
A New Network Simulator 2 (NS-2) Module Based on

RTP/RTCP Protocols to Achieve Multimedia Group

Synchronization
Mario Montagud, Fernando Boronat

Universidad Politécnica de Valencia - IGIC Institute
46730, Grao de Gandia, Valencia, Spain

+34+96 284 93 41

mamontor@posgrado.upv.es; fboronat@dcom.upv.es

ABSTRACT

Network simulation represents a broadly methodology for

communication network performance analysis. As a system

modelling approach, simulation allows to model arbitrary

scenarios that many times are very difficult to implement in real

platforms, or when it is intended to evaluate some alternative

solutions without necessity of implementing all of them. In this

paper, we present a modification of the NS-2 code for the

RTP/RTCP standard protocols by adding the attributes specified

in RFC 3550 that the native code doesn’t include or doesn’t

follow strictly. Also, we have extended this code to include a

multimedia group synchronization approach based on these

protocols. This approach was already implemented and evaluated

in a real WAN scenario with satisfactory results, but we needed to

validate its performance in other more complex heterogeneous

scenarios using simulation techniques. The simulation results

have proved this approach as a suitable solution for multimedia

applications which require group synchronization.

Categories and Subject Descriptors

C.2.2. [Computer-Communication Networks]: Network

Protocols; I.6. [Computing Methodologies]: Simulation and

Modeling;

General Terms

Algorithms, Measurement, Performance, Design, Verification.

Keywords

Group Synchronization, Multimedia Systems, RTP/RTCP,

Simulation, NS-2.

1. INTRODUCTION
Network Simulator 2 (NS-2), [1], is an open-source event-driven

simulation tool, developed at UC Berkeley, that has become one

of the most widely employed simulator tool for industry, teaching

and researching as a way of designing, testing and evaluating new

and existing protocols and technologies. Since its inception, NS-2

has been under constant improvement and nowadays it supports

heterogeneous network architectures characterization, such as

Mobile IP networks, WLAN, ad-hoc networks, grid architectures,

satellite networks, sensor networks, and many others.

Additionally, it contains modules for numerous network

components such as MAC layer protocols, unicast and multicast

routing algorithms, transport layer protocols (TCP, UDP, SRM,

RTP, RTCP, …), traffic source behaviour (FTP, Telnet, HTTP,

CBR, …), queue management mechanisms (Drop Tail, RED,

WFQ, …), statistics measurements (throughput, delay, jitter,

queue monitoring, drops at links and queues, …), etc.

Although this variety, sometimes we need to adapt the existing

NS-2 modules to our requirements or incorporate new simulation

modules which are beyond the scope of the built-in NS-2 code.

The simulator is open source; hence, it allows everyone to make

changes to the existing code besides to add new protocols and

functionalities to it. This makes it very popular among the

networking community which can easily evaluate the

functionality of their new proposed and novel designs for network

research.

We are interested in the RTP (Real Time Protocol) and RTCP

(Real Time Control Protocol) implementation in NS-2. These

protocols are defined in RFC 3550 [2]. Nowadays, more and more

applications use these protocols for multimedia streaming (video,

audio, graphics, etc.). While RTP cares about data delivery,

RTCP deals with the transport and management of feedback

reports (control messages) from all the participants of an RTP

session.

Previously, we developed an algorithm to synchronize a group of

receivers distributed in an IP network, using these protocols,

known as “RTP-based Feedback Global Synchronization

Approach (RFGSA)”, described in [3], and based on Feedback

Protocol [4] and Feedback Global Protocol [5]. The approach

was implemented, by modifying existing open source RTP-based

tools, such as vic (for video stream) and rat (for audio stream),

and tested, both objectively and subjectively, using LAN and

WAN environments. The satisfactory results validated this

proposal as a suitable solution for multimedia applications which

require group synchronization. Now, we are interested in

validating its performance in other more complex heterogeneous

scenarios using NS-2 simulator.

When we started to work with NS-2, we discovered that the native

implementation of RTP and RTCP protocols in NS-2 is quite

generic. Many attributes specified in RFC 3550 are not included

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

SIMUTools 2010 March 15–19, Torremolinos, Malaga, Spain.

Copyright 2010 ICST, ISBN 78-963-9799-87-5.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

or don’t meet the RFC requirements (specially the sizes of the

variables representing the packet header fields).

For the above reasons, in this work, we decided to develop a new

module for NS-2 providing a more complete RTP and RTCP

implementation (following strictly the RFC specification), and to

include an optional functionality with our group synchronization

approach, taking advantage of the ability to extend and create new

RTCP messages.

In this work, we use the multimedia synchronization concept to

refer to the process of integration at the presentation instant (or

playout point) of different types of media streams. There are three

well-known kinds of multimedia synchronization: Intra-Stream

Synchronization, Inter-Stream Synchronization and Group or

Inter-Destination Synchronization. Figure 1 shows an example of

all of them, in which we can see a group of distributed receivers

over an IP network, playing video, data and audio streams. First,

we can see that they begin the playout of the different streams at

the same time (we call it Initial Playout Instant) and, at any

moment, the three receivers are playing the same Media Data

Units (MDU) of each stream (Group or Inter-Destination

Synchronization). In addition, we can observe how the temporal

relationships between the different streams are maintained at any

time, as a sign of inter-stream synchronization (e.g. lip

synchronization). Moreover, we can notice the proper and

continuous playout of each media stream (intra-stream

synchronization).

