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Abstract

The demand for cellular data service has been skyrocketing since the debut of data-intensive smart phones and
touchpads. However, not all data are created equal. Many popular applications on mobile devices, such as email
synchronization and social network updates, are delay tolerant. In addition, cellular load varies significantly
in both large and small time scales. To alleviate network congestion and improve network performance, we
present a set of opportunistic trough filling schemes that leverage the time-variation of network congestion
and delay-tolerance of certain traffic in this paper. We consider average delay, deadline, and clearance time
as the performance metrics. Simulation results show promising performance improvement over the standard
schemes. The work shed lights on addressing the pressing issue of cellular overload.
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1. Introduction
Cellular operators are facing grand challenges in
satisfying the fast increasing demand for wireless data
service. Mobile Internet is experiencing unforeseen
growth in the number of users, capability of devices,
and most importantly, volume of traffic. There are 717
million 3G subscribers globally in 2009 [1], and the
number will reach 2776 million in 2014 [2]. Data-
intensive mobile devices such as smartphones and
touchpads are the fastest selling consumer electronics
ever. These devices enable game-changing applications,
such as video streaming and social networks, on mobile
Internet. As a result, mobile Internet has 240,000
terabytes of traffic in 2010, and are expected to grow
to 6.3 exabytes (106 terabytes) in 2015 [3].

While mobile traffic imposes great pressure on
service providers, not all traffic are created equal. Many
popular applications on mobile devices, such as email
synchronization and social network updates, are delay
tolerant. In addition, data from a large cellular network
shows that there exists a significant lag between content
generation and user-initiated upload time, more that
55% uploaded content on mobile network is at least
1 day old [4]. We collected data from regular mobile
users, and conservatively assess the delay requirement
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of each application (details in §6). On average, 65%
of the uplink traffic and 70% of the downlink traffic
are delay tolerant. In addition to existing delay-
tolerant data, service providers are also considering
dynamic prices that incent certain applications and
users to be more flexible when transmissions occur
[5]. We call such data delay-tolerant data, which can be
leveraged to improve network resource utilization, by
opportunistically scheduling its transmission when the
network congestion is low and the network condition is
more favorable.

The delay tolerance of such jobs varies from
subseconds to hours. For example, Emails can tolerate
seconds to tens of seconds of delay. Content update,
such as Facebook, Twitter, and RSS feeds, can tolerant
hundreds of seconds of delay. Content precaching and
uploading can tolerant minutes to hours of delay.
OS/application updates can tolerant even longer delay.
Current cellular networks more or less treat all traffic as
equal, which results in performance degradation during
high load period.

In this paper, we present a set of opportunistic
trough filling schemes that leverage the time-variation
of network congestion and delay-tolerance of certain
traffic, in order to alleviate network congestion and
improve network performance. The key idea is as
follows: we classify cellular traffic into two categories:
delay-sensitive and delay tolerant. Delay-sensitive
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traffic include voice calls, online games, and all user
initiated applications, such as web surfing and texting.
For delay sensitive jobs, we assume the BS schedules
them with high priority and as usual. Then the
remaining resource is smartly allocated among delay
tolerant jobs using the opportunistic job scheduling
policies we propose in the paper. This is referred to as
trough filling, i.e., avoiding the high congestion period
and filling the valley of network load. We note that
network congestion varies in both large time scale (e.g.,
hours) and small time scale (e.g., seconds). The idea
of trough filling is to shape and shift traffic from high
congestion period to low congestion period, within the
delay expectation range of the delay tolerant jobs.

In such trough filling schemes, intuitively, we want
to schedule users in low congestion period and with
relatively good channel condition so that resource
utilization efficiency is high and congestion is low.
At the same time, we need to consider the delay
performance of the users. The desirable properties
include low average delay, low probability of missing
deadline (if the delay tolerant jobs have deadlines), low
network congestion, and graceful degradation when the
network is overloaded (i.e., not all jobs can be satisfied).
The challenge is for the BS to schedule jobs judiciously
to achieve such goals.

Compare to machine-job scheduling literature, the
main difference of this work is that the channel
condition of users is time-varying. In the machine-
job scheduling literature, learning effect has been
studied, e.g., in [6]. However, learning is a monotonic
and deterministic process, while channel variation is
a stochastic process. Therefore, their impacts on job
scheduling are significantly different. In addition, in the
cellular network job scheduling, we consider a pool of
resource to be shared among all users in a single cell
or cell sector. Therefore, it is a single-server scheduling
instead of multiple servers. This property also impacts
the selection of scheduling schemes.

