

information about the current location of the driver and of the network nodes to display
combined with the image data.

2.3 MQTT Message Processes

The MQTT protocol primarily operates based on the exchange of data in the form of
messages. It uses publish and subscribe methods to exchange these messages, which
are similar to the response and request methods of the HTTP protocol. In this section, a
detailed description is presented of the process of exchanging messages, as shown in
Fig. 3. The message flows are divided into three links: the first is between cam node
and gateway; the second is between gateway and server; and the third is between server
and user.

When the cam node sends data to a subscribed channel, it can select one of three
levels for quality of service (QoS) transmission: these levels are QoS0, QoS1 and
QoS2. QoS0 means that the broker/client will deliver the message once, with no
confirmation; QoS1 means that the broker/client will deliver the message at least once,
with confirmation required; and QoS2 means the broker/client will deliver the message
only once, using a four-step handshake [4]. The choice of QoS level will affect the
performance of the system.

Fig. 3. Processes of message exchange in the proposed system.

268 M.-F. Tsai et al.

3 System Analysis

The performance of the system is analyzed based on metrics such as TCP end-to-end
throughput, TCP end-to-end delay, arrival delay of messages (jitter), packet delivery
ratio and packet drop rate.

3.1 Arrival Delay of Messages (Jiiter)

This section, we consider the arrival delay between messages generated by the cam
nodes. Consider the case where the cam nodes, the gateway and the server are syn-
chronized in time. The messages are generated using a generator with a constant rate
and published to the MQTT broker (gateway). These messages arrive at the server with
a varying delay depending on the network conditions. For two consecutive messages
received by server, the arrival time of message n is denoted by tn. The inter-message
production period is denoted by T. With reference to [5], the inter-arrival jitter time Jn
between message n and message n − 1 is given by:

Jn ¼ tn � tn�1 � T ð1Þ

Using the values of the inter-arrival timestamps in each message, the jitter value of two
consecutive messages can be calculated. The proposed system is implemented in the
4G network, with a channel bandwidth of between 20 Mbps and 100 Mbps in the case
of high mobility. The experimental results show that this jitter value is on the order of a
few milliseconds and is therefore very close to zero, thus enabling high quality image
streaming.

3.2 TCP End-to-End Delay

We define end-to-end delay as transmission delay denoting the time needed to transmit
data from the cam node to the user. As shown in Fig. 3, assuming that data have been
published on a given topic in the gateway:

tarrðiÞ topicID\treqðiÞ topicID\tarrðiþ 1Þ topicID ð2Þ

where tarrðiÞ topicID is the time at which the ith data is published to this topic ID and
treqðiÞ topicID is the time of the request for the ith data. This request should be made after
the ith data is present; if the request is made before the data is available, the system
waits for a short period, and this increases the end-to-end delay of the system. This
delay arises from several factors such as packets being dropped in the queue or network
congestion.

The end-to-end delay from the cam node to the user can be calculated as:

Hend-end ¼
XN

i¼1

DtransðiÞ þDpropðiÞ þDprocðiÞ þDqueueðiÞ þDTAðiÞ
� � ð3Þ

An Adaptive Solution for Images Streaming in Vehicle Networks 269

where N is the number of links. There are three links in our system. Dtrans is the
transmission delay, and is proportional to the length of the message. The transmission
delay is considered here in the cam node, the gateway and the server. Dprop is the
propagation delay, and depends on the physical length of the link. Dproc is the pro-
cessing delay, which is the time required for processing the message header. We
assume that Dproc is small compared with other network delays and can therefore be
neglected. Dqueue is the queuing delay, which is the time a message waits in a queue
before being executed. In this system, the message waits in both the queue of the
gateway and the queue of the server. DTA is the turn-around time delay, which denotes
the delay in adapting to a request for data from a specific topic ID. The queuing delay
and the turn-around time delay depend on the size of the queue length.

The equation for computing the end-to-end delay can be rewritten to follow the
flow of the message as:

Hend-end ¼DN-G
CONNECT-TCP þ 2� DN-G

SUB-TCP þDN-G
PUB-TCP þDG-S

CONNECT-TCP
þDG-S

SUB-TCP þDG-S
PUB-TCP þDS-U

REQ-RES þDqueue þ 2� DTA
ð4Þ

where DCONNECT-TCP, DSUB-TCP and DPUB-TCP form the round-trip TCP delay when the
MQTT protocol is used. N-G, G-S and S-U are the connections between the cam node
and gateway, gateway and server, and server and user respectively. N-G is the Wi-Fi
connection, and G-S and S-U are 4G connections.DS-U

REQ-RES is the round-trip TCP delay
when the HTTP protocol is used to transmit data to the user from the server.