The rest of the paper is organized as follows. In the next section

we discuss the basics of RTP and RTCP standard protocols, its

native implementation in NS-2 and related works. In Section 3,

our new NS-2 module for RTP and RTCP protocols including our

group synchronization approach is presented. Next, Section 5

presents the evaluation of this approach, implemented in a typical

scenario. Finally, we present our conclusions, summarize our

contributions and suggest some ideas for future work in Section 6.

2. NATIVE IMPLEMENTATION OF

RTP/RTCP IN NS-2 AND RELATED WORK

2.1 Overview of RTP and RTCP
RTP provides end-to-end delivery services for data with real-time

or near real-time characteristics, such as audio and video data.

RTP itself does not provide any mechanism to ensure timely

delivery or provide other quality-of-service guarantees, but relies

on lower-layer services to do it. Sequence numbers are included

in RTP packets’ headers to allow the receiver to reconstruct the

sender's packet sequence. Moreover, sequence numbers might

also be used to determine loses and proper locations of packets,

for example in video decoding, without necessarily decoding

packets in sequence.

RTCP is the companion control protocol for RTP. Media senders

(sources) and receivers (sinks) periodically send RTCP feedback

reports that are important for monitoring and maintaining of the

quality of RTP packets delivery. Each compound RTCP packet

([2]) may contain various sub-packets, usually a Sender Report

(SR) or Receiver Report (RR) followed by a Source Description

(SDES). If a user leaves an RTP session, a BYE RTCP message is

sent. Finally, Application messages (APP) can be used to add

application-specific information to RTCP packets.

.

Network

Receiver 1
Video

Audio

Time

x
x
xx
xxV1 V3

40 ms

Data

V2

Players

Receiver 2
Video

Audio

Time

x
x
xx
xxV1 V3

40 ms

Data

V2

Players

Receiver N
Video

Audio

Time

xxx
V1 V3

40 ms

Data

V2

Players

Initial Playout Instant

Figure 1. Multimedia Synchronization Types

Both, RTP and RTCP typically run over User Datagram Protocol

(UDP) and make use of its multiplexing and checksum services.

In this way, the conventional approach for media streaming is to

use RTP/UDP for media data and RTCP/UDP for control data.

However, they can use any other suitable underlying protocol or

packet oriented transport protocol.

An RTP Session is defined as an association among a set of

participants communicating with RTP. A participant may be

involved in multiple RTP sessions at the same time. In a

multimedia session, unless the encoding itself multiplexes

multiple media into a single data stream, each medium (audio,

video, etc.) is typically carried in a separate RTP session with its

own RTCP packets. All participants in an RTP session may share

a common destination transport address pair.

2.2 RTP/RTCP implementation in NS-2
As mentioned above, the implementation of RTP and RTCP

protocols in NS-2 is too generic for us. It does not define many of

the attributes specified in RFC 3550 or they are not defined

correctly. Moreover, it only provides common transport protocol

functions running on top of UDP.

Generally, specific protocols are implemented in NS-2 as Agents.

These agents represent endpoints where network-layer packets are

constructed or consumed, and can be used for the implementation

of protocols at various layers. In this case, RTP and RTCP

protocols are implemented using the RTPAgent class and the

RTCPAgent class, respectively. Both classes derive from the

Agent class and are implemented in the file rtp.cc (located in ~ns/

common directory) and file rtcp.cc (located in ~ns/apps

directory). The Agent superclass is implemented in both

hierarchies (compiled and interpreted). Its C++ implementation is

contained in ~ns/agent.cc and ~ns/agent.h files, and the OTcl

support is in ~ns/tcl/lib/ns-agent.tcl file. The RTPAgent has the

functionality for sending and receiving RTP packets, whereas the

RTCPAgent is responsible for transmission and reception of the

RTCP packets.

RTPSession class (defined in ~ns/common/session-rtp.cc file)

principally deals with feedback report building and participant’s

information tables maintaining through the received control

packets passed from its agents. This class is called by its binding

OTcl class Session/RTP (defined in ~ns/tcl/rtp/session-rtp.tcl

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

directory). It mainly defines the procedures for the session

initialization, report interval calculation (and its initial value),

RTP transmission rate and packet size setting, flow identifier

assigning, associating new RTP sessions with nodes, managing

join and leave processes to multicast groups, stopping RTP flow

transmissions, liberating the session resources, etc.

All the C++ files we have cited use rtp.h as header file, which is

located in ~ns/apps directory. They appear in dark boxes in

Figure 2.

If a node in the simulated network has to become a participant of

a multicast RTP session, a new instance of the Session/RTP class

has to be declared using the [new Session/RTP] command.

Then, it has to be attached to each node invocating the

attach-node method. With the new session, four objects are

created: an RTP Agent (Agent/RTP), an RTCP Agent

(Agent/RTCP), a Timer for the interval report calculation

(RTCPTimer) and a source Agent (RTPSource). In fact, when

Session/RTP is declared for a node, what is really attached to the

node is the RTP and RTCP Agents created for that session. After

that, this session has to be joined to a previous defined multicast

group, by using the join-group method. In this process, RTP and

RTCP agents are joined to the multicast group (same IP address)

but with different port addresses (usually, consecutive numbers).

The start procedure initializes the RTCP Agent whilst the

transmit procedure launches the RTP agent. When a transmit

procedure is called, a new Timer (RTPTimer) is created, which

will deal with sending RTP packets with a specific rate. For each

timer timeout an RTP packet will be sent and the timer will be re-

scheduled with the same period (if we are simulating CBR –

Constant Bit Rate – traffic). This timeout period (in seconds) is

calculated as the relation between the RTP packet size (in bits)

and the binary rate (in bits/second) specified as an input

parameter in the transmit procedure.