This approach also shares features with opportunistic
scheduling, also named multi-user diversity, that has
been extensively studied and standardized in all 3G/4G
cellular systems, e.g., in [7–10]. The basic idea of
opportunistic scheduling is to schedule active users
in relatively good channel conditions so that resource
utilization efficiency is high. At a given time, channel
condition information (CQI) is sent back to the BS, and
the BS decides the user or the set of users to transmit
in a time scale on the order of 1ms. Opportunistic
scheduling exploits fast fading of multiple users to
improve spectrum efficiency. The main difference is the
time scale. The time scale considered in opportunistic
trough filling in this paper is much larger, in the
order of subseconds to tens of minutes. Because of
the time scale difference, we schedule jobs; e.g., a
Facebook synchronization or an album upload, while

the original multi-user scheduler schedules packets or
even bits. In addition, a job has a fixed and known size
during arrival, which is useful information in designing
scheduling schemes. The time scale difference results
in different policies, as well as different performance
metrics. For example, job delay and deadlines, instead
of (head-of-line) packet delay, are important metrics.
In addition, even if all users have the same and static
channel condition, intelligent scheduling schemes are
still needed in our context for good performance, which
is not the same in the multi-user diversity schemes.

The rest of the paper is organized as follows.
In Section 2, we present the system model. We
then present three problem formulations, minimizing
deadline missing probability, average delay, and
clearance time in Sections 3, 4, and 5, respectively.
Simulations results are then reported, followed by
conclusions and future work.

2. System Model
We consider a time-slotted system. The time slot length
can be of a subsecond or a few minutes, depending
on the time scale of the delay tolerance of the jobs.
Note that this time-slot length is much larger than the
time slot length in the existing opportunistic scheduling
schemes that leverages small-time-scale fast fading,
where each time slot is a few milliseconds. Because of
this difference, it is possible that a job can be finished
in one time slot. For notation convenience, we assume
each time slot is one unit of time.

At time slot t, the available resource for DTJ (Delay
Tolerant Jobs) is noted as η(t). For example, η(t) can
be considered as the number of available resource
blocks in LTE systems, the number of subcarriers in
WiMAX systems, or available power in UMTS systems.
We emphasize here η(t) is available resource left
after allocating resources to delay-sensitive jobs, not
capacity. We do not make specific assumptions on the
distributions of η(t). At time t, the resource utilization
efficiency of user i is denoted as Zi(t). We note that
Zi(t) varies over different time slots due to fading
environment change and user mobility. We assume that
Zi(t) remains constant at time slot t. Therefore, if user
i is given xi(t) units of resource at time slot t, it can
transmit data of volume of xi(t) ∗ Zi(t) (recall that each
time slot is one unit of time). Note that xi(t) is the
decision variable. Let Fi(t) be the remaining file size
of user i at time t. We note that a rational allocation
scheme will have xi(t) ∗ Zi(t) ≤ Fi(t).

The job scheduling process proceeds as follows: at
the beginning of the time slot t, the BS allocates (or
estimate the need for) resource to delay-sensitive users
first, and thus obtain the amount of available resource
η(t). The BS obtains channel condition and file size
information of users (i.e., Zi(t)s and Fi(t)s). Then the
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BS decides the resource allocation xi(t). By the end
of time slot t, each user has a remaining file size of
Fi(t + 1) = max(0, Fi(t) − xi(t) ∗ Zi(t)). For simplicity, we
assume that xi(t) is a continuous variable, i.e., the BS
can allocate resource in arbitrary slices. The assumption
is reasonable because we are considering a relatively
large time scale, at least subseconds, and each frame
size is on the order of 1ms. Therefore, if needed, BS can
share resource among users in a TMD fashion.

To simplify the presentation, we assume that each
user has at most one job. If a user has multiple jobs,
we treat them as a single job. When different jobs
have different deadlines, we could handle them in an
iterative manner. Alternatively, we can treat different
jobs as different users. In addition, we note that in
each time slot (which is relatively large), one could
still perform small time scale opportunistic scheduling
schemes with other DTJs and delay sensitive jobs,
e.g., using a proportional fair scheduler in frames.
We assume that the impact of such small time scale
transmission scheduling can be approximated in the
value of Zi(t), and thus ignored here for simplicity. We
hope to better explore this issue in future research.

We summarize the notations used in the paper as
follows.

• i: user index

• t: time index

• Zi(t): channel condition of user i at time t

• Fi(t): remaining file size of user i at time t

• η(t): the available resource for delay tolerant jobs
at time t

• xi(t): the amount of resource allocated to user i at
time t, the decision variable

• Ai : arrival time of job i

• Di : deadline of job i

• Ki : time when job i is finished

• J : job completion time

In the following sessions we present three problem
fomulations with different optimizing goals: missing
deadline, average delay, and job completion time. We
also propose a practical index policy in each section to
address the complexity in the stardard solutions such as
MDP (Markov Desicion Process).

