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Abstract

In this paper, we address the spectrum portfolio optimization (SPO) question in the context of secondary
spectrum markets, where bandwidth (spectrum access rights) can be bought in the form of primary and
secondary contracts. While a primary contract on a channel provides guaranteed access to the channel
bandwidth (possibly at a higher per-unit price), the bandwidth available to use from a secondary contract
(possibly at a discounted price) is typically uncertain/stochastic. The key problem for the buyer (service
provider) in this market is to determine the amount of primary and secondary contract units needed to satisfy
its uncertain user demand. We formulate single and multi-region spectrum portfolio optimization problems

as one of minimizing the cost of the spectrum portfolio subject to constraints on bandwidth shortage. Two

different forms of bandwidth shortage constraints are considered, namely, the demand satisfaction rate
constraint, and the demand satisfaction probability constraint. While the SPO problem under demand

satisfaction rate constraint is shown to be convex for all density functions, the SPO problem under demand

satisfaction probability constraint is not convex in general. We derive some sufficient conditions for convexity in this 
case. We also discuss application of the Bernstein approximation technique to approximate a non-convex demand 
satisfaction probability constraint by a convex constraint. The SPO problems can therefore be solved efficiently using 
standard convex optimization techniques. We then consider a discrete version of the SPO problem, in which the primary 
and secondary contracts can bought/sold in discrete units. We study the NP-hardness submodularity property of the 
discrete SPO problem and discuss a branch-and-bound algorithm to obtain the optimal solution for this problem. Finally, 
we perform a thorough simulation-based study of the single-region and the multiple-region problems for different choices 
of the problem parameters, and provide key insights regarding the portfolio composition, the efficiency of the Bernstein 
convex approximation technique, and the closeness of the optimal discrete spectrum portfolio solutions to their 
continuous approximations. We provide several insights about the scaling behavior of the unit prices of the secondary 
contracts, as the stochastic characterization of the bandwidth available from secondary contracts change.
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1. Introduction

The number of users of the wireless spectrum, as
well as the demand for bandwidth per user, has
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been growing at an enormous pace in recent years.
Since spectrum is limited, its effective management
is vitally important to meet this growing demand.
The spectrum available for public use can be broadly
categorized into the unlicensed and licensed zones.
In the unlicensed part of the spectrum, any wireless
device is allowed to transmit. To use the licensed part,
however, license must be obtained from appropriate
government authority – the Federal Communications
Commission (FCC) in the United States, for example –
for the exclusive right to transmit in a certain block of
the spectrum over the license time period, typically for
a fee. While spectrum management in licensed bands
has mostly been controlled by responsible government
bodies, the need for bringing market based reform in
spectrum trading is being increasingly recognized [1],
[2], [3]. In order to achieve spectrum-usage efficiency,
spectrum markets should allow dynamic trading of
spectral resources and derived contracts of different
risk-return characteristics. Providers can then choose
to buy/sell one or more of these spectrum contracts
depending on the level of service they wish to provide
to their customers.

We consider a spectrum market in which a wireless
service provider (buyer) can purchase spectrum access
rights from another provider (seller) in the form
of two types of spectrum contracts: primary contract
and secondary contract. Typically, the buyer will be a
smaller local or regional provider, buying access rights
over its operational area from a larger regional or
national provider which acts as the seller, although
the framework and results that we present in this
paper does not make any such assumption. Primary
contract offers unrestricted access rights on a channel
– a specific channel or one of a set of channels “owned”
by the seller. On the other hand, secondary contract
offers restricted access rights on a channel or a set
of channels – it provides access to the “leftover”
bandwidth on the channel(s) that the primary users
of the channel(s) do not need at that specific time. At
their core, primary and secondary contracts differ in
the risk-return tradeoff that they provide. A primary
contract represents a risk-free contract in terms of its
bandwidth return characteristics, while the secondary
contract is inherently risky in terms of the bandwidth it
can provide. Primary contracts would generally bemore
expensive (in terms of cost per unit contract), since
they provide full access rights. Secondary contracts
would typically be cheaper due to their riskiness. These
two contracts represent two fundamental forms of
spectrum access contracts – analogous to bonds and
stocks in terms of the risk characteristics. In financial
markets, it is well known that bonds and stocks help
investors achieve their desired risk-return tradeoff on
investment. Similarly, we envisage that the wireless
service providers can efficiently tradeoff the level of

service they wish to provide against their cost by using
these two types of contracts.

A key challenge for a provider in this market is
to determine an appropriate mix (i.e. a portfolio) of
primary and secondary contracts that can provide
the desired level of service to its users at a low
cost. We formulate and study this Spectrum Portfolio
Optimization (SPO) problem from the perspective of
a buyer. In standard financial portfolio optimization,
the objective is to maximize the expected portfolio
return while satisfying a constraint on the variance of
return. In the spectrum market context, minimizing
the cost of the portfolio is a more reasonable objective.
Furthermore, the constraint in the SPO problem can
be specified meaningfully in two ways – either in
terms of the expected bandwidth shortage, or in
terms of the probability of bandwidth shortage. We
refer to these constraints as the demand satisfaction
rate constraint and the demand satisfaction probability
constraint, respectively. We study the SPO problem
under the two constraints separately.

The technical contributions of this paper are as
follows. Firstly, we show that the SPO problem
under demand satisfaction rate constraint is convex
under any assumptions on the user demand and the
bandwidth return distributions. Secondly, we show
that the SPO problem under demand satisfaction
probability constraint is not convex in general, and
also derive sufficient conditions on the demand density
functions for convexity to hold. The motivation behind
showing convexity of the optimization problems is
that convex problems can be solved efficiently using
standard techniques such as gradient descent and
Newton’s methods, whereas there are no general
techniques for solving non-convex problems efficiently.
We also discuss application of the Bernstein convex
approximation technique in cases where the demand
satisfaction probability constraint is non-convex; this
technique approximates a non-convex probability
constraint by a convex expectation constraint. In
the next step, we extend the SPO problem and the
convexity results to a multiple-region scenario, where
the buyer’s portfolio is intended to serve a set of
disjoint geographical locations, each having its own
user demand, using available primary and secondary
contracts that provide access rights only over subsets
of all locations of interest. We then consider an
integer programming formulation of the SPO problem,
since the primary and secondary contracts can be
bought/sold only in discrete units in an operational
spectrum market. We show that the discrete SPO
problem is not only NP-hard, but the constraint
function in both versions is not submodular either. We
then discuss a branch-and-bound algorithm algorithm
to solve it efficiently (although the procedure is
naturally not polynomial time, given the NP-hardness
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of the problem). Finally, we perform a detailed
simulation-based study of the single and the multiple-
region SPO problems and provide insights about the
portfolio composition and the price characteristics of
the secondary contracts.

Broadly speaking, one of the main contributions of
the work is deriving sufficient conditions for convex-
ity of the SPO problem, which would ensure that
optimal solutions of the problem could be computed
in an efficient manner. We do not propose specific
algorithms/approaches for solving the SPO problems
for this case - any standard convex optimization algo-
rithm/toolbox could be used. For the case when the
SPO problem is non-convex, we apply and evaluate the
application of the Bernstein approximation (convexifi-
cation) method to the problem, which can be used in
solving the problem efficiently (albeit approximately).
The NP-hardness and non submodularity of the SPO
problem under discrete portfolio constraints make the
existence of polynomial or pseudo-polynomial solu-
tions to the discrete SPO problem extremely unlikely.
Yet, the branch-and-bound method outlined for that
case allows us to compute the optimal solution in
a manner that seems reasonably efficient in practice
(although not polynomial complexity).