During the streaming session, when an RTPSession receives data

from a new RTP source, it includes this source in its senders

information table by means of new RTPSource object, in order to

register the sender reports statistics. In the same way, when an

RTPSession receives control traffic (receiver reports) from new

participants, it includes the receiver in its receivers information

table by means of new RTPReceiver object, in order to hold the

fields that are used by the receiving Agents for QoS

measurements. The steps for new RTP Session initialization are

illustrated in Figure 3. In this Figure we can also observe the

appropriated syntax for the OTcl methods invocation and the

associated events that are generated.

...tk otcl tclcLtcl nam

tcl

ex rtp lib

...

...

example scripts

oTcl code

ns-allinone

mcast

xgraph

common apps

rtp.cc
rtp.h

session-rtp.cc

tcp

rtcp.cc

session-rtp.tcl multicast protocols

C++ code

ns-2 ...tk otcl tclcLtcl nam

tcl

ex rtp lib

...

...

example scripts

oTcl code

ns-allinone

mcast

xgraph

common apps

rtp.cc
rtp.h

session-rtp.cc

tcp

rtcp.cc

session-rtp.tcl multicast protocols

C++ code

ns-2

Figure 2. NS-2 directory structure.

Figure 3. Basic OTcl commands for RTP/RTCP

For a better understanding of these processes, and as an example,

a simple OTcl script code is presented below, in which RTP

sessions are defined (lines initiated with ‘#’ are author

comments):

First, a new simulation object is defined (instance of class Simulator)
set ns [new Simulator]
The scenario will be multicast
$ns multicast
…
We configure the multicast protocol (mproto)
There are distinct alternatives: CtrMcast, DM, ST, BST
set mproto DM
…
Multicast agents are added to all the nodes
set mrthandle [$ns mrtproto $mproto {}]
…
We define a new multicast group
set group [Node allocaddr]
…
Network topology with a sender and two receiver nodes
set sender_node [$ns node]
set receiver_node_1 [$ns node]
set receiver_node_2[$ns node]
…
RTP session are defined for the source and receivers
set sender_session [new Session/RTP]
set receiver_session_1 [new Session/RTP]
set receiver_session_2 [new Session/RTP]
…
We attach the sessions to the nodes (agents are attached to the
nodes)
$sender_session attach-node $sender_node
$receiver_session_1 attach-node $receiver_node_1
$receiver_session_2 attach-node $receiver_node_2
…
Session bandwidth which will be used for the RTCP interval
calculation
$sender_session session_bw 400kb/s
…
Participants join to the multicast group
RTCP Agents are initialized ('start’ procedure invocation)
$ns at 0.1 "$sender_session join-group $group"
$ns at 0.1 "$sender_session start"
…
$ns at 0.1 "$receiver_session_1 join-group $group"
$ns at 0.1 "$receiver_session_1 start"
…
$ns at 0.1 "$receiver_session_2 join-group $group"
$ns at 0.1 "$receiver_session_2 start"
…
RTP source initiates RTP packets transmission at 400 kbps rate
$ns at 0.5 "$sender_session transmit 400kb/s”
…
The receivers leaveS the multicast group at 29 seconds
$ns at 29.0 "$receiver_session_1 leave-group"
…
The source stops the RTP packets transmission
$ns at 30.0 "$ sender_session stop"
…

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

2.3 Related Works
Apart from the native implementation of RTP in NS-2, we have

found two additional implementations of RTP/RTCP protocols in

NS-2 including improvements to that native code and new

modules for specific purposes ([6] and [7]).

On the one hand, in [6], new RTP and RTCP Agents are defined

with further functionalities in order to provide loss and jitter

control in MPEG-2 traces streaming over wireless environments

with QoS (802.11e). In addition, new data structures are defined

to generate the RTP and RTCP packets. These data structures

contain more differentiated fields that the native code for

RTP/RTCP but their size is not correct and some fields of these

fields are not specified in [2]. The source code, MPEG-2 binary

traces and the installation guide are accessible in the following

URL: http://gridnet.upc.es/~vcarrascal/ns2/.

On the other hand, the Research Academic Computer Technology

Institute and the University of Patras made new extensions to the

legacy RTP/RTCP code in NS-2, [7], in order to, on one hand,

provide this code additional features defined in RFC 3550 and

related to QoS metrics (loss and jitter control) and, on the other

hand, employ TCP Friendly bandwidth share behaviour of

multimedia data transmission from a server to a number of

receivers, through multicasting. Simulations examples, the source

code and its documentation are available in the following URL:

http://ru6.cti.gr/ru6/ns_rtp_extensions.php.

Both implementations have served us to comprehend better the

performance of these protocols in NS-2. Nevertheless, to include

our synchronization approach we need to develop a new module

with complementary functionalities, extending and adding new

RTCP packets, implementing new timers, receiver buffers,

algorithms and methods.

3. NS-2 RTP/RTCP MODULE WITH OUR

GROUP SYNCHRONIZATION APPROACH
In this section, we present the new NS-2 module based on the

RTP/RTCP protocols, including our group synchronization

approach, [3]. During this module implementation we pursued

two main goals. On the one hand, we wanted to extend the RTP

code by providing the additional attributes specified in RFC 3550

and related to QoS metrics, as in [7]. So, we modified the existing

RTP and RTCP packets to adapt them to the specified format in

[2], and added new RTCP messages that were not included in the

above mentioned implementations, such as RTCP SDES, RTCP

BYE and RTCP APP packets. On the other hand, we included in

the module an optional mechanism to acquire group

synchronization between receivers (group synchronization) by

defining new timers, new receiver buffers, extending the existing

RTCP RR packets and programming new algorithms for

synchronization purposes.

