)

Check for
updates

Enabling Over-The-Air Provisioning
for Wearable Devices

Wei-Han Chen, Fuchun Joseph Lin(@), and YaHua Lee

Department of Computer Science, National Chiao Tung University,
Hsinchu, Taiwan
{alwayschoco. cs0O4g, fjlin, yahua. csObg}@nctu. edu. tw

Abstract. The Internet of Things (IoT) is growing rapidly with more and more
devices connected to the Internet. Among IoT devices, wearable devices have
become an important category due to their wide applicability. However, most of
the wearable products are designed to provide fixed services; once they are
deployed, their functionality is difficult to change. In this research we develop
new technologies that would enable the OTA (Over-The-Air) provisioning over
BLE for the wearable devices. We use the method of Interworking Proxy
Application Entity (IPE) defined in oneM2M to enable the OTA provisioning.
Our experimental results show that the IPE method is an effective mechanism to
support the OTA provisioning for wearable devices.

Keywords: OTA provisioning - Wearable devices * oneM2M
BLE - IPE

1 Introduction

In the recent years, the Internet of Things (IoT) has been growing rapidly with a large
number of devices connected to the Internet. The Gartner forecasts that 20.4 billion
connected devices will be in use by 2020 [1]. Among these devices, wearable devices
which can be worn on the human body takes a great portion and brings great conve-
nience to people’s life. They are adopted in many IoT application areas such as
healthcare and smart home [2]. However, most of the wearable products are not pro-
grammable. Consequently, it is very difficult to upgrade or change their service
functions once they are deployed.

Over-The-Air (OTA) provisioning describes the ability to update firmware or install
new applications for mobile devices via wireless networks. To enable the OTA pro-
visioning for the wearable devices, we need to take their limited capabilities such as
storage and battery life into consideration [3]. Bluetooth Low Energy (BLE) is an
emerging wireless standard suitable for wearable devices due to its features of low
power consumption and low storage requirement [4, 5].

In this research, we enable the OTA application provisioning for BLE devices
based on oneM2M Interworking Proxy Application Entity (IPE) [6, 7]. To evaluate the
effectiveness, we adopt four criteria including power consumption, system perfor-
mance, transmission efficiency and software complexity and take the application size as
the parameter to evaluate its impact on the performance.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2018
Y.-B. Lin et al. (Eds.): IoTaaS 2017, LNICST 246, pp. 194-201, 2018.
https://doi.org/10.1007/978-3-030-00410-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00410-1_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00410-1_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00410-1_23&domain=pdf

Enabling Over-The-Air Provisioning for Wearable Devices 195

The rest of the paper is organized as follows: Sect. 2 gives some background
knowledge of OTA provisioning, BLE protocols and oneM2M technologies. Section 3
introduces the related research works in OTA provisioning. Section 4 describes the tools,
architecture design and implementation results. Section 5 explains the evaluation criteria
and analysis results. Finally, in Sect. 6 we present our conclusion and future work.

2 Background

2.1 Over-The-Air Provisioning

OTA is a standard for transmitting application-related information to the devices
wirelessly. As the smartphones provide more functionalities, OTA has been used to
distribute the new applications to smartphones via cellular networks. Recently, with the
growing of wireless sensor networks and IoT, OTA is being realized by using low
power consumed protocols such as 802.15.4, Zigbee, and BLE.

2.2 Bluetooth Low Energy

BLE is part of the Bluetooth core specification 4.0 or later releases developed by the
Bluetooth Special Interest Group (SIG). It is designed with low power consumption
and low complexity suitable for constrained devices and IoT applications. Due to its
low cost compared to other similar wireless technologies, it is rapidly and widely
implemented in smartphones, wearable devices, sensors, and other devices.

2.3 oneM2M Technologies

The oneM2M is the global standard for M2M/IoT platforms. In addition to addressing
the requirements for M2M Service Layer, it defines the architecture, protocols, APIs,
interfaces and security for M2M/IoT services. In our research, we use an oneM2M-
based platform, OpenMTC, developed by FOKUS [8] as our provisioning server that
accepts users’ requests and interacts with the BLE devices.

3 Related Work

Fjellheim [9] designed an adaptive platform to support customized application delivery
via various protocols according to required metadata. They also implemented an
adaptable Web server to support OTA over HTTP. Vo and Torabi [10] proposed a
framework for OTA provider-initiated software update on mobile devices subscribed to
the service. Ndie et al. [11] came up with a method of provisioning mobile applications
via Bluetooth between two mobile devices. Though there are some interesting OTA
provisioning ideas reported in these papers, few of them use BLE as the communi-
cation method. In addition, none of them are designed specifically for wearable devices
or based on an IoT platform. Moreover, most of them require subscription to the
providers. In our research, we propose OTA provisioning for the wearable devices over
oneM2M and BLE that differs from existing works.