Economics of spectrum allocation and auction
mechanisms have been discussed widely in the
literature [4], [5], [6], [7]. Spectrum sharing games
and/or pricing issues have been considered in [8],
[9], [10], [11]. Discussions and recommendations for
transition to spectrum markets and secondary markets
for spectrum trading have emerged [12], [13], [14].
In [14], the authors consider a spectrum secondary
market analogous to the stock market for dynamically
trading their channel holdings. The proposed auction-
based market mechanism is shown to improve user
performance and spectrum utilization. However, a clear
design of the contract types and tradeoff analysis using
portfolio theory have not been considered before. In
[15], the authors propose a wireless spectrum market
with two types of contracts, namely, the long-term
and the short-term contract, and study the structural
properties of the optimal dynamic trading strategy.
Unlike the short-term contract defined in [15], the
amount of bandwidth available for access from a
secondary contract is a random variable. Moreover,
the problem addressed in this paper is the spectrum
portfolio optimization question over a single period
and is different from the multi-period trading question
considered in [15]. The spectrum trading question has
also been addressed from game theoretic perspectives.
In particular, [16] analyzes the spectrum trading
problem between one primary and multiple secondary
users as a mechanism design question, and discusses
the feasibility of contract formation, and the properties
of the optimal contract. The authors in [17], on

the other hand, models and analyzes the spectrum
trading question as a non-cooperative evolutionary
game between multiple primary users (sellers) and
multiple secondary users (buyers).
Portfolio optimization problem has been studied

extensively in finance since the development of the
mean-variance optimization framework in [18]. Several
attempts have been made to improve the model and the
risk measure [19], [20], [21], [22]. In [22], the authors
propose a new measure of risk, namely, the expected
shortfall and show that the problem of minimizing
expected shortfall subject to a linear equality constraint
is convex. The expected shortfall function considered
in [22] measures the shortfall of return with respect
to the α-quantile of the return distribution. But the
demand satisfaction rate constraint that we consider
measures the shortfall of the bandwidth return relative
to a stochastic quantity, and is therefore different from
the shortfall function in [22]. However, we are still
able to make use of some of their analysis techniques
to our problem. Probabilistic constraints have not
been studied much, until recently in [23] and [24].
In [23], the authors study probabilistically constrained
linear programs and present conditions for convexity
of the constraint. While we apply some of their results
in our context, we also provide additional conditions
for convexity on the SPO problem with the demand
satisfaction probability constraint.
The novelty of our contribution stems from the

following aspects. Though the notion of primary and
secondary users and their spectrum access rights have
been extensively discussed recently, our modeling of
these access rights as bond-like riskless and stock-
like risky contracts, and the rigorous formulation
of the spectrum portfolio optimization problem, are
novel. Convexity of various versions of the portfolio
optimization question have been studied in the finance
and optimization literature; however, very limited
results exist on the specific demand satisfaction
constraints that appear meaningful in the spectrum
access context. We provide several interesting results
for the SPO problemwith such constraints in this paper.
The formulation and analysis of the multi-region SPO
problem, and the insights obtained from our numerical
studies, also constitute novel contributions of this work.
In recent years, spectrum regulatory agencies in

various countries across the globe have taken bold
steps towards fostering spectrum sharing/trading
in secondary spectrum markets. However, dynamic
spectrum markets, and active trading in such markets,
still remain in their infancy. As dynamic spectrum
trading across service providers picks up, the solutions
to the SPO problem that we provide here would
be useful to the spectrum service providers to
optimally balance their overall revenue with risk of
customer dissatisfaction. The solutions and algorithms
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we provide could be used by spectrum service providers
to determine howmany primary and secondary licenses
to purchase to attain its desired risk-return tradeoff
point. Other than providing convexity conditions,
we also provide convexification based approximation
algorithms for non-convex cases, and a method
for finding optimal portfolios under discreteness
constraints. Which of these results or algorithms are
useful for a spectrum service provider will depend
on the nature of the bandwidth demand and return
processes (which is expected to evolve over time), and
the constraints on the specific provider’s portfolio. In
this paper, we provide a broad set of results covering
different possibilities; a subset of these are likely to find
use in any specific spectrum portfolio planning context.

The rest of the paper is organized as follows. In
Section 2, we formally define the SPO problems under
demand satisfaction rate and probability constraints. In
Sections 3 and 4, we study the convexity of the two
SPO problems under the two types of constraints. In
Section 6, we consider a discrete version of the SPO
problem and study its submodularity properties. In
Section 5, we study the multiple-region SPO problem.
In Section 6, we study the SPO problem with discrete
portfolio constraints. Finally, in Section 7, we present
the simulation results.

2. Spectrum Portfolio Optimization Problem
Formulation

In this section, we formally define the spectrum
portfolio optimization (SPO) problem for a single
region. The formulation and discussion of the multi-
region SPO problem is deferred to Section 5. Although
not necessary for the mathematical formulation or
subsequent analytical treatment of the SPO problem, it
is easy to motivate the development of the framework
by considering a (secondary) spectrum market in
which N “higher level” spectrum providers are selling
access contracts in the form of primary and secondary
contracts to other “lower level” providers. These seller
spectrum providers will typically be large providers
(like VerizonWireless, AT&T, and Sprint in the US for
example) who have directly licensed spectrum from the
governing body (like FCC), and might want to offer
their excess bandwidth in the form of primary and
secondary contracts. The buyers of the contracts can
be smaller, possibly local or smaller regional wireless
spectrum service providers who are trying to obtain
bandwidth at the cheapest price to serve their user
(customer) demand. We assume that primary and
secondary contracts can be obtained in multiple units.
Without loss of generality, we can assume that each unit
of primary contract provides exclusive access to 1 unit
of bandwidth in some channel that the seller provider
operates on. On the other hand, each unit of secondary

contract provides exclusive access to bandwidth that
is a random variable varying between 0 and 1 unit.
While this assumption is for the ease of exposition, it
can be easily generalized. A simple way to view this
setting would be to consider a seller provider having
C units of bandwidth, offering C units of primary
and C units of secondary contracts. If in any time
slot, the primary contract holders in totality use α < C
units of bandwidth, each unit of secondary contract has
access to 0 < (C − α)/C < 1 units of bandwidth. A buyer
holding x units of secondary contracts with this seller
provider will then have access to x(C − α)/C units of
bandwidth in that time slot.

Note that we are associating contracts – primary
or secondary – with the seller providers, not specific
channels. All primary contracts (no matter which seller
provider provides it) can be considered equivalent,
since they offer the same bandwidth return (one unit,
guaranteed). This also argues for the fact that they
must be priced the same; without loss of generality, we
assume that the cost of one unit of any primary contract
is unity. Secondary contracts offered by different seller
providers will differ from one another, depending on
the access pattern of the primary members of the
seller provider, and their price per unit will also differ.
However, since each unit of secondary contract offers
an average return of less than one unit bandwidth, and
have some risk associated with the return, the price per
unit for each secondary contract should be less than
unity (the price of a unit of primary contract).

With this abstraction, the SPO problem can be viewed
in the context of a market where a single type of
primary contract, and N different types of secondary
contracts, are being offered.1 Each unit of primary
contract sold in the secondary spectrum market offers
guaranteed access to 1 unit of bandwidth at a cost of
1. The secondary contract offered by the provider i
can be described by the pair (pi , Bi ), where, pi is the
unit price of the secondary contracts offered by the ith

seller provider and Bi is the random variable (varying
between 0 and 1) characterizing the bandwidth return
from one unit of secondary contract of the ith provider.
From the above discussion, pi < 1,∀i.

In the following, we assume that each seller provider
has a large pool of available bandwidth, and so
any amount of primary or secondary contract units
can be bought from the providers. This is for ease
of exposition, and can be easily generalized by
incorporating into the SPO problem additional upper
bounds on the number of primary and secondary
contract units available from a seller provider.

1Note that the basic portfolio optimization question in financial
markets, while consideringmultiple risky (stock) assets, assumes only
a single risk-free (bond) asset, for similar reasons.
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Nowwe are ready to formally define the SPO problem
from the perspective of a single buyer provider. The
buyer’s objective is to create a spectrum portfolio
consisting of primary and secondary contract units
from the N seller providers in order to provide service
to its customer base. Let xi , 1 ≤ i ≤ N denote the
amount of secondary contract units purchased from the
ith seller provider. Since the primary contracts offered
by all the N providers are identical, we only need to
keep track of the total amount of primary contract
units bought, which we denote by x0. We assume
a relaxation that x0, x1, .., xN are non-negative real
numbers, not necessarily integers. Let the vector x =
(x0, x1, .., xN ), denote the buyer’s spectrum portfolio.
The buyer wishes to satisfy its customers’ demand
for bandwidth using the spectrum portfolio, x. The
customer demand is modeled as a random variable
Q, as it is often unknown in advance. The bandwidth
return or the actual units of bandwidth available from
a spectrum portfolio x, is uncertain, due to presence of
the secondary contracts. The bandwidth return of the
portfolio x, B(x), is defined as B(x) = x0 +

∑N
i=1 xi × Bi .

Since the bandwidth return and the demand
are stochastic, it is impossible or highly expensive
to construct a portfolio that always offers enough
bandwidth to satisfy the customer demand. However,
it is desirable to construct portfolios with low levels
of bandwidth shortage. Let us define S(x) = Q − B(x.
Then the bandwidth shortage of a portfolio, denoted
by S(x)+, is given as S(x)+ = max(S(x), 0) = max(Q −
B(x), 0). Note that the shortage, S(x)+, is also a stochastic
quantity as both Q and B(x) are random variables.