3.1 RTP/RTCP files location and content
Our new module can be included together with the other built-in

NS-2 modules without needing to replace the RTP legacy code.

As we can see in Figure 4, the C++ code is located in ~ns/rtp_gs

directory (“gs” stands for group synchronization) and the OTcl

code is located in ~ns/tcl/rtp_gs directory. We defined a new

header file for each C++ file in contrast to the two other found

implementations mentioned in Section 2.

tk otcl tclcLtcl nam

tcl

rtp

...

...

oTcl code

ns-allinone

mcast

xgraph

common appstcp

C++ code

ns-2

rtp_gs

session-rtp_gs.tcl

rtp_gs

rtp_gs.h rtp_gs.cc
rtcp_gs.h rtcp_gs.cc

session-rtp_gs.h session-rtp_gs.cc

tk otcl tclcLtcl nam

tcl

rtp

...

...

oTcl code

ns-allinone

mcast

xgraph

common appstcp

C++ code

ns-2

rtp_gs

session-rtp_gs.tcl

rtp_gs

rtp_gs.h rtp_gs.cc
rtcp_gs.h rtcp_gs.cc

session-rtp_gs.h session-rtp_gs.cc

Figure 4. NS-2 directory structure after RTP/RTCP Group

Synchronization modules installation.

In the rtp_gs files, we modified the native packet header from

“hdr_rtp” to “hdr_rtp_gs”, including all the fields specified in

RFC 3550 (and with the correct sizes). We redefined the RTP

Agent, which holds all the functionality of sending and receiving

RTP data units, and called it RTP_gs_Agent. We have also

redefined the timer responsible for RTP packets sending, and

called it “RTP_gs_Timer”.

In rtcp_gs files, we redefined the RTCP Agent responsible for

RTCP packets transmission and reception, calling it

“RTCP_gs_Agent”. We also created a new common header for all

the RTCP packets with the same format specified in RFC 3550,

calling it “hdr_rtcp_gs”, and defined new data structures for each

RTCP packet.

As specified in [2], we defined a numeric constant for each RTCP

packet to include it in the Payload Type field of the RTCP header:

typedef enum {
RTCP_SR = 200,
RTCP_RR = 201,
RTCP_SDES = 202,
RTCP_BYE = 203,
RTCP_APP = 204

} rtcp_type_t;

SR packets (which are defined in the “sender_report” data

structure) are generated by active participants who are sending

media units (RTP sources). They describe the amount of data sent

so far, as well as correlating the RTP sampling timestamp and

absolute time (provided by NTP or GPS) to allow synchronization

between session participants. In our simulated case, we take

advantage of the existence of a global virtual time provided by the

simulator scheduler clock to use it as absolute time.

RR packets (which are defined in the “receiver_report” data

structure) are sent by participants who stand as receivers in the

session. Each such report contains one block for each RTP source

in the group. Each block describes the instantaneous and

cumulative loss rate and jitter from that source. The block also

indicates the last timestamp and the delay since receiving a sender

report, allowing sources to estimate the Round Trip Time (RTT)

to RTP sinks. We also defined an extended RR RTCP packet,

named EXT RR RTCP packet, to include useful information for

our synchronization approach, [3], which will be explained in the

next sub-section.

SDES packets (which are defined in the “source_description”

data structure) are used for session control. They contain the

Canonical Name (CNAME), a participant’s globally unique

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

identifier (similar in format to an email address), which can be

used for resolving conflicts in the SSRC value and to associate

different media streams generated by the same user. SDES

packets also can identify the participant through their name,

email, and phone number. This message also must be included in

each compound RTCP packet because new receivers need to

know the CNAME for a source as soon as possible to identify it

and to begin to associate different media for different purposes,

such as for lip synchronization (lip-sync).

When users leave an RTP session, they send BYE RTCP

messages (which are defined in the “bye” data structure). If a

participant receives an RTCP BYE packet, the SSRC associated

in this packet is removed from its participants’ table (senders or

receivers), and the value for the session members is updated.

Finally, new APP (Application-Defined) RTCP packets are

defined to send useful information to the receivers for the

synchronization approach. These packets will be explained in the

next sub-section.

In session-rtp_gs files, we re-implemented the “RTPSession”

class, calling it “RTP_gs_Session”. When a new RTP session is

instantiated in our simulation environment by means of the [new

Session/RTP_gs] OTcl method invocation, a new C++

RTP_gs_Session class is returned and, in turn, two new agents are

declared (RTP_gs_Agent and RTCP_gs_Agent). In addition, the

RTP_gs_Session constructor initializes the localsrc_ and allsrcs_

instances of the RTP_gs_Source class and also the receiver_

instance of the RTP_gs_Receiver class. The localsrc_ stands for

the originator of RTP and RTCP packets. It is possible that the

localsrc_ generates only RTCP packets if it is only a receiving

source in the newly created session. In these C++ files, we

implemented our group synchronization approach which is

detailed in the next sub-section.

We provide to the NS-2 users the possibility, from their OTcl

script, to enable or not our group synchronization approach in

each receiver they define, by means of the enable-gs method

invocation, defined in the OTcl Session/RTP_gs class. Therefore,

the group synchronization will be enabled if the following OTcl

command is executed:

#0 To disable; 1 to enable Group Synchronization mechanism
$session_name enable-gs 1

The default value is zero, which means that the group

synchronization algorithm is disabled by default. In this way, the

receivers will send conventional RR RTCP packets (not extended)

and will not send the new APP RTCP packets mentioned above.

Different receivers could coexist in the same OTcl script using or

not the group synchronization approach.