Considering the round-trip time delay (RTT) of TCP, with re-transmission if packet
loss takes place, we can obtain:

Hend-end ¼ 4� RTTNG
TCP þ 3� RTTGS

TCP þ 2� RTTSU
TCP þ Dqueue þ 2� DTA ð5Þ

3.3 TCP Throughput, Packet Delivery, Packet Dropped Rate

The TCP throughput represents the total amount of transmitted data per second from
sources to the server. The TCP throughput is normally calculated in bit/sec, and
depends on various parameters such as the error rate of the channel, the bandwidth of
the channel, packet size, queue size and the number of cam nodes. The evaluation of
TCP throughput is given in Sect. 4. Theoretically, the TCP throughput is calculated as
follows:

TCPthroughput ¼ Total number of received bitsðNÞ
period of time ðsÞ ð6Þ

where N is all the bits received at the destination node over a period of time s. In this
system, the value of throughput is based on adjusting the quality of image capturing in
the source node, as described above.

270 M.-F. Tsai et al.

The packet delivery ratio (PDR) denotes the ratio of total packets received by the
destinations to those generated by the sources. It can be expressed by the following
formula:

PDR ¼ Total number of received packets ðNrÞ
Total number of generated packets ðNgÞ ð7Þ

Its value describes the state of the channel in terms of the error rate, network congestion
and queuing overflow. The analysis of packet delivery ratio is also carried out in the
following section, which describes the simulation results. Packet drop rate is a
parameter that denotes the number of packets lost during end-to-end transmission. An
M/M/1 queue, the probability of packet drop, is calculated by:

P ¼ ð1� qÞqk ð8Þ

where q ¼ lc
ls
is the system factor.

4 Implementation and Performance Evaluation

4.1 Experimental Results

In this implementation of image streaming using the MQTT protocol, MQTT Version
3.1.1 [8] was used. MQTT is an open-source message broker service that uses the
MQTT protocol to send and receive messages from MQTT clients.

Fig. 4. Implementation of the proposed system: (a) cam nodes (Raspberry Pi 3) mounted at the
front of the car; (b) a cam node mounted on the right side of the car; (c) cam node mounted on the
left side of the car; (d) website interface.

An Adaptive Solution for Images Streaming in Vehicle Networks 271

Figure 4 illustrates the implementation of local nodes. Four Raspberry Pi 3
machines were mounted as cam nodes on a car. Each Raspberry Pi is connected to a
camera to process the images captured by this camera. MQTT Mosquitto [8] was
installed on each Raspberry Pi for image-streaming application. Figure 4(a) shows cam
nodes 1 and 2, the GPS module and control module placed at the front of the car.
Figure 4(b) shows cam node 3, placed at the right of the car; Fig. 4(c) shows cam node
4, placed at the left of the car; and Fig. 4(d) shows the website interface. The top-right
corner of the web interface shows the storage for all the locations of and images from
the vehicle; the middle of the web interface shows statistics on driving history; and the
right-hand interface is the recent timeline history. Figure 5(a) shows the GPS route that
the user has taken on Google maps. Figure 5(b) describes the normal view of the user
web interface for two cam nodes placed at the front and back of the vehicle.

4.2 Simulation Scenarios

To simulate the proposed architecture, we used the Network Simulation 2 (NS2.35)
tool, and its configuration is shown in Table 1. The simulation scenario is described as
follows: A local IoT network of cam nodes is connected to a 4G network for data

Fig. 5. (a) Tracking the location of the user on the road; (b) image streaming in the user’s view.

272 M.-F. Tsai et al.

transmission. Cam nodes in the local network will send data to the gateway through a
Wi-Fi connection. The connection from the gateway to the server is a 4G connection.
The gateway will connect to a base station called the eNB node, and this eNB node will
be connected to the server via a wired connection with a delay of 2 ms. The simulation
of our 4G network is based on the study in [9].

To analyze the performance of the network, trace files were generated after each
simulation scenario in the NS2 simulator. A traffic generator was used with constant bit
rate (CBR) and was attached to each TCP flow with sending rate corresponding to the
experimental values as described in Sect. 4.1. The results of the simulation show that
the obtained TCP throughput of our network is very close to the experimental results.
Figure 6(a) shows the total throughput of the network as the number of nodes is
increased.

In Fig. 6(b), (c), we change the length of the queue and change the number of
nodes to evaluate the performance of the system. Figure 6(b) describes a comparison of
the end-to-end delay of the normal network and the proposed network when the
number of cam nodes is increased. The TCP end-to-end delay is calculated as discussed
in Sect. 3.2. From the simulation results, we can see that the end-to-end delay values of
the proposed network and the normal networks are approximately the same when the
number of nodes is small; when the number of nodes is increased, the proposed
network has a significantly reduced end-to-end delay than the normal network. Because
the normal network will have a high packet drop rate when the channel conditions
change, thus leading to more retransmissions and increasing the latency. Figure 6(c)
describes the analysis of the packet drop rate. It can be seen that the proposed network
keeps a smaller packet drop rate than the normal network. That is because with the
proposed network, we can adjust the arrival rate, thus reducing the congestion at the
queues and leading to lower packet drop rate.