The spectrum portfolio optimization (SPO) problem
for the buyer is to find the least costly portfolio with
low levels of bandwidth shortage. The SPO objective is

minimize C(x) = x0 +
N
∑

i=1

xi × pi . (1)

The constraint on bandwidth shortage can be specified
either in terms of expected shortage or probability
of shortage. Therefore, we consider two versions
of constraints for the SPO problem – the Demand
Satisfaction Rate (DSR) constraint, and the Demand
Satisfaction Probability (DSP) constraint, as expressed
below:

DSR Constraint: E[S(x)+] < δ; (2)

DSP Constraint: Pr(S(x) > 0) < ǫ. (3)

Here C(x) = x0 +
∑N
i=1 xi × pi is the cost of the spectrum

portfolio x. The DSR constraint ensures that the
expected amount of bandwidth shortage is below a
certain acceptable level δ. On the other hand, the DSP
constraint bounds the probability of shortage to a low
value ǫ. Note here that Pr(S(x) > 0) is the same as

Pr(S(x)+ > 0). We devote the following sections to the
study of the SPO problem under these two types of
constraints.
An alternative formulation (version) of the problem

would have been to reverse the constraint and
objective functions. In particular, we could minimize
the bandwidth shortage probability (in expectation
or probability) subject to maximum limit on the
cost of the spectrum portfolio. The fundamental
complexity/computability of the optimal solution, does
not change with this reversal however, as the optimal
solution of one version of the problem could be
translated to the optimal solution of the other in
polynomial time. Furthermore, the main complexity of
the SPO problem comes from that of the non-linear
functions in (2) and (3), the function in (1) being is
a simple linear function. The main theoretical results
that we show in this paper - on the convexity of the
SPO problem under the DSR and DSP constraints - are
equally applicable to the alternative (reversed) version
of the problem as well.
Finally, note that our cost function in (1) assumes

that the price per unit bandwidth remains the same
irrespective of the quantity bought. In practice,
however, the per-unit price would vary with the
quantity bought. Since bandwidth is a limited quantity,
it is reasonable to assume that the marginal price
increases with the quantity purchased [25]. In other
words, if Pi (xi ) denotes the total price to be paid for
buying xi units of commodity, we can assume that Pi
is an increasing convex function in its argument. Then
the cost function in (1) can be written as C(x) = x0 +
∑N
i=1 Pi (xi ), which is a convex function. Therefore, in

that case too, the complexity of the problem is dictated
by that of the functions in the constraints (2) and (3),
which is what we address in this paper. For the sake of
simplicity, however, in the rest if the paper we assume
that Pi (xi ) is linear in xi , as given in (1).

3. SPO under Demand Satisfaction Rate (DSR)
Constraint

In this section, we study the properties of the SPO
problem under demand satisfaction rate constraint, and
provide the expressions for certain useful quantities
that can be utilized to compute the optimal portfolio
solution efficiently. The objective function of the SPO
problem (Equation 1) is linear and therefore convex.
The demand satisfaction rate function (i.e. E[S(x)+]),
however, is non-linear in x. Borrowing from the analysis
techniques in [22], we show below that E[S(x)+] is
also convex in x. This implies that the feasibility set
represented by the DSR constraint (Equation 2) is also
convex, and therefore the SPO problem under DSR
constraint is a convex problem.

Theorem 1. E[S(x)+] is convex in x.
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Proof: We show that the Hessian of the function
E[S(x)+] is positive semi-definite. We obtain the
gradient and Hessian of E[S(x)+] as follows.

Let g(x) = E[S(x)+] = E[S(x) × I(S(x) > 0)], where I(·)
is an indicator function and S(x) = Q − (x0 +

∑N
i=1 xi ×

Bi ). Also let random vector B = [B1 B2 ... BN ]. We first

obtain
∂g(x)
∂xi

, for i = 1 to N . Given i, define u = Q − x0 −
∑

j,i xj × Bj and v = Bi .
2 Note that S(x) = u − xiv. Now,

g(x) =

∫ ∞

0

∫ ∞

xiv
(u − xiv)fU,V (u, v)dudv,

where fU,V denotes the joint density function of the
random variables U and V .

∂g(x)

∂xi
=

∂

∂xi

∫ ∞

0

∫ ∞

xiv
(u − xiv)fU,V (u, v)dudv

=

∫ ∞

0

∫ ∞

xiv
(−v)fU,V (u, v)dudv

= −E[Bi × I(S(x) > 0)]. (4)

∂g(x)
∂x0

can be obtained similarly by defining u = Q −
∑

j xj × Bj .

∂g(x)

∂x0
=

∂

∂x0

∫ ∞

u=x0

(u − x0)fU (u)du

=

∫ ∞

u=x0

(−1)fU (u)du

= −E[I(S(x) > 0)]. (5)

In the above, fU denotes the density function of the
random variable U . We next obtain the Hessian of
the shortfall constraint, i.e. ∇2g(x), using a similar

approach. First, we find
∂2g(x)
∂xk∂xi

, where k , i and k, i ≥ 1.

Define u = Q − x0 −
∑

j,i,k xj × Bj , v = Bk , w = Bi , which
have the joint density fU,V ,W (., ., .). Now, S(x) = u −
xkv − xiw and

∂g(x)

∂xi
=

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

wI(S(x) > 0)fU,V ,W ()dudvdw.

∂2g(x)

∂xk∂xi
=

∂

∂xk

∫ ∞

0
w

∫ ∞

0

∫ ∞

xkv+xiw
fU,V ,Wdudvdw

= fS(x)(0)E[BiBk |S(x) = 0]

2Note that the variables u and v depend on i; we drop the suffix i for
simplicity of notation.

∂2g(x)

∂x20
can be obtained by defining u = Q −

∑

j,k xj × Bj ,

w = Bk , for some k.

∂2g(x)

∂x20
= −

∂

∂x0

∫ ∞

−∞

∫ ∞

x0+xkw
fU,W (u,w)dudw

= −

∫ ∞

−∞

(−1)fU,W (x0 + xkw,w)dw

= fS(x)(0)

∫

fB|S(x)(b|0)db = fS(x)(0),

where fB is the joint density function of the bandwidth

return vector B. Similarly, we can show that:
∂2g(x)
∂x0∂xk

=

fS(x)(0)E[Bk |S(x) = 0] and
∂2g(x)

∂x2k
= fS(x)(0)E[B

2
k |S(x) = 0].

Thus, the Hessian of the constraint can be written as,

∇2g(x) = fS(x)(0) × E[AA
T
|S(x) = 0], (6)

where A = [1 B1 B2 ... BN ]
T .

Since fS(x)(0) ≥ 0 and E[AA
T
|S(x) = 0] is positive

semi-definite, ∇2E[S(x)+] is also positive semi-definite.
Therefore, E[S(x)+] is convex.

4. SPO under Demand Satisfaction Probability
(DSP) Constraint

Next, we study the convexity properties of the SPO
problem under the DSP constraint. We first show
that the DSP constraint is non-convex, without any
assumptions on the distribution of the demand Q and
the bandwidth return variables Bi . Later, we present the
conditions under which the constraint and therefore the
SPO problem becomes convex.

4.1. Non-convexity of SPO

We present an example where the feasible set
of the SPO problem under the DSP constraint
(Equation 3) is non-convex. Consider a simple case,
when there are two secondary contracts, i.e N =
2. Let the B1 and B2 be uniformly distributed
between 0 and 1. Let Q have a triangular density
function given by, fQ(q) = 2 × q, 0 ≤ q ≤ 1. Note that
Pr(S(x) > 0) = Pr(B(x) < Q), where S(x) = Q − B(x) and
B(x) = x0 +

∑N
i=1 xi × Bi . Consider the portfolio vectors

x1 = (0, 1, 0), x2 = (0, 0, 1). We have Pr(S(x1) > 0) =
Pr(B1 < Q) = 2

3 = Pr(S(x2) > 0). Choose ǫ = 0.67, and
denote the feasibility set by X0.67 = {x : Pr(S(x) > 0) <
0.67. We see that x1, x2 ∈ X0.67. However, for the
convex combination, x3 = 1

2 × x1 +
1
2 × x2, Pr(S(x3) >

0) = Pr(12 × B1 +
1
2 × B2 < Q) = 17

24 > 0.67. That is, x3 <
X0.67. So, the feasibility set is not convex in general.

4.2. Conditions for convexity

For a given ǫ, denote the feasibility set (from (3))
by Xǫ = {x : Pr(S(x) > 0) < ǫ}. Using existing literature,
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we derive sufficient conditions for convexity of the
feasibility set Xǫ.