3.2 Designing and implementing our group

synchronization algorithm
Our group synchronization algorithm makes use of a

Synchronization Maestro Scheme (SMS, [9]), based on the

existence of a synchronization maestro (in our case the RTP

source) which gathers the information of the playout processes of

all the receivers and correct their playout timing by distributing

RTCP control messages.

We tackle our synchronization problem by dividing it in two main

phases: first phase, to get all the receivers starting the playout

process at the same time (Initial Playout Instant); and second

phase, to maintain the media stream playout process in a

synchronized way between all the active receivers.

3.2.1 Initial Playout Instant
In the initial phase, if we suppose identical playout rates of the

receivers and deterministic network delay between the source and

all the receivers, we can guarantee media synchronization if the

source initially indicates to all the receivers the exact instant to

begin the playout of the RTP stream, referred as Initial Playout

Instant (illustrated in Figure 1). For Initial Playout Instant

calculation, we force the receivers to send several control

messages, which we called RTCP APP RET packets, with global

time information, allowing the source to estimate the network

delay. The main fields of this packet are defined in the

APP_TIN_RET data structure shown below and the complet

format of the packet is illustrated in Figure 5.

struct APP_TIN_RET {
/*source this RTCP packet refers to*/

 u_int32_t sender_srcid_;
/* name this RTCP packet refers to */

 char name[4];
 double ntp_time_;

};

In the OTcl script configuration, the interval for sending the

RTCP APP RET messages can be adjusted in each receiver by

means of the APPRET-Interval OTcl method invocation,

indicating this period as an input parameter. The default value for

this interval was established to 100 ms, but this value will be

dynamically adjusted according to the network load as specified

in [2]. A new timer will take care of these packets transmission,

including the global timestamp information of the time when the

packet is sent. The source will receive these messages and register

the network delay for each incoming message (difference between

source’s global time and the one stamped in the received

message) to estimate the maximum, minimum and mean (using a

temporal window) network delay value for each receiver.

void RTP_gs_Session::recv_ctrl(Packet* p)
{

…
/* we get the report header */
hdr_rtp* rh = hdr_rtp::access(p);
…
/* if the received control packet is an APP RET
packet*/
if(rh->app_t_r_!=0)&&(rh->app_t_r_->name[0]=='R'))
{
…
/* this function registers the delay for each
incoming RET message and uses it to estimate the
maximum, minimum and mean delay */

delay_estimation(rh->srcid(),rh->app_t_r_->ntp_time_);
…

}

Once the source has estimated the maximum and minimum delay,

it uses these values to calculate the Initial Playout Instant, as

explained in [3]. Then, the source sends to the receivers another

RTCP APP packet, we called APP TIN packet, to indicate the

global clock time when the receivers’ playout process must start.

The format for both packets is identical but they have different

ASCII name (“RET” and “TIN”). In the NTP timestamp field of

TIN messages the source indicates the global time when the

receivers’ playout process must start.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

V P X SSubtype M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 31

PT = APP Length
SSRC

name (ASCII) = ‘RET’

NTP timestamp (64 bits)

V P X SSubtype M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 31

PT = APP Length
SSRC

name (ASCII) = ‘RET’

NTP

Figure 5. RTCP APP RET/TIN packet format.

After the RTCP APP TIN packet transmission, the source will

start sending RTP data units, which will be buffered by the

receivers until their local clock reach the Initial Playout Instant. In

the receiver, 5 values are stored for each incoming RTP packet:

its sequence number, its timestamp, the buffer input instant, the

jitter value and the playout delay for that data unit. The C++

buffer_iterator_ variable will be used to place the incoming

packets in each receiver buffer and to manage its occupancy.

In this way, our group synchronization approach initial phase

guarantees that all the receivers initiate the playout at the same

time, as shown in Figure 1.

3.2.2 Fine synchronization between receivers
In the second phase of our approach, when the source starts

sending RTP data units, the receivers will use extended Receiver

Report RTCP packets (EXT RR packets) as feedback messages,

with new extensions, including the sequence number of the

current data unit the receiver is playing and the global time (NTP)

timestamp of the instant in which the receiver started the playout

of that data unit. The main fields of these packets are defined in

the receiver_report data structure shown below and the

complet format is illustrated in Figure 5.

/** rtcp_gs receiver reports */
struct receiver_report {
 /* data source being reported */

u_int32 srcid_;
/* fraction lost since last SR/RR */
unsigned int fraction_lost_:8;
/* total number of RTP packets lost since
the beginning of the session (signed!) */
int cum_pkts_lost_:24;

 /* last SR time from this source */
 double lsr_;
 /* delay since last sender report */
 double dlsr_;
 float jitter_; /* interarrival jitter */

/* last sequence number data unit
played from all the sources */
u_int16_t seq_LDU_RR;

 ...

}

The receivers will send these packets at the interval specified in

[2]. The RTCP_gs_Agent calls the build report function

(build_report()), located in session-rtp_gs.cc file, as a

result of the RTCP_gs_Timer timeout event.

void RTCPAgent::timeout(int)
{
 …
if(running_)
{
size_ = session_->build_report();
sendpkt();
…
}
}

V P X RC M

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 31

PT = RR length

SSRC_1 (SSRC of first source)

fraction lost cumulative number of packets lost

extended highest sequence number received

interarrival jitter

last SR (LSR)

delay since last SR (DLSR)

SSRC_2 (SSRC of second source)

NTP timestamp (64 bits)

Last MDU played from source 1 …padding…

SSRC

…padding…Last MDU played from source 2

…

Figure 6. RTCP RR EXT packet format.