Table 1. Simulation settings.

Parameter Value

Network area 1500 � 1500 m
Simulation time 100 s
Error model Uniform random distribution
Number of nodes {1, 2, 3, 4, 5, 6}
Channel 802.11
Bandwidth 11 Mb
Data rate 11 Mbps
Traffic type Constant bit rate (CBR)
Packet size 1500 bytes
Routing protocol AODV
Transport protocol TCP Reno
Bandwidth AP – eNB 20 Mbps
Bandwidth eNB – server 100 Mbps
Propagation delay eNB – server 2 ms

An Adaptive Solution for Images Streaming in Vehicle Networks 273

5 Conclusion

The objective of this study is to introduce a system of smart monitoring cameras. Our
system can automatically adjust the quality of streaming image capture to adapt to
changes in the data rate of the channel due to the movement of vehicles. We propose
dividing the uploading throughput into levels by which the quality of image capture can
be controlled. An IoT network was set up in which each normal node was a Raspberry
Pi, and these nodes were connected to a gateway to transfer data to a cloud streaming
server using the MQTT protocol. Our implementation shows that this system consis-
tently gives accurate information about the route through the captured images. This
information can help enable driving safety applications such as risk warning and
collision avoidance. The simulation results show that our adaptive control algorithm
significantly reduced end-to-end delay by up to 65% when the number of nodes was
increased and is thus very suitable for data streaming applications in intelligent
transport systems. In the near future, we will focus on adding multi-hop functionality to
the network architectures when considering the interaction between vehicles,
improving the quality of images collected based on determining the optimal values of
thresholds, and also extending the system with a greater number of nodes.

Fig. 6. (a) Network throughput for various numbers of cam nodes; comparison between the
adaptive network and normal network for changes in queue length and number of cam nodes:
(b) end-to-end delay; (c) packet drop rate.

274 M.-F. Tsai et al.

References

1. Wark, T., Corke, P., Karlsson, J., Sikka, P., Valencia, P.: Real-time image streaming over a
low-bandwidth wireless camera network. In: 3rd International Conference on Intelligent
Sensors, Sensor Networks and Information, pp. 113–118 (2007)

2. Bhatt, A., Patoliya, J.: Cost effective digitization of home appliances for home automation
with low-power WiFi devices. In: International Conference on Advances in Electrical,
Electronics, Information, Communication and Bio-Informatics, pp. 643–648 (2016)

3. Yaqub, M.A., Ahmed, S.H., Bouk, S.H., Kim, D.: FBR: fleet based video retrieval in 3G and
4G enabled vehicular ad hoc networks. In: IEEE ICC 2016 – Communication QoS, Reliability
and Modeling Symposium (2016)

4. Tekin, Y., Sahingoz, O.K.: A publish/subscribe messaging system for wireless sensor
networks. In: Sixth International Conference on Digital Information and Communication
Technology and its Applications (DICTAP) (2016)

5. Luzuriaga, J.E., Cano, J.C., Calafate, C., Manzoni, P.: Handling mobility in IoT applications
using the MQTT protocol. In: Internet of Things Technologies and Applications (2015)

6. Luzuriaga, J.E., Perez, M., Boronat, P., Cano, J.C., Calafate, C., Manzoni, P.: A comparative
evolution of AMQP and MQTT protocols over unstable and mobile networks. In: 12th
Annual IEEE Conference on Consumer Communications and Networking Conference
(CCNC) (2015)

7. Govinda, K., Azad, A.P.: End-to-end service assurance in IoT MQTT-SN. In: 12th
Annual IEEE Consumer Communications and Networking Conference (CCNC) (2015)

8. MQTT Mosquitto Version 3.1.1 Homepage. http://mosquitto.org/. Accessed 22 Dec 2016
9. Abed, G.A., Ismail, M., Jumari, K.: Traffic modeling of LTE mobile broadband network

based on NS-2 simulator. In: 3rd International Conference on Computational Intelligence,
Communication Systems and Networks (2011)

An Adaptive Solution for Images Streaming in Vehicle Networks 275

http://mosquitto.org/

	An Adaptive Solution for Images Streaming in Vehicle Networks Using MQTT Protocol
	Abstract
	1 Introduction
	2 System Architecture
	2.1 System Overview
	2.2 System Components
	2.3 MQTT Message Processes

	3 System Analysis
	3.1 Arrival Delay of Messages (Jiiter)
	3.2 TCP End-to-End Delay
	3.3 TCP Throughput, Packet Delivery, Packet Dropped Rate

	4 Implementation and Performance Evaluation
	4.1 Experimental Results
	4.2 Simulation Scenarios

	5 Conclusion
	References