Theorem 2. Xǫ is convex if any of the following conditions
hold:

(a) The random vector B = [B1 B2 ...BN ]
T and the

demand Q have log-concave and symmetric
density functions, and 0 ≤ ǫ ≤ 0.5.

(b) The random vector −B = [B1 B2 ...BN ]
T and the

demand Q have a joint normal distribution, and
0 ≤ ǫ ≤ 0.5.

(c) If the CDF of the demand, FQ, is a concave
function.

Proof of part a:We invoke the results from [23] to show
this. From [23], we know that the function Pr(xT a <
b) is quasi-concave, if the joint density function of
the random vector a and the random variable b are
log-concave and symmetric. This result readily applies
to our case, by rewriting the constraint (Equation
3) as Pr(−B(x) < −Q) ≥ 1 − ǫ. Specifically, the function
Pr(−B(x) < −Q) is quasi-concave if the joint density
of the random vector B and Q are log-concave and
symmetric. This implies that the feasibility set Xǫ = {x :
Pr(−B(x) < −Q) ≥ 1 − ǫ}, is convex.

Proof of part b:We invoke the results from [26] to show
this. From Theorem 3 of [26], we know that the set Xǫ =
{x : Pr(xT a < b) ≥ p} is convex, if the density function of
the random vector a and the random variable b is jointly
normal. This result can be applied by rewriting the DSP
constraint (Equation 3) as Pr(−B(x) < −Q) ≥ 1 − ǫ.

We also derive another condition for convexity, which
only requires a non-increasing assumption on the
distribution function of Q, and none on the bandwidth
return variables Bi .

Proof of part c: Consider portfolios y =
(y0, y1, y2, ..., yN ), and z = (z0, z1, z2, ..., zN ).

Let x = λy + (1 − λ)z. Now,

Pr(S(x) > 0) = Pr(S(λy + (1 − λ)z) > 0)

=

∫

b
fB(b)P(Q > x0 +

N
∑

i=1

xi × bi )db

=

∫

b
fB(b)(1 − FQ(x0 +

N
∑

i=1

xi × bi ))db.

Here FQ is the distribution function of the demand Q.
Now, x0 = λy0 + (1 − λ)z0 and xi = λyi + (1 − λ)zi .

Pr(S(x) > 0) =

∫

b
fB(b)(1 − FQ(λy0 + (1 − λ)z0

+

N
∑

i=1

(λyi + (1 − λ)zi ) × bi ))db.

=

∫

b
fB(b)(1 − FQ(λ(y0 +

N
∑

i=1

yibi )

+(1 − λ)(z0 +
N
∑

i=1

zi × bi )))db.

If FQ is a concave function we get the inequality,

Pr(S(x) > 0) ≤

∫

b
fB(b)(1 − λ × FQ(y0 +

N
∑

i=1

yibi )

+(1 − λ)FQ(z0 +
N
∑

i=1

zi × bi ))db

=

∫

b
fB(b)(λ + 1 − λ − λ × FQ(y0 +

N
∑

i=1

yibi )

+(1 − λ)FQ(z0 +
N
∑

i=1

zi × bi ))db

= λ

∫

b
fB(b)(1 − FQ(y0 +

N
∑

i=1

yibi ))db

+(1 − λ)

∫

b
fB(b)(1 − FQ(z0 +

N
∑

i=1

zibi ))db

= λPr(S(y) > 0) + (1 − λ)Pr(S(z) > 0) (7)

From Theorem 2 (c), it also follows that Pr(S(x) > 0) is

convex if f
′

Q ≤ 0 everywhere. ✷

It can be shown that the gradient of the DSP
constraint, Pr(S(x) > 0), is given by,

∂Pr(S(x) > 0)

∂x0
= −fS(x)(0),

∂Pr(S(x) > 0)

∂xk
= −fS(x)(0) × E[Bk |S(x) = 0].

We use the above expressions, when we solve the SPO
problem numerically in Section 7.
Theorems 2(a) and 2(b) covers important distribu-

tions such as the Gaussian, log-normal, and the uniform
density functions (both B andQmust follow some sym-
metric, log-concave distribution, although they need
not be the same distribution). Theorem 2(c) covers
concave and other asymmetric decreasing density func-
tions for Q that are not included in Theorem 2(a) (the
distribution of B can be arbitrary).
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Remark 1: Let N = 1. If Q is deterministic, then the
DSP constraint reduces to a linear constraint. In this
case, the optimal portfolio consists of entirely primary
or entirely secondary contracts. The optimal portfolio

is (Q, 0), if ǫ < FB1(p1) and (0, Q

F−1B1
(ǫ)

), if ǫ >= FB1(p1),

where FB1 is the cumulative distribution function of B1.
Figure 1a shows the empirical distribution (cumu-

lative) of the total daily traffic of a Verizon Wi-Fi
HotSpot network from [27]. Note that the shape of the
cumulative distribution function matches well with a
concave distribution function also shown in the figure.
The concave function used for fitting is 1 − e−0.4(x−7.9).
Similarly, Figure 1b shows the traffic distribution of
a large US-based cellular network (Refer Figure 1a of
[28]). Here, we see that the cellular traffic distribu-
tion can be approximated by a log-normal distribution.
From Theorem 2, we know that the SPO problem is
convex if the distribution function for the demand is
concave or log-normal. Therefore, we can formulate the
SPO problem for empirical distributions as a convex
programs and study the nature of optimal portfolio,
after approximating the empirical distributions with
concave or log-normal distributions.

4.3. Convex Approximation

In practice, the demand and bandwidth return
distributions may not satisfy the properties stated in
Theorem 2, leading to the DSP constraint being non-
convex. The SPO problem under the DSP constraint
is also non-convex in such cases. However, several
approximation techniques (inner as well as outer)
have been developed in order to approximate a non-
convex probability constraint to a convex contraint.
In this paper, we specifically consider the Bernstein
approximation technique developed in [24].
Bernstein approximation finds a convex inner

approximation to the original probability constraint
such that it is computationally tractable. The probabil-
ity of shortage is upper bounded by the expected value
of a (suitably defined) function of the shortage. The
(non-convex) probability constraint is then replaced by
a (convex) expectation constraint. The SPO problem
under Bernstein approximation can be stated as,

minimize
x,t>0

C(x) = x0 +
N
∑

i=1

xi × pi

subject to inf
t>0

[Ψ(x, t) − tǫ] ≤ 0

where Ψ(x, t) = tE
[

ψ(t−1S(x̄))
]

and ψ : R → R is a

non-negative valued, non-decreasing convex function
(called the generating function) such that ψ(z) > ψ(0) = 1
for any z > 0. We consider two generating functions -
a piecewise linear generating function ψ(z) = [1 + z]+,
and the exponential generating function ψ(z) = ez. Note

that ǫ is the bound on demand shortage probability
(Equation 3).

5. SPO over Multiple Regions

Spectrum contracts typically come with clauses that
restrict the use of the spectrum to certain geographical
regions. This could be due to licensing or coverage
limitations of the seller provider. For example, a
seller provider may only have the license to use a
part of the spectrum in certain regions (say certain
counties or states in the United States), and not others.
Alternatively, the base stations of the seller provider
may only cover certain sub-areas of the overall area
of interest to the buyer, which can span multiple
regions. This adds additional complexity to the SPO
problem, since the spectrum portfolio should satisfy the
buyer provider’s requirements for each of these regions.
In this section, we formulate the SPO problem over
multiple regions and argue that the results for the single
region problem extend to multi-region case as well.
Let us assume that the buyer of spectrum contracts

operates over a set of K disjoint geographical regions.
The buyer’s objective is to construct a portfolio of
spectrum contracts in order to satisfy the user demand
in each of the K regions. Denote the set of regions by
R, i.e, R = {1, 2, .., K}. Let there be M primary and N
secondary contracts in the market. Let zi , pj denote

the unit price of ith primary contract and j th secondary
contract, respectively. LetR

p
i ⊂ R, 1 ≤ i ≤M denote the

set of regions in which the ith primary contract is valid.
Similarly, letRsj ⊂ R, 1 ≤ j ≤ N denote the set of regions

in which the j th secondary contract is valid. The user
demand for each region is uncertain, denoted by the
random variable Qk , 1 ≤ k ≤ K .
The multi-region SPO problem under DSR constraint

can be stated as follows:

Minimize C(x) =
M
∑

i=1

yi × zi +
N
∑

j=1

xj × pj , (8)

E[{Qk −
∑

i∈C
p
k

yi −
∑

j∈Csk

xj × Bjk}
+] < δk ∀k, (9)

E[
K
∑

k=1

{Qk −
∑

i∈C
p
k

yi −
∑

j∈Csk

xj × Bjk}
+] < δ. (10)