On one hand, the RTP sender generates new SR if it has sent RTP

data units since the previous sent SR. On the other hand, each

receiver constructs new EXT RR packets, in the same build report

function, if it has received new RTP data units from a source. Its

fields are completed as specified in the Appendix A.8 in [2].

/* add receiver report */
receiver_report* rr;
rr = new receiver_report;
/* fill the report */
rr->receiver_srcid()=localsrc_->srcid();
rr->cum_pkts_lost() = sp->cum_pkts_lost();
…
rr->jitter()= sp->jitter();
rr->LSR() = sp->LSR();
rr->DLSR()= NOW - sp->SRT();
…
rr->ntp_time_ = ntp_playing();
rr->seq_LDU_RR_=seq_playing
/* add the RR EXT to the RTCP packet*/
rh_->rr_ = rr;

During the session, the source receives these RR EXT packets

from the receivers and stores the information required by our

approach in a memory table (specifically, receiver identifier

(SSRC), the last data unit played by this receiver and the global

time timestamp in which the data unit was played). Due to this,

we previously included those required fields in the

RTP_gs_Receiver class.

void RTP_gs_Session::recv_ctrl(Packet* p)
{
…
/* if is the source */
if(localsrc_->is_sender())
{

/* get the Receiver report */
if(rh->rr_!= 0)
{
…
/* for each receiver (s), the source store
these values */
s->seq_LDU_RR_=rh->rr_->seq_LDU_RR_;
s->ntp_time_=rh->rr_->ntp_time_;
ckeck_ACT_sending()
…
}

}

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

This memory table must be updated with the most recent control

messages received by each receiver. For each incoming RTCP RR

EXT message, the source checks if it has received the reports

from all the active participants and, if it is true, the source

activates a sending_ACT_message boolean flag. In relation to this,

we defined a new RTCP_APP_Timer which is continuously

supervising this flag and, in case it is active, it calls a build

function for new APP control packets

(build_APP_pkt(type)).

void RTCP_gs_Agent::timeoutAPP(int)
{
 if(sending_APP_message)
 {
 size_=session_->build_APP_pkt(type);
 …
 sendpkt();
 /* the flag is deactivated */
 sending_APP_message= false;
 …
 }

}

Here, when the source has obtained the playout information of all

the active receivers, it can estimate the state of the receivers’

playout process.

int RTPSession::build_APP_pkt(int type)
{

 /* 1=ACT, 2=RET, 3=TIN*/
if (type == 1)
 {
 …
 master_recv_select(master_alg_,async_);
 ACT_parameters_calculation();
 …
 }
 …

}

In this function, the source selects a receiver as the master

receiver, according to a master selection algorithm variable (e.g.

the faster or the slower one), which we called master_alg_ and

must be specified in the following OTcl invocation:

#01= To the mean, 10= To the slower, 11= To the faster
$session_name master-algorithm 11

The master receiver playout point will be taken as the reference to

determine the playout point state (advanced or delayed from that

one) in the other receivers (slave receivers). If the source detects

an asynchrony (deviation) between the receivers’ playout

processes exceeding an async_ threshold (configurable value in

the OTcl script), it will multicast action messages to make the

receivers correct their playout timing. As a result, late slave

receivers will accelerate their playout timing and fast slave

receivers will restrain their playout timing.

These action messages are new control APP RTCP packets, called

APP ACT packets, with an extension including a data unit

sequence number and the global time in which this data unit

should be played by all the receivers. The main fields of the

packet are defined in the APP_ACT data structure shown below

and the format is illustrated in Figure 5.

struct APP_ACT {
u_int32_t sender_srcid_;

 char name[4];
 double ntp_time_;
 u_int16_t seqno_;
 …
};

V

P

X

SSubtype

M

0

2

4

6

8

10

12

14
 16

 18
 20

 22
 24

26

28

30 3

1

PT = APP Length
SSRC

name (ASCII) = ‘ACT’

NTP timestamp (64 bits)

MDU Sequence Number …padding…

Figure 6. RTCP RR EXT packet format.

The APP ACT RTCP parameters are calculated in the

ACT_parameters_calculation() function according to

our previous work in [3].

4. EVALUATION
We have proved our approach in several network topologies by

means of running multiple simulations with similar satisfactory

results. With these simulations we pursued two objectives: first,

verify the proper functioning of this code, and second, test our

group synchronization performance.

Consequently, in this section we show only a typical wired

scenario and the results of a single run, with the purpose of

showing clearly the good performance of the implementation of

our group synchronization approach. The chosen simple

simulation scenario is illustrated in the Figure 7. It consists of one

RTP Source (simulating a multimedia server) and three RTP

Receivers distributed over the network topology (with different

end-to-end delays between the source and receivers and different

network load between them). All the links have a capacity of 1.5

Mbps and the delay between the network components is detailed

in the same Figure.

In this simulation the RTP Source transmitted RTP packets with a

specific rate of 400 kb/s. The RTP packets size was set to 1000

bytes. The RTCP transmission interval was initially set to 0.3

seconds to all the participants, but this value was dynamically

adjusted according to the network load. In addition, we

intentionally configured background CBR/UDP traffic between

the CBR Source and the RTP Receiver 3 in order to create a

bottleneck in this link, affecting the delay and jitter estimations

for that receiver.

For the multicast transmission we configured the PIM-DM

(Protocol Independent Multicast – Dense Mode) protocol.

