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Abstract. With the advancement in Internet of Things (Iot), the speech
recognition technology in mobile terminals’ applications has become a
new trend. Consequently, how to accelerate the training and improve the
accuracy in speech recognition has attracted the attention of academia
and industry. Generally, Deep Belief Network (DBN) with Graphic Pro-
cessing Unit (GPU) is applied in acoustic model of speech recognition,
critical research challenges are yet to be solved. It’s hard for GPU to store
the parameters of DBN at one time as well as GPU’s shared memory is
not fully used. And parameters transmission have become a bottleneck
in multi-GPUs. This paper presents a new method in which the weight
matrix is divided into sub-weight matrices and established a reasonable
memory model. To eliminate the inefficient idle-state during data trans-
fers, a stream process model is proposed in which the data transfer and
kernel execution are performed simultaneously. Further, apply the opti-
mized single GPU implementation to multi-GPUs and is intend to solve
the parameters transmission. Experimental results show the optimized
GPU implementation without violating the size limitation of GPU’s
memory.
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1 Introduction

Internet of things (Iot)[1] has obtained grateful development, it has been applied
in various fields. Mobile computing, as a important part of IoT, has attracted
many people. Speech recognition of mobile computing is especially important
for IoT. Therefore how to improve the training speed of speech recognition has
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become one of important research topics in IoT. The traditional Gauss Mixture
Model and Hidden Markov Model (GMM-HMM) [2] is a typical shallow learning
structure and its performance is limited under the massive data. Deep learning
which was pointed by Hinton et al. [3] is useful when training massive data by
“layer-by-layer initialization”. Deep Belief Network (DBN), a deep neural net-
work, consists of Restricted Boltzmann Machine (RBMs) and is widely used in
speech recognition. Microsoft researchers applied the RBM and DBN into the
training of speech recognition’s acoustic model, and have made great success on
large scale vocabulary continuous recognition task [4]. However, training com-
plexity limits its application in the mobile computing.

Graphic Processing Unit (GPU) has advantages of higher computing density
and smaller size, which has been widely used in the field of speech recognition.
GPU is applied to large vocabulary continuous speech recognition in [5] and has
achieved better acceleration effect compared to Multi-CPUs. CuBLAS is used
for training RBM to accelerate and has achieved good results in [6]. The GPU
kernels are written in [7] to accelerate the training speed of RBM, but it’s too
complex and the scalability is not strong. Moreover, there are a large number of
parameters in RBM model.

In summary, this paper is mainly focused on the training of speech recogni-
tion based on DBN using single GPU without the limitation of DBN model’s
parameters and the method is applied to multi-GPUs. In addition, a suitable
memory model of GPU is designed utilizing the full computing capability of
GPU to accelerate the DBN training speed with low word-error-rate.

2 DBN Training

The training process of DBN model in speech recognition mainly contains layer-
wise greedy unsupervised learning in pre-training and supervised learning in
fine-tuning.

2.1 Pre-training of DBN

Contrastive Divergence (CD) algorithm [8] is used for unsupervised training in
each layer of RBM. Each layer of RBM receives the output values of the previous
layer as the input value, then the output values are propagated in RBM. Finally
the output values are used as the input value of the next layer RBM. The main
objective of the pre-training is to retain the characteristic information of the
training speech data’s feature vectors while they are mapped to the different
feature spaces.

Restricted Boltzmann Machine (RBM). RBMs are the key components of the
DBN with a greedy learning algorithm. A RBM is an energy-based generative
model that consists of two layers: (1) a layer of binary visible units and (2) a
layer of binary hidden units, with symmetrical connections. Any unit in one layer
is connected to all units in the other layer and has no connection with units in
the same layer.
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Considering RBM’s special structure, given a particular random input con-
figuration vi, all the hidden units hj , are independent of each other. As a result,
the probability of hj given vi becomes

P (hj = 1|v) = sigm

(
m∑
i=1

Wijvi + bj

)
, (1)

where sigm(·) is the sigmoid function. Similarly, the probability of vi given a
specific hidden state hj is

P (vi = 1|h) = sigm

⎛
⎝ n∑

j=1

wijhj + ai

⎞
⎠ . (2)

Contrastive Divergence (CD) Algorithm. Pre-training is used to adjust the
trained speech data. To obtain the value of θ in RBM, a much faster method,
Contrastive Divergence (CD-k) algorithm [9] is used with k-parameter as 1.
According the CD-k algorithm, the update rules are used as follows:

ΔWij = ε(〈vi(0), hj
(0)〉, 〈vi(k), hj

(k)〉), (3)

Δai = ε(〈vi(0), vi(k)〉), (4)

Δbj = ε(〈hj
(0), hj

(k)〉), (5)

Taking into account the scale of the trained speech data, part of trained
speech data are taken as mini-batch [7] rather than every sample of trained
speech data. To reconstruct vi using CD algorithm, it is important to consider
binary hidden states.