Here {y1, ..., yM , x1, ..., xN } denotes the spectrum portfo-

lio. C
p
k and Csk denote the set of primary and secondary

contracts that are valid in the kth region (1 ≤ k ≤ K),
respectively. C

p
k and Csk can be obtained from R

p
i , 1 ≤

i ≤M and Rsi , 1 ≤ j ≤ N . Note that C
p
k ⊂ {1, 2, ..,M} and

Csk ⊂ {1, 2, .., N }. The random variable Bjk represents the

bandwidth return of the j th secondary contract in the
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Figure 1. a) Empirical distribution of traffic from a Wi-Fi hotspot along with a concave fit, b) Empirical distribution of cellular traffic

with a log-normal fit.

kth region. For the multiple region problem, there are
totally K + 1 inequality constraints; one DSR constraint
for each of the K regions and one overall DSR constraint
for all the regions. The LHS of the (K + 1)th constraint
is simply the summation of the LHS of the first K
constraints. However, note that

∑K
k=1 δk > δ, else the

last constraint would be redundant; typically, the buyer
provider may want to have δk > δ/K, for each k. The
motivation of both types of constraints (per-region as
well as overall) is as follows. While the buyer provider
would be interested in the ensuring a certain DSR over
its overall customer base, it may also want to ensure a
certain DSR (possibly a smaller normalized DSR than
the overall DSR) is ensured in each of its regions of
operation, to avoid excessive customer dissatisfaction in
each individual region. The SPO problem under DSP
constraint can be defined similarly as above, but by
replacing the expectation constraints with the corre-
sponding probability constraints, and δk and δ by ǫk
and ǫ, respectively.

For both the SPO problems, we see that the kth

constraint (1 ≤ k ≤ K) is similar to the constraint for
the single region problem ((2) and (3)) except for the
presence or absence of few variables inside the two
summations. First, consider the SPO problem under
DSR constraint (8-(10)). Let the kth rate constraint be
denoted by gk ; gk involves only some of the yi and xj
variables. It can be rewritten as,

E[{Qk −
∑

1≤i≤M

yi × I(i ∈ C
p
k ) −

∑

1≤j≤N

xj × B
′

j }
+] < δk ,

(11)

where B
′

j = Bjk , if j ∈ C
s
k , else B

′

j = 0. I(i ∈ C
p
k ) is the

indicator function for the set C
p
k . Now, the proof

technique for the single-region problem can be readily

extended to show that gk is convex in yi , xj . The final
constraint (gK+1) is also convex, since it is the sum of
several convex functions. Therefore, the feasible set for
this problem is convex, since the intersection of several
convex sets is convex. Similarly, the feasible set for the
multiple-region SPO problem under DSP constraint is
also convex, if the density functions of all the random
parameters involved are log-concave and symmetric, or
the demand variables Qk have non-decreasing density
functions.

6. SPO under Discrete Portfolio Constraints

In practice, the primary and secondary contracts
can be bought and sold only in discrete units. In
such scenarios, the SPO problem is represented as a
discrete (or integer) program. Despite the discreteness
(integrality) requirements in the variables, discrete
(integer) programs derived from convex problem can
often be solved efficiently [29]. That is however not
the case with the SPO problem as we argue in this
section. We will first argue that the SPO problem is NP-
hard. We then argue that it is not submodular either.
These results essentially imply that it is unlikely that
an efficient solution to the SPO problem exists when
the allocations are constrained to take a discrete set of
values.

6.1. Complexity of SPO under Discrete Portfolio
Constraints

NP-hardness of discrete-SPO (both under DSR and DSP
constraints) can be established by reduction from the
NP-hard Knapsack problem. Next, let us assume that
the portfolio x is constrained to be an integer vector.
Now let us consider the special case where the return
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from all secondary contracts, Bi , as well as the customer
demand, Q, are deterministic. Then the DSR constraint
(2) reduces toQ − x0 −

∑N
i=1 xi × Bi < δ, or x0 +

∑N
i=1 xi ×

Bi > Q − δ. In the same setting, the DSP constraint
(3) becomes x0 +

∑N
i=1 xi × Bi > Q. The problem of

minimizing the objective in (1) subject to constraint
(2) or (3) is then equivalent to the minimization
version of the unbounded Knapsack problem [30]. In
the minimization version of the Knapsack problem,
the objective of the standard (maximization version)
Knapsack problem is replaced by minimization, and
the inequality in the constraint is reversed. Since the
minimization version of the Knapsack problem can be
transformed into an equivalent maximization version
in polynomial time, and the maximization version
(standard) unbounded Knapsack problem is known to
be NP-hard [31], it follows that the integral versions of
the DSR and DSP problems are NP-hard as well.

In the discrete domain, the equivalent of convexity
is the submodularity property. For minimization of
submodular functions under integrality constraints,
efficient algorithms exist (that can attain a solution in
pseudo-polynomial time, for example) [29]. However,
we show next that the DSR and DSP constraints are not
submodular.

Consider a function g(x) : Zn → R. From Theorems
7.7, 7.20, and 7.21 of [29], the function g is submodular
if and only it satisfies the discrete midpoint convexity
defined below:

g(p) + g(q) ≥ g(
⌈

p + q

2

⌉

) + g(
⌊

p + q

2

⌋

), For any p,q ∈ Zn

(12)

Theorem 3. The probability of shortfall Pr(S(x) > 0) and
the expected shortfall E[S(x)+] are not submodular.

Proof: We provide counter examples demonstrating
that both the probabilty of shortfall as well as expected
shortfall violate the discrete midpoint convexity
property.

Consider the case where there is a single primary
and a single secondary contract. Also, consider the
DSR function, g1(x : E(S(x)). Let the demand Q and the
bandwidth return B1 be deterministic. Note that the
DSR constraint is convex for any probability density
function. Let Q = 5 and B1 = 1.

Consider portfolios p = (1, 4) and q = (4, 1). Now,

g1(p) = E[max(Q − 1 − 4 × B1, 0)] = 0,

g1(q) = E[max(Q − 4 − 1 × B1, 0)] = 0

But,

g1(
⌈

p + q

2

⌉

) = g1((3, 3)) = E[max(Q − 3 − 3 × B1, 0)] = 0,

g1(
⌊

p + q

2

⌋

) = g1((2, 2)) = E[max(Q − 2 − 2 × B1, 0)] = 1

Thus, we find that the discrete midpoint convexity is
violated.
Next, consider the DSP function g2(x : Pr(S(x) > 0).

As before let B1 be deterministic with a value of 1.
However, let Q be uniformly distributed U (0, 5). These
density functions satisfy sufficient conditions for the
convexity of the DSP constraint. Now, it can be quickly
calculated that,

g2(p) = g2(q) = 0,

g1(
⌈

p + q

2

⌉

) = 0, g1(
⌊

p + q

2

⌋

) = 0.2

Thus, we find the DSP function also violates the discrete
midpoint convexity condition for submodularity.
In view of the above negative results on the

efficient computability of the discrete-SPO problem,
we discuss a branch-and-bound algorithm for solving
the problem. The same dynamic problem algorithm
is used to compute solution to the SPO problem
under discreteness constraints in our evaluation section
(Section 7). It is worth noting that application of
dynamic programming to solve similar problems have
been discussed in prior literature. In particular, the
integral-SP problem under the DSP constraint is closely
related to the stochastic Knapsack problem, for which a
dynamic programming solution approach is described
in [32]. In the stochastic Knapsack problem as discussed
in [32], objective and contraint functions are reversed:
the non-linear shortage probability function is set as
the objective, while the linear cost function constitutes
a constraint. In the following section, we describe a
branch-and-bound algorithm that is tuned to the two
versions of the SPO problem that we consider in this
paper.

6.2. Branch and Bound Algorithm for DSR and
Convex DSP under Discrete Portfolio Constraints

We provide a branch-and-bound algorithm to solve the
DSR and the convex DSP problem under discrete port-
folio constraints, which was also used in Section 7 to
evaluate our solutions under discreteness constraints on
the spectrum portfolio. The basic idea behind branch-
and-bound algorithms for solving mixed-integer non-
linear programs (MINLP), is to relax the integrality
restrictions on the original problem. If the solution to
the relaxed problem is integral, then this is solution
to original problem. However, if some variables (say
y) are non-integers, then two sub-problems are created
by adding bounds y ≤ [y] and y ≥ [y] + 1 (where [y] is
the largest integer not greater than y). The process is
repeated until an integer solution is found. For convex
MINLPs, several global optimization algorithms have
been proposed. In this paper, we implement the algo-
rithm proposed in [33] by adapting it to our prob-
lem context. In [33], the authors solve a sequence of
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quadratic programming problems before branching; it
is not required that the quadratic problems at the inter-
mediate stages be solved optimally. The SPO problem
(when the discreteness constraints are relaxed) can be
stated as,

P: minimize C(x) (13)

subject to: g(x) − α ≤ 0,

x ∈ S ,

where C(x) = x0 +
∑N
i=1 xi × pi is the porfolio cost,

and g(x) represents expected shortfall (E[S(x)+]) or
probability of shortfall (Pr(S(x) > 0)), for the DSR and
DSP problems, respectively. α = δ for the DSR problem
and α = ǫ for the DSP problem. The set S does not take
into account the discrete (integrality) assumptions on
the portfolio.