196 W.-H. Chen et al.

4 Architecture Design and Implementation

4.1 Tools for Architecture Design

e Nordic Device Firmware Update (DFU) Mechanism for nRF5 SDK v11.0.0

In order to support OTA provisioning, Nordic provides OTA DFU mechanisms in their
Software Development Kit (SDK). The DFU Service exposes necessary information to
perform provisioning for the devices. The high level architecture is depicted in Fig. 1
where two devices are required for its operations: (1) DFU Controller, which triggers
the DFU procedure and transfers the application images, and (2) DFU Target on which
a bootloader is needed to start the DFU mode, manage the DFU procedure and activate
the new firmware.

e oneM2M Interworking Proxy Application Entity

The oneM2M defined IPE in TS-0001 [6] as the solution for interworking with non-
oneM?2M entities. Figure 2 shows that it is designed as an AE (Application Entity) that
enables different level of interworking between non-oneM2M and oneM?2M interfaces
including protocol interworking, semantic information exchange and data sharing.
For OTA provisioning, we use IPE to translate BLE protocol messages to oneM2M
RESTful operations such as HTTP and to exchange the data models between BLE
devices and oneM2M-based platforms.

4.2 Architecture Design of Over-The-Air Provisioning with IPE

In our research, we use nRF52 DK as our BLE device and a Raspberry Pi 3 model B
running Linux-like Raspbian as our provisioning server. In addition, a CSR Blue-
tooth USB dongle adapter is installed in the Raspberry Pi 3 to enable BLE commu-
nications. Bluez [12] is installed to control the Bluetooth dongle adapter in the
Raspberry Pi for supporting BLE layers and protocols on Raspbian. As OpenMTC
Release 4 is implemented in Python while Bluez only provides APIs in C language, we
have to adopt another open source, Bluepy [13], in order to use Python APIs for BLE
communications on OpenMTC.

DFU Target DFU Controller
Trigger
DFU start
Start AE:
DFU Bootloade ,S;:de DFU Service .
DFU ¢ Interworking

interface interface

Fig. 1. Device Firmware Update architecture Fig, 2. Interworking Proxy Application Entity

Enabling Over-The-Air Provisioning for Wearable Devices 197

S

S Postman ——
= (] e
HTTP aeel Create H1"TP socket
RF52 DK
<3 OpenMTC :_2_J<1__ .
2 I
User ! 1 .
HTTP ! | Handle request and get 1
: 1 application information 1
Bluepy | ! ,—3_):
BLE 1 ! 1 4
" I)
1 | 1
: 1 S ! Reboot as new application
€
nRF52 DK !
Fig. 3. System architecture Fig. 4. Provisioning process

4.3

Our system architecture consists of four components as shown in Fig. 3.

. OpenMTC: It is the provisioning server used to store the information of available

applications and to forward the user’s provisioning requests to the BLE device via
IPE by subscription/notification mechanisms of oneM2M.

User: In our architecture, the user needs to send HTTP requests to retrieve the
available application list and initiate application provisioning. We use Postman [14]
to simulate the user’s application for sending related HTTP requests.

. BLE Device: This is nRF52 DK used as the provisioning target. The nRF52 DK is

installed with s132 SoftDevice and the bootloader and is thus capable of supporting
the DFU functionality.

. IPE: Our IPE, which acts as the DFU controller and gateway application entity on

the platform side, takes responsibility for interworking with the nRF52 DK and
OpenMTC to achieve the provisioning functionality. It handles the HTTP requests
from the platform, and manages the provisioning process with the BLE device.

Implementation of OTA Design

Figure 4 shows the step-by-step IPE provisioning process as follows.

1.

2.

First, we starts OpenMTC and IPE. The IPE will create a HTTP socket and sub-
scribe to OpenMTC to receive the notification about the provisioning request.

When the user sends a provisioning request including the device address and the
application to be provisioned, OpenMTC will notify IPE of the request. IPE then
parses the request and gets the application path from the available application list.

. Next, IPE uses APIs provided by Bluepy to connect to the nRF52 DK according to

the device address in the request and triggers the DFU procedure.
IPE will carry out the DFU operations with nRF52 DK as defined in DFU Service
by Nordic.

. At the end of the process, nRF52 DK will reboot with the new application and IPE

will create a resource in the platform to record the provisioning result.

Table 1. Sizes of applications.

Method/application | UART application | Proximity application HRM application
IPE 26,566 bytes 35,040 bytes 23,180 bytes

198 W.-H. Chen et al.

5

Experiment Results and Analysis

5.1 Applications Used for Evaluation

To evaluate the effectiveness of our design of OTA provisioning, we create three
different kinds of applications. Table 1 shows the sizes of these applications and each
of them is explained below.