2.2 Fine Tuning of DBN

Initial values of the entire DBN model’s parameters are obtained after pre-
training. The fine tuning is performed on the speech data in which each frame
is labeled with a target class label. The fine-tuning process is divided into two
steps as: firstly, the extracted features of speech-data from the last layer of RBM
are used as input values to the BP neural network, afterward, the output values
are classified by the softmax function; secondly, cross-entropy [10] is used as the
loss function for error calculation in BP algorithm that adjusts the parameters
of whole DBN model.

As BP algorithm needs a long time to update θ, SGD algorithm is used to
reduce the time. After completing the speech features’ classification of a mini-
batch, θ is directly updated using the calculated error to accelerate the training
speed in DBN.
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3 GPU Implementation of Proposed Algorithm

The proposed CD-k algorithm for large-scale RBMs was implemented on Com-
pute Unified Device Architecture (CUDA)1 of NVIDIA GPU, which benefits
graphic rendering with massive parallelism. Although GPU can achieve remark-
able performance for DBN under reasonable task decomposition of RBM and
memory optimization [12], advantages of GPU’s memory architecture are still
not fully exploited for parallel DBN. To use the GPU to accelerate the training
of DBN model, the optimization of RBM’s training using GPU is implemented
for three aspects: based on (1) memory model with sliced weight matrix, (2)
multi-streams processing model on single GPU and (3) the multi-GPUs imple-
mentation.

3.1 Memory Model Based on Sliced Weight Matrix

The training speed of RBM can be improved by training the data with size of l.
However, there still exists a problem that the large size of l will hurt the overall
efficiency of learning. So in the training process, the size of l chosen is much
smaller than the m, n, vi, hj , bias ai and bias bj are small so that they can
store in the GPU device memory. However, the weight matrix is so large due
to interconnection between any two units, it is likely to occur the phenomenon
the weight matrix cannot store in GPU device at one-time. Also there are also
other parameters in RBM especially the some speech signals will be trained at
one time rather than one. So weight matrix is divided into many sub-weight
matrices Wi ∈ Rm′×n where m′ << m such that every Wi could be stored
in the GPU device memory. The sub-weight matrices will be determined by
experiments, which also means the size of m′.

The trained DBN model’s parameters are copied from CPU to GPU after
having divided the weight matrix into sub-weight matrices. Using (1) and (2),
h
(0)
j and v(k)

i are calculated. When calculating h
(0)
j with GPU, in order to hide

the global memory latency, threads are needed to use at a much finer granularity
to take full use of the GPU computing resources. Hence, the connection wij ∈ Wi

is taken as the smallest unit of computation which is called thread performing
a function that multiples the vi by its weight. Every block can be represented a
unit by this way. Then, h

(0)
j is calculated.

As for the calculation of v(k)i , the weight matrix is divided into Wi and
transferring Wi one by one on demand. However, the transfer of Wi would cost
lots of time, a method is adopted that avoids the undesirable memory transfer
of Wi. Because the calculation of v(k)i and h

(0)
j use the same Wi, the v(k)

i will be

1 In 2006, a parallel computing platform and programming model for NVIDIA GPUs
named CUDA [11] was introduced aiming to make full use of computing power
of GPUs to achieve general purpose computation. CUDA also enables programmers
without any knowledge about graphic APIs to write C/C++ code for high performance
scientific computation by using NVIDIA GPUs. Therefore, it is widely used in speech
recognition based on DBN model.
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calculated immediately after the calculation of h
(0)
j . In this way, v(k)i calculation

is done along with h
(0)
j using the Wi that are already loaded and the second

transfer is no longer needed, also it reduces the time of thread synchronization,
accelerating the speed of RBM’s training.