Then the branch and bound algorithm requires solv-
ing the following quadratic program (QPk) iteratively,
so as to divide the original problem into sub-problems:

QPk : minimize C(k) + ∇C(k)T d +
1

2
d
T
W (k)d (14)

subject to: g (k) + ∇g (k)
T
d ≤ 0,

C(k) + ∇C(k)T d ≤ Ubb − θ,

x(k) + d ∈ Ŝ ,

where C(k) = C(x(k)) and W (k) = ∇2C(k) + λ∇2g (k). Ŝ
denotes the feasibility set after adding bounds for
non-integral solution variables. Ubb denotes current
uppper bound on the objective function and θ
denotes the optimality tolerance of the branch-and-
bound algorithm. Intially, Ubb is set to ∞ and
updated whenever an integer solution is found at an
intermediate step.QPk is solved to obtain the increment

d from the current solution (x(k)).

For the SPO problem, ∇C(k) = [1 p1 p2... pN ]
T and

∇2C(k) = 0. For the DSR constraint, the gradient (∇g (k))
and the hessian (∇2g (k)) can be found using Equations
(5), (4), and (6). For the DSP constraint, the gradients
can be written as,

∂Pr(S(x) > 0)

∂x0
= −fS(x)(0)

∂Pr(S(x) > 0)

∂xk
= −fS(x)(0) × E[Bk |S(x) = 0]

= −

∫

w × fU,W (x0 + xkw,w)dw,

where U = Q −
∑

j,k xjBj . The Hessian of the probabil-
ity of shortfall, Pr(S(x) > 0), can be computed (approx-
imately) numerically, using the above equations.

7. Numerical Evaluation

We numerically solve the SPO problems using Matlab
to study the characteristics of the spectrum portfolio
in a wide range of scenarios. Our goal is to examine
how the parameters of the problem, namely, the
price of the secondary contracts, the bandwidth return
distributions, and the constraints (ǫ, δ) influence the
portfolio composition. The results for the single-region
SPO problems are presented in sections 7.1 and 7.2,
while the results for the multiple-region problem are
presented in section 7.3.

7.1. Single Primary and Single Secondary contract

We first consider the simplest case of there being a
single secondary contract seller in the market. The
bandwidth return B1 and the demand Q are assumed
to have truncated normal distributions. B1 has a mean
of 0.5, while the demand Q has a mean of 1.5. The
distribution of Q is restricted to the interval [0, 3]. We
obtain optimal portfolio when the key parameters of the
problem (ǫ, δ, p1) are changed.
Figure 2a shows the spectrum portfolio composition

for different choices of the DSR constraint (δ) and
DSP constraint (ǫ), respectively. The unit price of
the secondary contract, p1 = 0.25. In the figure, xE =
{xE0 , x

E
1 } and x

P = {xP0 , x
P
1 } denote the portfolios for SPO

problems with DSR and DSP constraints, respectively.
As expected, when δ = ǫ = 0, we observe that the
portfolio consists of primary contract units only. This
is due to the fact that the secondary contracts having
stochastic returns introduce bandwidth shortage (or
demand violation) even if they are bought in large
quantities. Moreover, the number of primary contract
units in both the cases is equal to the maximum possible
demand (i.e 3). As the constraint (ǫ, δ) is relaxed,
we find that the number of primary contract units
reduces sharply until it becomes zero. On the other
hand the number of secondary contract units (xE1 , x

P
1 )

increases initially, but starts decreasing as soon as the
number of primary contract units becomes zero. This
can be explained as follows: As the constraint (ǫ, δ) is
increased from zero, it becomes unnecessary tomeet the
demand with probability one. Therefore, total cost of
the portfolio can be reduced, by reducing the number
of primary contract units, while adding the requisite
amount of secondary contract units to keep the demand
violation below the desired value. This happens until
the number of primary contract units becomes zero.
Beyond this point, the only way to reduce the cost is to
reduce the number of secondary contract units, which
can be reduced as ǫ, δ increase.
In Figure 2a, we assume that the primary demand

Q and the bandwidth return B1 are independent. We
know that a secondary contract provides access to
unused or leftover channels with the seller provider.
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Figure 2. Number of primary (xE0 , xP0 ) and secondary (xE1 ,xP1 ) contract units in the optimal portfolio for the SPO problem under

DSR and DSP constraint. a) Demand and the secondary bandwidth return are independent, b) Demand and the bandwidth return are

correlated.

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

ε / δ

P
o

rt
fo

lio

 

x
0

E

x
1

E

x
1

P

x
1

P

(a)

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

ε / δ

P
o
rt

fo
lio

 

x
0

E

x
1

E

x
1

P

x
1

P

(b)

Figure 3. Primary (xE0 , xP0 ) and secondary (xE1 ,xP1 ) contract units in the SPO when demand and bandwidth distributions are modeled

as beta distributions. a) Demand and secondary bandwidth return are independent, b) Demand and bandwidth return are correlated

with degree of correlation being 0.5.

Therefore, the bandwidth return of the secondary
contract would be negatively correlated with the
seller’s own customer demand. Moreover, the traffic
demand of different providers would have similar
temporal characteristics. Hence, we can expect negative
correlation between the buyer’s own demand Q and
the bandwidth return B1. Figure 2b shows the optimal
portfolio composition for the SPO problem under DSR
and DSP constraint. The degree of correlation between
Q and B1 was set to 0.5. Note that the overall trend
in portfolio remains similar Figure 2a. Later in this

section, we vary the degree of correlation and observe
the changes in portfolio composition.

In Figures 3a and 3b, we use beta distribution to
model the demand (Q) and bandwidth return (B1).
Some recent studies ([34], [35]) have shown that the
channel occupancy probability due to primary users
can be accurately modeled using beta, or the closely
related kumaraswamy distributions. Therefore, next we
model the demand (Q) using a beta distribution,
since the channel occupancy probability is directly
proportional to the primary user demand. Since
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Figure 4. SPO solution for empirical and fitted distributions under DSP constraint. a) Number of primary and secondary contract

units in the optimal portfolio, b) Portfolio cost.

the secondary bandwidth return is essentially the
probability of the channel not being occupied, we
set B1 = 1 − Y , where Y is a random varible with
beta distribution. The shape of the beta distribution is
governed by its parameters α and β. Therefore, the
DSP constraint is not convex for all choices of α and
β. However, it can be shown that the DSP constraint
satisfies Theorem (c), if we choose α = 1 and β > 1 for
the beta distribution governing the demand Q. For the
results shown in Figure 3a and 3b, we chose α = 1 and
β = 2 for the beta distributions underlying both the
demand as well as the bandwidth return. Morevoer,
we solved the SPO problems when the demand and
bandwidth return are independent as well as correlated.
It can be seen that the general nature of results is similar
to the gaussian distribution results.

Empirical distributions:Next, we study the sensitiv-
ity of the portfolio composition to changes in the dis-
tribution of the demand (Q) and the bandwidth return
(B1). We obtain the empirical distribution of the total
daily traffic of a Verizon Wi-Fi HotSpot network from
[27] (Refer to Figure 12 of [27]) and consider this distri-
bution for the user demand Q. From this, we compute
the distribution of B1 as fB1(b) = fQ(β(1 − b)), 0 ≤ b ≤ 1,
since bandwidth availability is related negatively to the
user demand (the scaling factor β is used for normal-
ization). For these empirical distributions, the results
for SPO problem under DSP constraint are shown in
Figures 4a and 4b. For comparison, we also solve and
plot the SPO problem with Q modeled as gaussian and
exponential concave distribution that approximate the
empirical distribution. Refer Figure 1a for the concave

disctribution. In both cases, the distribution for B1 is
obtained as as fB1(b) = fQ(β(1 − b)). The SPO problem
under DSP constraint is convex when distribution of Q
is concave. Some small differences notwithstanding, we
see from Figure 4a that the general trend in the optimal
portfolio composition for the empirical and fitted dis-
tributions is the same. Similarly, Figure 4b shows that
the optimal portfolio cost for the empirical and fitted
distributions are close to each other for higher values
of ǫ. Additionally, we ran simulations with uniform
distribution and observed similar results. Therefore, in
the following we only present the results for (truncated)
Gaussian distributions.
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Figure 5 shows the effect of unit price of the
secondary contract on the portfolio. The simulation
parameters for this figure are same as the ones chosen
for Figure 2a. But, we now fix ǫ and δ at 0.1, and
increase the price of the secondary contract p1. As
p1 is increased from 0 to 1, the spectrum portfolio
composition gradually changes from those with entirely
secondary contract units to those with entirely primary
contract units. The transition in this case happens when
p1 = 0.5. For prices between 0.1 and 0.5, the portfolio
has amix of primary as well as secondary contract units.
Since the mean bandwidth return of the secondary
contract is 0.5, we find that buying secondary contract
units make sense only when their price is roughly half
the price of the primary contract (i.e. 1 × 0.5).