Universal Asynchronous Receiver/Transmitter (UART) Application. The basic
concept of UART is using one channel to transmit data and the other one to receive
data between two devices. This application will receive data from the central device
and print it on the monitor over serial connection on the nRF52 DK.

Proximity Application. This application implements the Proximity Profile that alerts
the user by the LEDs on the nRF52 DK when the connected device are too far
apart. The blinking frequency will increase with the distance between the nRF52
DK and the central device connected.

Heart Rate Measurement (HRM) Application. HRM is an implementation of the
Heart Rate Service profile. When the notification is enabled, the simulation of heart
rate value will be sent to the central device.

We need to integrate DFU Service into these applications, and propagate the BLE

stack events to DFU Service. Besides, the applications have to support sharing bonding
information which enables the device to advertise directly after entering the DFU
mode.

5.2 Evaluation Criteria

Below we describe our evaluation criteria.

Power Consumption. It is one of the critical issues in the design of wearable devices
and their applications due to their inherent limit of battery-supplied power. As the
nRF52 DK provides power measurement functionality, we can use the ampere-
meter to directly monitor the current and derive power consumption during the DFU
process.

Transmission Efficiency. This is an important metrics to measure the efficiency of
the connection method design for data transmission. We use Wireshark to capture
the relevant packets and investigate the transmission time and average rate of
application image transmission.

System Performance. As the number of connected devices keeps growing, the
system performance of the M2M platform becomes more and more important. We
investigate the CPU utilization of the oneM2M platform while executing the
application provisioning with the device. To profile our implementations more
precisely, we adopt psutil, a Python program profiling tool, into our implementa-
tions instead of using the traditional tools in Linux environment (e.g. ps, top).
Design Complexity. Finally, we analyze the design and implementation complexity
of our architecture based on the system requirements including protocol support,
prerequisite knowledge, device and firmware design etc.

Enabling Over-The-Air Provisioning for Wearable Devices 199

5.3 Experiment Results and Analysis

The experiment environment is set up as follows. First, we use OpenMTC as our
oneM2M platform and install it on a Raspberry Pi 3 Model B. For wearable devices, we
adopt the nRF52 DK with s132 SDK and bootloader as the target device. Since the
connection intervals of BLE connections will affect the performances of power con-
sumption and transmission efficiency, we set the minimum as 7.5 ms and the maximum
as 30 ms to reduce this influence. Below we report the results for each evaluation
criteria.

e Power Consumption. The current of the nRF52 DK changes according to different
operations in the DFU procedure. Consequently, we record all the values for
analysis. Take the provisioning UART application for example (See Fig. 5), the
average current is between 1 and 1.5 mA during the file transmission and the curve
is stable. The analyses of provisioning three applications indicate that the power
consumption will be affected by the application size (See Tables 2 and 3).

e Transmission Efficiency. For the transmission efficiency, we use Wireshark to catch
the packet information during the provisioning process. The analysis results are
shown in Table 3. Due to the limited payload of BLE, each packet can contain only
20 bytes of data at most. However, we can modify the connection intervals to
achieve high throughput. In our experiment, the Proximity application has the
largest packet which is about 35000 bytes but it only takes 20 s to transmit, which is
acceptable for the users.

e System Performance. The platform CPU utilization of provisioning three applica-
tions respectively are shown in Fig. 6. We have marked the important timestamps
for each, such as managing HTTP request, establishing connection with the device
and transmitting the application images. We found that if the application size is
bigger, then it will consume more CPU resource during the transmission procedure.

Power Consumption of IPE_UART

restart T

[
St ..’ conn njt . A validate ‘
1

s \ J\DF

‘. . . -]
0 File Transmission Activate
Enable ccco

Fig. 5. Power consumption results of UART application

Table 2. Analysis results of power consumption.

UART | Proximity | HRM
Image transmission (mA) | 18.25 |21.55 13.92
Whole procedure (mA) | 23.71 |26.07 18.32

200

e Design Complexity. The analysis results of the proposed method are shown in
Table 4. The results show that our method is easy for development because we
don’t need to implement the whole system by ourselves like other OTA systems. In
any BLE devices equipped with Nordic nRF51 SoC

W.-H. Chen et al.

Table 3. Analysis results of transmission efficiency.

UART | Proximity | HRM

Process time (s)

25.89| 34.10 20.72

Image transmission (s) 14.82 20.19 13.17

Average rate (bytes/s) | 1792.67 | 1735.57 |1760.24

addition, it can be adopted for
and later models.