The same method is used to calculate h
(k)
j . After h

(k)
j is finished, Wi is

updated immediately as the updating Wi needs the corresponding v(k)i and h
(k)
j

according to (3), saving another transfer of Wi for updating current Wi. Also
the updating of Wi needs h

(k)
j , h

(0)
j , v(k)

i , v(0)i matrices.

3.2 Parallel Processing Based on Streams Process

The GPU implement of RBM using memory model based on sliced weight matrix
has accelerated the speed. But the memory transfer becomes a major problem to
reduce the training speed. For example, updating every Wi requires two memory
transfers of CPU to GPU and one memory transfer of GPU to CPU. However,
GPU simply keeps idling when these memory transfers occur, as a result, the
GPU does not use the threads to calculate the task to be executed.

To make full use of GPU’s computing resources and eliminate this ineffi-
cient idle-state, the streams process of CUDA are used to do concurrent execu-
tion of threads. There are two aspects in streams process: firstly, data transfers
and kernel executions are executed concurrently in the same stream; secondly,
launch multiple streams and overlapping CUDA operations in different streams
to achieve concurrency execution. In our algorithm, potential concurrency exits
in the two for-loops. With multiple streams launched and each responsible for a
subset of Wi. The process of training RBM in opCD-k algorithm has following
steps:

• Step 1: Copy the data from CPU to GPU,
• Step 2: Calculate h

(0)
j ,

• Step 3: Calculate v(k)i after k iterations of Gibbs sampling,
• Step 4: Calculate h

(k)
j ,

• Step 5: Update the parameters θ = {wij , ai, bj}, and
• Step 6: Transfer the results from GPU to CPU.

Combining the stream process of CUDA and opCD-k algorithm, it is evident
that Step 1 and Step 2 could achieve concurrency execution in a stream; Step 2
and Step 3 could run concurrently as long as the computing resources on GPU
allows; Step 1 and Step 6 can be performed concurrently in different streams.

3.3 Multi-GPUs Implementation

The two methods proposed above will improve the DBN’s training speed. But
single GPU’s computation is limited. So in order to improve the speed of DBN’s
training, the multi-GPUs will be used. In Speech Recognition, due do the full
connection of DBN model, it would cost much time to use model parallelism,
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w′ = w + Δw

Parameter Server

Worker GPU

Training Data

Δw w′

Fig. 1. Data parallelism with parameter server in multi-GPUs.

so the data parallelism is widely used. In this paper, we use parameter server
to do DBN’s training with multi-GPUs which are in a machine. As shown in
Fig. 1, it is the data parallelism with parameter server in multi-GPUs. One GPU
is chosen as parameter server. It receives one iteration’s result of the parameters
of DBN model from other GPUs, and it will do the update of the parameters
and transfer them to the GPUs, so that the GPUs could do other iteration
calculations. Under this circumstance, the bandwidth of the parameter server
becomes a bottleneck.

So the total communications should be reduced. We can reduce the commu-
nication frequency by large the size of batch. But when the size of batch is too
large, the data cannot store in GPU device. So we divide the batch with fetch
× mini-batch. The size of mini-batch data will be copied to GPU, and copied
fetch times. The result will not transfer to the parameter server instead they
will be added at the local GPU. After fetch times, the final summation will be
transferred to the parameter server. When deciding the size of fetch, the method
of hot start is adopted. By this way, the communication frequency can be greatly
reduced.

4 Experimental Results and Analysis

To verify the acceleration effect of DBN using the optimized GPU method. The
input data are the 440-dimensional speech features which are spliced by 40-
dimensional fMLLR features. The fMLLR features are obtained by the process
of speech recognition toolkit Kaldi [13].

There are six layers of RBM in DBN model. The parameters in the two
different stages of DBN model are different. The first layer of RBM is Gaussian-
Bernoulli distribution, and others are Bernouli-Bernouli distributions. The
Intel(R) Xeon(R) CPU E5-2620 v2 has 128G memory with a frequency of
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2.10 GHZ, four GPUs which is called Tesla K20m which has 5G memory are
used in the multi-GPUs. The version of operation system is Red Hat Enterprise
Linux Server release 6.4, the CUDA Tookit is 7.0.

4.1 Parameters Tuning of OpCD-K Implementation

opCD-k implementation relies on weight slicing technique requiring a second
transfer of Wi. In addition, stream synchronization and scheduling will introduce
more overhead. All these new features of opCD-k may cause low performance.
So the parameters must be set reasonable.