Effect of Correlation: Figure 6 shows the effect
of correlation (negative) between the demand Q and
the bandwidth return B1 of the single secondary
contract. Q and B1 have truncated and jointly gaussian
distribution. We obtain the portfolio composition for
increasing negative correlation between Q and B1.
When the correlation is high, the bandwidth available
from the secondary contract tends to be low with high
probability when the demand Q is high. This increases
the possibility of shortage. Therefore, we find that the
amount of primary units in the portfolio increases,
as they are risk-free. Similar results can be observed
in Figure 7, where Q and B1 are modeled using beta
distributions (as discussed in Section 7.1) and the
degree of correlation increased.

Convex Approximation: Next, we numerically eval-
uate the performance of the Bernstein approximation
in cases where the DSP constraint is non-convex. For
this study, we consider a single primary and a single
secondary contract. The demand and the bandwidth
return have empirical distributions discussed earlier.
The disitributions do not satisfy Theorem 2 and hence

(a) Primary units

ǫ 0.1 0.2 0.3 0.4 0.5

xA0 14 12 10 12 8

xO0 4 10 6 2 0

(b) Secondary units

ǫ 0.1 0.2 0.3 0.4 0.5

xA1 0 2 4 0 6

xO1 16 2 8 14 16

(c) Total cost

ǫ 0.1 0.2 0.3 0.4 0.5
Pr(S(x) > 0) 0 0.13 0.14 0.14 0.18

CostA 14 13 12 12 11

CostO 12 11 10 9 8
% Dev 17 18 20 33 37

Table 1. Deviation in SPO results when Bernstein approximation

is used to solve SPO under non-convex DSP constraint

the DSP constraint may not be convex. We solve the
Bernstein approximation (Section 4.3) to the SPO prob-
lem and obtain the optimal portfolio (xA0 , x

A
1 ) and cost

(CostA). We also solve the original problem (without
any approximations) through brute-force search (Equa-
tion 1 and 3) and obtain the solution ((xO0 , x

O
1 ), Cost

O).
The results are summarized in Table 1. We only present
the results for the linear generating function, since we
observed better approximation using the linear generat-
ing function than the exponential generating function.
Tables 1a, 1b, and 1c, show respectively, the primary
units (x0), the secondary units (x1), and the portfolio
cost (Cost) of the two solutions. From the percentage
deviation values shown in Table 1c, we observe that
the cost of the approximate solution is within 20 − 40%
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(a) Primary units

ǫ 0.1 0.2 0.3 0.4 0.5

xA0 5.7 2.4 0 0 0

xO0 2 0.5 0 0 0

(b) Secondary units

ǫ 0.1 0.2 0.3 0.4 0.5

xA1 9.7 12.5 14.8 13.4 12.2

xO1 12.5 12.0 10.5 9.0 7.5

(c) Total cost

ǫ 0.1 0.2 0.3 0.4 0.5
Pr(S(x) > 0) 0.04 0.08 0.13 0.17 0.21

CostA 11.5 9.9 8.8 8.0 7.3

CostO 9.5 7.7 6.3 5.4 4.5
% Dev 20 28 40 49 63

Table 2. Deviation in SPO results when Bernstein approximation

is employed. Bandwidth return and demand are modeled as beta

distributions.

of the optimum in most cases. However, Tables 1a
and 1b show that the portfolio composition could be
significantly different for some values of ǫ. The price of
secondary contract was chosen close to the mean band-
width return (0.61) under the empirical distribution.

We also performed a similar study after modeling the
demand and bandwidth return using beta distributions.
As noted earlier, the DSP constraint is not convex for
all choices of its parameters α and β. Morevoer, it
has been shown in literature that the beta distribution
is neither log-concave or log-convex when α < 1 and
β > 1. Therefore, we choose α = 0.75 and β = 2 for
both Q and B1, so that the DSP constraint is non-
convex. We then apply Bernstein approimation as
before and compare the percentage deviation between
approximate solution and the optimum. The results are
summarized in Tables 2a, 2b, and 2c. We find that the
percentage deviation in cost as well as portfolio are
slightly higher when compared to results in Table 1.

Discrete Constraints: Finally, we solve the SPO
problem under discrete constraints using the branch
and bound algorithm discussed in 6.2. We obtain the
optimal portfolio under integral portfolio constraints
and compare it with the non-integer optimum. Table
3 shows the results for the DSR constraint. For the
results shown in Table 3a, the demand is assumed to
be deterministic quantity (Q̂), but the bandwidth return
B1 is a gaussian variable. And for the results shown in
Table 3b, both the demand and the bandwidth return B1
are gaussian random variables. In Table 3a, we increase
Q̂ and in Table 3b, we increase the mean demand Q.
Note that the portfolio increases in both cases. We did
not observe any trend in the difference between the

(a) Demand is determinstic

Q̂ xInt0 − x∗0 xInt1 − x∗1 Cost (% dev)
2 0 0.4552 8.2095
4 0 0.2456 1.9256
8 0.0391 0.2029 1.2545
16 0.0393 0.2022 0.5927
32 0.0393 0.2025 0.2886
64 0.0392 0.2028 0.1423
128 0.0391 0.2030 0.0707

(b) Demand is random

Q xInt0 − x∗0 xInt1 − x∗1 Cost (% dev)
2 0 0.4621 10.1825
4 0.2954 −0.7026 3.5430
8 1.1720 −3.9428 2.3836
16 −0.1282 1.3377 1.2468
32 1.2444 −4.0581 0.6808
64 0.0559 0.6854 0.3354
128 −0.0441 0.2946 0.0219

Table 3. SPO under DSR constraint and discrete portfolio

assumption

integer and the non-integer optimal portfolio solutions
for increasing values of Q̂ orQ. However, the percentage
difference in cost due to integral restrictions seems to
reduce in both cases. Therefore, when the portfolios are
large, integral restrictions on portfolio does not affect
the optimal portfolio cost significantly.

7.2. Single Primary and Two Secondary contracts

We next consider two types of secondary contracts
and study how the price and bandwidth return
characteristics of a contract affects the choice of the
secondary contract. We only present results on the SPO
problem under the DSR constraint, as the results for
the DSP constraint are broadly similar in nature. As
before, the demand has normal distribution between
0 and 3. The price of the single primary contract is 1.
The bandwidth returns of the two secondaries, B1 and
B2, have normal distribution between 0 and 1, but with
different mean and variance.
We obtain the optimal portfolio x = {x0, x1, x2} as the

ratio of the unit prices of the two secondaries, i.e.
p1
p2
,

is increased. The results are shown in Figures 8a and
8b. For the results shown in Figure 8a, B1 and B2 have
same mean (of 0.5) but different variances. Figure 8a
shows x1 − x2 as

p1
p2

is increased from 0.5 to 2. Each of

the three curves corresponds to a fixed choice of the
variance (σ1, σ2) of the bandwidth returns. Consider the
curve corresponding to the variance choice σ1 = 0.2σ2.
We find that x1 − x2 > 0, until

p1
p2
≤ 1.4. This implies that

the contribution of the first secondary contract units to
the overall portfolio is higher than that of the second
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Figure 8. a) Relative contribution of the two secondary contract units as the ratio of the unit prices of the two secondary contracts

is increased. Each curve corresponds to a fixed choice of the variance of B1 and B2, b) Relative contribution of the two secondaries.

Each curve corresponds to a fixed choice of the mean of B1 and B2.

contract even if the unit price of the first contract is
higher than the unit price of the second contract. This
is clearly due to the fact that B1 has lesser variance than
B2. However, if

p1
p2
> 1.4, the second contract units are

more, since it is much lesser priced. On the other hand,
when σ1 = 2σ2, the first secondary contract is preferred
over second contract, only if it costs lesser than the
second contract. These results suggest that secondary
contracts that have lower variance of bandwidth return
can be priced higher than those with higher variances,
provided they have the same mean bandwidth return.
Moreover, it was observed that the portfolio consisted
of non-zero units of both the secondary contracts for
price ratios shown, i.e. x1 , 0, x2 , 0, for 0.5 ≤

p1
p2
≤ 2.