RTP Source

xx
xxxx

xx
x RTP Stream

CBR Stream

Router 1

Router 2

xx
xx

xx
xx
xx

x
xx

x
x
xxx
xxRouter 4

Router 3

RTP Receiver 1

RTP Receiver 3

and CBR Sink

CBR Source

10 ms

10 ms

15 ms

10 ms

10 ms

12 ms

10 ms

10 ms

RTP Source

xx
xx
xx
xxxxxx

xx
x RTP Stream

CBR Stream

xx
x RTP Stream

CBR Stream

Router 1

Router 2

xx
xx
xx
xx

xxxx
xx
xx
xx
xx

x
xxxxxx

x
x
xx
x
xxx
xxRouter 4

Router 3

RTP Receiver 1

RTP Receiver 3

and CBR Sink

CBR Source

10 ms

10 ms

15 ms

10 ms

10 ms

12 ms

10 ms

10 ms

Figure 7. Simulated network topology.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

In our simulation case, we forced a random deviation or drift in

the receivers playout rate limited by rU. In this way, if the

receivers have a nominal playout rate of T data units per second

(equal to the source transmission rate), in the worst case, one

receiver would be able to playout the stream with the maximum

rate of T*(1+U), whereas another receiver would be able to

playout the RTP stream with the minimum rate of T *(1-U). This

playout drift can be configured by means of the assign-drift OTcl

method invocation. In this single simulation, we assigned a

random deviation limited by r10% to all the receivers. By default

the receivers’ playout process drift is zero (i.e. the RTP packets

are played at the same rate that they were generated by the

source). Concretely, during the simulation, whose results are

shown in next figures, Receiver 1 played the RTP data units with

a nominal rate of T1=48.78 data units per second, i.e., each data

unit was played during 20.5 ms; Receiver 2 played the RTP data

units with a nominal rate of T2=50.2 data units per second, i.e.,

each data unit was played during 19.9 ms; and Receiver 3 played

the RTP data units with a nominal rate of T3 = 45.45 data units per

second, i.e., each data unit was played during 22 ms.

4.1 Without the Group synchronization

approach
Figure 8 shows the consumption process of the RTP data units in

all the receivers throughout the session, with the group

synchronization mechanism disabled. In it, we can observe how

the asynchrony between the receivers is continuously increasing

due to the forced deviations in their playout rates.

In Figure 9, a zoom view of the left bottom corner of the previous

graphic is presented. We can notice how the playout processes of

the receivers were not synchronized at the Initial Playout Instant

without enabling our group synchronization approach.

Furthermore, we can appreciate in this graphic how faster receiver

(Receiver 2) advances in their RTP data units consumption

process to slower receivers (Receivers 1 and 3), despite the fact

that the playout processes of both slower receivers start before. It

was produced due to the random playout rate deviations (T2>T1>

T3) chosen for this simulation.

4.2 With the Group synchronization

approach
In this case, we enabled our group synchronization mechanism to

all the receivers by means of the enable-gs OTcl method

invocation. We also indicated to the RTP source the master

receiver selection algorithm to use. This was done by means of

the master-algorithm OTcl method invocation. In this command,

we set the master_alg_ variable value to 11, so slower (slave)

receivers (Receiver 1 and Receiver 3) took the playout point of

the faster (master) receiver (Receiver 2) as a the reference for

synchronization, because its playout rate was higher than the ones

of the slave receivers (T2>T1> T3).

In Figure 10, we can observe how slave receivers playout

processes were adjusted, at several points, to the master receiver

playout process as a reactive response to the action messages

(RTCP APP ACT packets) reception from the RTP source. In this

case, as a result of the ACT messages, slower receivers

accelerated their playout processes to synchronize to the playout

process of the fastest one (in continuous red line).

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Maximum deviation of

the Playout Process

%10 U

R
T

P
 D

at
a

U
n

it
s

Simulation Time (s)

0 5 10 15 20 25
0

100

200

300

400

500

600

700

800

900

1000

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Maximum deviation of

the Playout Process

%10 U

Maximum deviation of

the Playout Process

%10 U

R
T

P
 D

at
a

U
n

it
s

Simulation Time (s)

Figure 8. Receivers’ playout process without group

synchronization.

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
0

5

10

15

20

25

30

35

40

45

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Initial Playout

Instant

Maximum deviation of

the Playout Process

%10 U
R

T
P

 D
at

a
U

n
it

s

Simulation Time (s)

2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5
0

5

10

15

20

25

30

35

40

45

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Initial Playout

Instant

Maximum deviation of

the Playout Process

%10 U

Maximum deviation of

the Playout Process

%10 U
R

T
P

 D
at

a
U

n
it

s

Simulation Time (s)

Figure 9. Initial Playout Instant without group

synchronization.

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
0

5

10

15

20

25

30

35

40

45

50

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Receivers

Synchonization

R
T

P
 D

at
a

U
n
it

s

Simulation Time (s)

Maximum deviation of

the Playout Process

%10 U

2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7
0

5

10

15

20

25

30

35

40

45

50

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Receivers

Synchonization

R
T

P
 D

at
a

U
n
it

s

Simulation Time (s)

Maximum deviation of

the Playout Process

%10 U

Maximum deviation of

the Playout Process

%10 U

Figure 10. Receivers’ playout process with group

synchronization.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

In Figure 11, which is a zoom view of the the previous graphic,

we appreciate that all the receivers began their RTP data units

playout processes at the same time (Initial Playout Instant), as a

result of the initial phase of the group synchronization approach.