(a) UART

Start DFU Server

CPU Usage (%)

N & & ® O N

I\/[I)anage HTTP Req

A AATARNRAAY
/\M wamias]-eg R
/\/\/\ Send Image Flle 0 ‘ l/\ /\"i v ‘ \ J L/

(b) Proximity
10 Start DFU Server

Manage HTTP Req Send Image Fllve

(c) Heart Rate Measurement
1 Start DFU Server

CPU Usage (%)
@

Send
B Init File,

/\ Send Image Flle

Manage HTTP Req

Fig. 6. Analysis results of system performance (CPU utilization)

Table 4. Design complexity analysis results

Items

IPE method

Support protocol stack
Prerequisite knowledge

Device requirement

Firmware requirement

Enable OTA in application
Programing in oneM2M platform
Programming language
Third-party package/library

BLE 4.0 and above

BLE, Nordic DFU Mechanism, oneM2M

Nordic nRF51 DK and above (nRF52 here)
nRF51/nRF5 SDK, SoftDevice + Bootloader
Include DFU Module and Device Manager Library
IPE

Python + ARM C

Bluez, Bluepy, OpenMTC

Enabling Over-The-Air Provisioning for Wearable Devices 201

6 Conclusion and Future Work

This research proposed the architecture of the OTA application provisioning over BLE
for the wearable devices based on oneM2M IPE. We have shown that our architecture
is a flexible and effective method for OTA provisioning. With our architecture, the
users can upgrade their wearable devices wirelessly by sending HTTP requests via the
smartphones or the computers.

As the number of devices grows rapidly, IPv6 is an ideal protocol with more
available addresses and stateless address auto-configuration tools for IoT network
applications. 6LoWPAN over BLE recently defined by IETF describes the details of
IPv6 over BLE links. In our future work, we plan to enable OTA provisioning via
6LoWPAN over BLE and compare it with the IPE method.

Acknowledgment. The research in this paper is funded by Ministry of Science and Technology
(MOST) of Taiwan Government under Project Number MOST 105-2218-E-009-004.

References

1. Gartner: 8.4 billion Connected “Things” Will be Use in 2017, Up 31 Percent from 2016, 7
February 2017. http://www.gartner.com/newsroom/id/3598917

2. Lee, S.Y.: Situation Awareness in a smart home environment. In: IEEE 3rd World Forum on
Internet of Things, pp. 678—683 (2016)

3. Patel, M., Wang, J.: Applications, challenges, and prospective in emerging body area
networking technologies. IEEE Wirel. Commun. 2010(17), 80-88 (2010)

4. Dementyev, A., Hodges, S., Taylor, S., Smith, J.: Power consumption analysis of Bluetooth
Low Energy, Zigbee and ANT sensor nodes in a cyclic sleep scenario. IEEE Int. Wirel.
Symp. 2013, 1-4 (2013)

5. Gomez, C., Oller, J., Paradells, J.: Overview and evaluation of bluetooth low energy: an
emerging low-power wireless technology. Sensors 12(9), 11734 (2012)

6. oneM2M: TS 0001 v2.10.0, Functional Architecture

7. Ting, Y.Y.: A Comparison and Evaluation of Different BLE Connection Methods for
Wearable Devices. National Chiao Tung University, Hsinchu (2016)

8. Fraunhofer Fokus: OpenMTC. http://www.open-mtc.org

9. Fhellheim, T.: Over-the-air deployment of application in multi-platform environments. In:
Australian Software Engineering Conference (2006)

10. Vo, C.C., Torabi, T.: A framework for over the air provider-initiated software deployment on
mobile devices. In: 19th Australian Software Engineering Conference, pp. 633-638 (2008)

11. Ndie, T.D., Tangha, C., Sangbong, T., Kufor, A.F.: Mobile application provisioning using
Bluetooth wireless technology. J. Softw. Eng. Appl. 4, 95-105 (2011)

12. Bluez. http://www.bluez.org

13. Bluepy. https://github.com/lanHarvey/bluepy

14. Postman. https://www.getpostman.com

http://www.gartner.com/newsroom/id/3598917
http://www.open-mtc.org
http://www.bluez.org
https://github.com/IanHarvey/bluepy
https://www.getpostman.com

	Enabling Over-The-Air Provisioning for Wearable Devices
	Abstract
	1 Introduction
	2 Background
	2.1 Over-The-Air Provisioning
	2.2 Bluetooth Low Energy
	2.3 oneM2M Technologies

	3 Related Work
	4 Architecture Design and Implementation
	4.1 Tools for Architecture Design
	4.2 Architecture Design of Over-The-Air Provisioning with IPE
	4.3 Implementation of OTA Design

	5 Experiment Results and Analysis
	5.1 Applications Used for Evaluation
	5.2 Evaluation Criteria
	5.3 Experiment Results and Analysis

	6 Conclusion and Future Work
	Acknowledgment
	References