This suggests that it is cost efficient to buy a mix of
secondary contract units from multiple sellers, instead
of just one, provided their prices are not very different.
x1 or x2 became zero only when

p1
p2

is either too high or

too low, respectively.

Figure 8b shows x1 − x2 vs
p1
p2
, for different choices

of means of B1 and B2, keeping the variance fixed at
0.1.When µ1 = 0.8 and µ2 = 0.2, we find that x1 − x2 > 0
as long as

p1
p2
≤ 1.75. That is, the secondary contract

with 4 times higher mean bandwidth return is preferred
even at 75% higher price. We also observe that the
secondary contract with lesser mean is preferred only if
it has lower price (For the curve with µ1 = 0.2, µ2 = 0.8,
x1 − x2 > 0 only for

p1
p2
≤ 0.6). Figures 8a and 8b suggest

that the mean as well as the variance of the bandwidth
return of a secondary contract play important roles in
determining the unit price of the secondary contract.

Next, consider Figure 9. Although the two secondary
contracts are sold by different providers, we can expect
positive correlation between their returns B1 and B2.

When the coustomer demand for one seller provider
tends to low, it is likely that the demand for other
provider is also low. Hence, the amount of secondary
units available from the two providers would be
comparable. The optimal portfolio and cost for different
levels of correlation is shown in Figure 9. As the
correlation between the secondary returns, B1 and B2
increase, the two secondary contracts behave like a
single secondary contract, but with increased variance
in the banwidth return. Due to increased riskiness in
the bandwidth available from secondary contracts, the
portfolio shifts to those with increased primary units.
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7.3. Multiple Regions

For the multiple-region problem, we consider two
simulation scenarios. In the first scenario (Scenario A),
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there are totally K regions, K + 1 primary contracts,
and K + 1 secondary contracts. The ith primary and
secondary contract, where 1 ≤ i ≤ K , is valid in the ith

region only. In other words, the first K primary and
secondary contracts are single-region contracts each
valid in one of the K regions. However, the K + 1th

primary and secondary contract is valid over all the K
regions. The first K secondary contracts are identical
in terms of their bandwidth return distributions and
unit prices. The prices of all the single-region secondary
contracts, p1, p2.., pK , are set to 1. We examine the
composition of secondary contract units in the optimal
portfolio, when the price of the K-region secondary
contract, i.e. pK+1, changes. The bandwidth return
variables (Bi , 1 ≤ i ≤ K + 1) follow truncated normal
distribution with mean 0.5 and variance 0.25. The
prices of all the primary contracts is set to a large
value such that the portfolio consists of only secondary
contract units.

Figure 10a shows the simulation results for Scenario
A when K = 2 (the effect of larger values of K is
considered later). We only show the results for the
multiple-region SPO problem under DSR constraints,
since the results were similar for the DSP constraint. It
was observed that the total number of primary contract
units is zero as expected, i.e. y1 = y2 = .. = yK+1 = 0.
Moreover, all the single-region secondary contracts
contributed equal units to the portfolio, i.e. x1 = x2 =
.. = xK . Therefore, we plot xK+1 and x1 for different price
ratios

pK+1
p1

, where K = 2. When the price ratio
pK+1
p1

< 2,

we find the portfolio consists of higher quantity of (K +
1)th secondary contract units compared to the single-
region secondary contract, i.e. xK+1 > x1. However,
when

pK+1
p1
≥ 2, single-region secondary contracts are

preferred over the K-region contracts (xK+1 < x1).

In the second scenario (Scenario B), we consider four
geographical regions. There are four single-region and
four K-region contracts of both primary and secondary
type (K > 1). Each K-region contract covers K regions
out of the four regions, symmetrically. Unlike the
previous simulation setup, we have multiple K-region
contracts in this setup and there is overlap in the
regions covered by these contracts. We fix the price
of each single-region secondary contract (p1) to 1. All
the K-region secondary contracts have the same price
denoted by pK . We again increase the price of the K-
region secondary contract pK and observe the optimal
portfolio.

The simulation results for Scenario B is shown
in Figure 10b for K = 2. The amount of K-region
secondary contract units xK and the single-region
secondary contract units x1 in the optimal portfolio
are shown. We again observe similar behaviour in xK
and x1 when compared to Figure 10a. That is, K-
region secondary contracts have higher weightage in

the optimal portfolio whenever the price ratio
pK+1
p1
≤

2. Figures 10a and 10b show that to compete fairly
in the market, the 2-region secondary contracts can
be priced twice of that of the single-region contracts.
This “pricing advantage” of the multi-region contracts
is not undue however, as they cover twice the area
of the single-region contracts. In general, offering
spectrum contracts over a larger area implies larger
licensing cost for the seller provider; moreover, the
infrastructure investment and operational costs that the
seller provider incurs will also be proportional to the
area covered.

Next, we consider Scenario A and solve the SPO
problem for higher values of K . Figure 11 shows the
simulation results for K = 2, 3, 4. We now plot xK+1 − x1
for different values of the price ratio

pK+1
p1

. For each K ,

when the price ratio
pK+1
p1

< K , we find the portfolio

consists of higher quantity of (K + 1)th secondary
contract units compared to the single-region secondary
contract, i.e. xK+1 − x1 > 0. However, when

pK+1
p1
≥ K ,

the single-region secondary contracts are preferred
over the K-region contract (xK+1 − x1 < 0, if

pK+1
p1
≥ K).

Therefore, we find that the provider (seller) of K-region
secondary contract can scale up its price upto a factor
of K and still enjoy preference over the single-region
contracts offered by smaller providers. This happens
due to the fact that the provider can either buy one
unit of the K-region secondary contract or one unit
from each of the K single-region secondary contracts to
provide the same service over the K regions at the same
cost. The portfolio shifts completely in favor of single-
region contracts only when the price, pK+1, is too high.
For the above choice of parameters, xK+1 became zero
when

pK+1
p1

> 12, 18, and 24, respectively, for K = 2, 3,

and 4. That is, when the price of K-region secondary
contract is roughly 6K times (or higher) the price of
the single-region secondary contract, the portfolio no
longer consists of K-region secondary contract units.
We obtained similar results as Figure 11 for the multi-
region problem when demand and bandwidth return
are modeled as the beta distribution; these results are
therefore omitted for brevity.

8. Conclusion

In this paper, we have proposed a secondary spectrum
market with two types of spectrum contracts – primary
and secondary – and formulated the spectrum portfolio
optimization (SPO) problem in this context. The two
types of contracts vary in their risk-return tradeoffs, as
well as their prices, and allows buyers (local or small
regional providers, for example) to balance their cost
with customer satisfaction level. We provide results
and conditions on the convexity of the SPO problem,
under both demand satisfaction rate (expectation) and
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Figure 10. Optimal portfolio composition when the ratio of the unit price of the K-region secondary contract to that of the single-region

secondary contract is increased; (a) Scenario A (b) Scenario B.
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demand satisfaction probability constraints. Convexity
of the problems allows us to compute the optimal
portfolios efficiently; we also provide expressions for
the gradient that can be used for this purpose. We have
also shown that convexity of the demand satisfaction
constraint implies convexity of the efficient frontier, for
both types of constraints. These results naturally extend
to scenarios where the contracts are associated with a
spatial dimension, and each contract can only provide
coverage to a certain set of regions (which can differ
across contracts). The convexity properties however do
not extend to the integer programming formulation,
where the spectrum contracts can be bought/sold only
in discrete units. We have shown that the SPO problem
under such constraints is not submodular.

We have used our formulation and results to
compute and study the properties of optimal spectrum

portfolio in a wide range of simulation scenarios.
Numerical experimentation with truncated gaussian,
uniform, and empirically obtained distributions (of
bandwidth availability and subscriber demand), have
shown that the general nature of the variations in the
optimal portfolio structure and cost, with respect to
variations in key parameters like prices and customer
satisfaction levels, remain similar across distributions.
The composition of the optimal spectrum portfolio is
also strongly influenced by the relative prices of the
primary and secondary contracts, and in the multi-
region case, the relative prices of the single-region
and multi-region contracts. Finally, the discrete SPO
problem is solved efficiently using a branch and bound
algorithm to show that integrality restrictions on the
portfolio does not affect the optimal portfolio cost
significantly when the portfolios are large.
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