During the first minute of the simulation, 2869 RTP data units

were sent by the RTP source. Additionally, the source sent a

number of APP ACT messages that supposed around 2 %

regarding the total number of RTP data units it sent, including the

only one RTCP APP TIN message to communicate the Initial

Playout Instant. In our previous work [3], the number of RTCP

APP ACT packets only supposed 1,1 % regarding the total

number of RTP packets sent. The reason was because in the

present work, a RTCP APP ACT is sent when the source receives

the RTCP RR EXT packets from all the receivers, since the

async_ threshold value was set to 0 ms. In the real case, the RTCP

APP ACT were sent only if the source detected an asynchrony

exceeding a threshold value of 120 ms [3]. Additionally, during

the simulated session, each receiver sent around 190 RTCP RR

EXT control messages. It supposed around 6 % regarding the total

number of RTP data units sent by the source. The overload

generated by the synchronization approach consists of 192 bits of

each ACT packets and the 80 bits extension of each EXT RR

packets. Notice that the common part of RR packets is also sent

when the approach is not enabled. So, the overload introduced by

our approach is very low. Moreover, in this simulation, it is very

small compared to the 1000 Bytes of each RTP data unit sent by

the source.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a new module for NS-2 based on

RTP and RTCP standard protocols. On the one hand, we have

improved the native code in NS-2 for these protocols by including

all the functionalities specified in [2]. On the other hand, we have

included an optional functionality to this module in order to

achieve group synchronization between the RTP receivers

distributed in the simulated network. This group synchronization

approach was developed and tested in real WAN scenarios in a

previous work, [3].

One of the most important characteristics of our approach is that

the overload generated is very low because we do not define a

new protocol for synchronization purpose. Instead, we use

well-known protocols as RTP/RTCP and we take advantage of

their extension capabilities. We extended two types of RTCP

packets with useful information for synchronization purposes:

RTCP RR EXT and RTCP APP packets.

The proposed group synchronization solution has obtained

satisfactory results in our evaluation, which validates it as a

possible solution for multimedia applications which require group

synchronization.

For future work, we plan to adapt this code to make it valid for

Cluster-to-Cluster applications, in which one or more sources,

located in a sender cluster, transmit (point-to-multipoint or

multipoint-to-multipoint), in one-way, independent but

semantically related data streams to end systems distributed in

one or several receiver clusters. In this context, when there is

more than one receiver cluster, the source should know which

receivers belong to each receiver cluster and should perform the

synchronization calculations separately for each cluster, only

taking into account the feedback reports received from the

2.825 2.83 2.835 2.84 2.845

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Initial

Playout

Instant

Maximum deviation of

the Playout Process

%10 U

R
T

P
 D

at
a

U
n
it

s

Simulation Time (s)

2.825 2.83 2.835 2.84 2.845

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Receiver 1 Playout Process

Receiver 2 Playout Process

Receiver 3 Playout Process

Initial

Playout

Instant

Maximum deviation of

the Playout Process

%10 U

Maximum deviation of

the Playout Process

%10 U

R
T

P
 D

at
a

U
n
it

s

Simulation Time (s)

Figure 11. Initial Playout Instant without group

synchronization.

receivers of each cluster. Then APP ACT packets would be sent

only affecting each cluster separately.

We also have to improve this code to support multiple RTP

streams in the same node and to provide inter-stream

synchronization between them. In addition, we want to extend this

code to allow that a node can be a receiver and, at the same time,

an active sender to use it in bidirectional communications and to

be able to synchronize interactive services, such as network

games or collaborative work applications, etc.

Finally, the source code, its installation guides and simulation

examples will soon be available in the following URL:

http://personales.gan.upv.es/~fboronat/MultimediaGSynch.html

6. ACKNOWLEDGMENTS
This work has been financed partially by Polytechnics University

of Valencia (UPV) under its R&D Support Program in PAID-06-

08-002-585 and PAID-05-09-4335 Projects.

7. REFERENCES
[1] NS-2 Simulator. http://www.isi.edu/nsnam/ns

[2] Schulzrinne, H., Casner, S., Frederick R. and Jacobson V.

2003. RTP: A Transport Protocol for Real-Time

Applications. RFC-3550, July 2003.

[3] Boronat F., Guerri, J. C. and Lloret, J. 2008. An RTP/RTCP

based approach for multimedia group and inter-stream

synchronization, Multimedia Tools and Applications Journal,

Vol. 40 (2), pp. 285-319, 2008.

[4] Rangan, P. V., Ramanathan, S., Sampathkumar, S.,

“Feedback techniques for continuity and synchronization in

multimedia information retrieval” ACM Transactions on

Information Systems (TOIS), Vol. 13, Issue 2, April 1995,

pp 145 – 176, ISSN:1046-8188.

[5] Guerri, J.C., Esteve, M, Palau, C.E., Casares, V., “Feedback

Flow Control with Hysteresial Techniques for Multimedia

Retrievals”, Multimedia Tools and Applications, 13(3), pp.

307-332, 2001.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

[6] Carrascal, V., http://sertel.upc.es/_vcarrascal/ns2/, Grupo de

Servicios Telemáticos, Universidad Politécnica de Cataluña,

España.

[7] Bouras C., Gkamas A., and Kioumoutzis G. SIMUTools

2008. Extending the Funtionality of RTP/RTCP

Implementation in Network Simulator (NS-2) to support

TCP friendly congestion control.

http://ru6.cti.gr/ru6/ns_rtp_extensions.php

[8] Simek M., Komosny D., Burget R. 2007. One Source

Multicast Model using RTP in NS2. International Journal of

Computer Science and Network Security, Vol.7 No.11,

November 2007.

[9] Ishibashi, Y. and Tasaka, S. 1997. A group synchronization

mechanism for live media in multicast communications. In

Conf. Rec. IEEE GLOBECOM’ 97, pp. 746–752, November

1997.

Digital Object Identifier: 10.4108/ICST.SIMUTOOLS2010.8686
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2010.8686