The Size of slice size. The relations of the parameters in opCD-k algorithm can
be described as:

s × slice size × n × sizeof(float) ≤ GPU memory (6)

where dev meme is GPU memory available for storing weight matrix Wi and
slice size is the rows of each Wi. We explored different combinations of these
parameters. Assuming a fixed amount of device memory, which is a common case
given a particular GPU, an optimal combination of s and slice size is desirable.
In this experiment, we assume the device memory limits us to load only one forth
of a weight matrix W 1024×1024. Multiple configurations satisfying s × slice size
= 1024/4 are valid such as 3 × 100, 4 × 75 and 5× 60. The chosen value is that
300 is about equal to 1024/4 for calculation. We tried a set of configurations
and draw a conclusion from the result in Fig. 2 that neither large slice with few
streams nor small slice with numerous streams is a good choice. From the figure
we can clearly observe the training time with the configurations change. And
the 4 × 75 is the best choice for the experiment.

4.2 RBM Training Time Evaluation

We conduct an experiment to evaluate the training time of RBM. Results of the
experiment can visually reflect the performance of DBN with optimized single
GPU implementation.

RBM Training Time. Experiments are conducted to compare the training time
spent on one iteration of RBM with the 440 visible units and different hidden
units in three different ways as follows: (1) the optimized GPU implementation
with 1/4 memory usage and five streams, (2) the implementation with single
GPU as in [7], and (3) the implementation of Kaldi with single GPU. Figure 3
illustrates the training time with various number of hidden units for three cases.
It is observed that the cost increases with the increase of hidden units. At first,
the first way spends the most time because it need more time to exchange the
weight matrix and streams synchronization. however, with the increment of the
number of hidden units, the first way costs less time than the others. The reason
is that the first way uses reasonable memory model and streams process. The
first way achieves acceleration with a maximum time of 1.7 than the third way
when the number of hidden units is 213.
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Fig. 2. Performance of different configurations of s and slice size given s×slice size =
300 on a RBM of 1024 × 1024.
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Fig. 3. RBM’s training time after one iteration.

4.3 Performance of OpCD-K on DBN with Multi-GPUs

Training Time and word error rate are another two important factors to evaluate
the performance of DBN. So we conduct the following experiments.

Training Time and Word Error Rate of DBN with Multi-GPUs. DBN training
time is evaluated in four different ways listed in Table 1. It is observed that
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Table 1. DBN’S training time with multi-GPUs

Model Time/hour

Kaldi with single CPU 2.5

Kaldi with multi-GPUs 0.728

Multi-GPUs implementation in [14] 0.65

Optimized GPU implementation with multi-GPUs 0.54

the multi-GPUs implementation has greatly reduced the time of training DBN,
which the time cost is only 0.52 h. It has achieved about 1.35 times and 1.2 times
comparing with the Kali implementation and GPU implementation in [14]. Also
it obtains the acceleration of 4.6 times than using the Kaldi with single GPU.
Therefore, the optimized GPU implementation with multi-GPUs makes a great
acceleration on training DBN model.

In the experimental part of the word error rate. It is observed from Table 2
that the optimized GPU implementation only has a 7% and 5% performance
loss comparing with Kaldi with single GPU and multi-GPUs respectively.

Table 2. Training DBN’s word error rate with multi-GPUs

Model Error rate

Kaldi with single GPU 18.8%

Kaldi with multi-GPUs 19.3%

Multi-GPUs implementation in [14] 23.1%

Optimized GPU implementation with multi-GPUs 20.2%

5 Conclusion

This paper presents an efficient parallel algorithm to overcome the problem of
huge parameters and unreasonable usage of GPU’s memory model while acceler-
ating the computation speed of speech recognition in wireless networks based on
DBN. Aiming to fully utilize GPU’s computing resources, we divide the weight
matrix into sub-weight matrices to parallel the RBM’s training for large param-
eters. In order to optimize the training of RBM, we adopt multi-streams pro-
cessing model for single GPU. In addition, to cope with the limitations of a
single GPU computing capability, We extend from single GPU to multi-GPUs
to achieve better results. The future work includes to parallelize the computation
of DBN on GPU-accelerated cluster to model large-scale problems under noisy
environment.
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