3. Deadline
In this case, we assume each job, when generated,
has a deadline attached. We consider the problem of
minimizing the number of missed deadlines. Let Ai and

Di denote the arrival time and the deadline of the ith
job. Therefore, Fi(Ai) is the original file size of job i. The
problem can be formally stated as:

min lim supt→∞
1
t I

(∑Di
t=Ai

xi(t)Zi(t) < Fi(Ai)
)

(1)

subject to
∑
i xi(t) ≤ η(t).

The objective of the function is to minimize the
time-average of the expected probability of missing a
deadline. The expectation is taken over the distribu-
tions of random channel conditions (Zi(t)s) and ran-
dom available resource (η(t)). The constraint is the
resource availability constraint at each time slot t. In
the problem formulation, I(·) is the indicator func-
tion and

∑Di
t=Ai

xi(t)Zi(t) < Fi(Ai) is the event that job
i does not finish by its deadline. The left hand side
(
∑Di
t=Ai

xi(t)Zi(t)) is the total service received by job i
between its arrival and its deadline, and the right hand
side (Fi(Ai)) is the file size.

To solve this problem, one can use a standard MDP
(Markov Decision Process) framework, in principle.
However, in addition to requiring the stochastic models
of both user channel condition and network congestion,
the complexity of the above problem is prohibitively
high because of the random arrival process and the
dynamics of file sizes. Therefore, to address this issue,
we propose the following index policy. We first define
an index Ii(t) for user i at time t:

Ii(t) = f (Fi(t)) · g(Zi(t)) · h(Di − t),

where f (·) indicates the importance of file size, g(·)
represents the importance of instantaneous channel
condition, and h(·) is the function that takes into
account the urgency of the file. Examples of the above
functions are f (x) = 1, g(x) = x, and h(Di − t) = 1/(Di −
t), where Di > t. These function types are inspired by
machine-job scheduling literature and by opportunistic
scheduling literature. The intuition is to favor jobs that
are close to their deadlines.

Based on the index, we allocate resource to users
in a greedy manner. More specifically, we rank users
according to their index from high to low. We first
allocate as much resource as possible to the user with
the highest index to finish its job; i.e.,

xi(t) = min
(
Fi(t)
Zi(t)

, η(t)
)

If there is additional resource available, we allocate to
the next user, and so on until all available resource
is depleted or all jobs are scheduled. In practice, we
may have extra constraint on the amount of resource
allocated to users, e.g., due to device constraint such
as power or upper-layer protocol constraints. We can
simply include such constraints in the allocation.
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4. Average Delay
In this case, we consider the average delay performance
of the jobs. Recall that Ai and Fi(Ai) denote the arrival
time and the job size of the ith job. Let Ki be the time
when job i is finished. The problem can be formally
stated as:

min lim supN→∞
1
N

∑N
i=1(Ki − Ai) (2)

subject to
∑
i xij ≤ ηj

where Ki = min{T :
∑T
t=Ai

xi(t)Zi(t) ≥ Fi(Ai)}.

The objective of the function is to minimize average
delay of all jobs. In the problem formulation, there is an
implicit assumption on network stability. If the network
is not stable, then the delay goes to infinity. Similar
to the deadline case, in principle, the above problem
can be solved using MDP, but suffers high complexity.
Therefore, we propose the following index policy. We
define an index Ii(t) for user i at time t:

Ii(t) = f (Fi(t)) · g(Zi(t)),

We note that to minimize average delay, one would
favor smaller jobs, as in machine-job scheduling
literature. An example is Ii(t) = Zi(t)/Fi(t). Similar to
the deadline case, a greedy allocation policy can be
applied based on the index from high to low.

5. Job Completion Time
Last, we consider the static case where all jobs arrive
at the beginning of time slot 1 and there are no
new arrivals. In this case, we consider the problem
of minimizing job completion time, which is also
referred to as clearance time in machine job scheduling
literature. In other words, we want to minimize the time
where all jobs are finished. Define J as the clearance
time, the problem can be formulated as:

min E(J) (3)

subject to
∑
i xi(t) ≤ η(t),∀t, (4)∑J

t=1 xi(t)Zi(t) ≥ Fi(1). (5)

In this formulation, the objective is to minimize the
expected total completion time. The second constraint
is the constraint that all jobs are finished by time J .
Note that Fi(1) represents the original file size of user
i and the LHS of Eq. (5) represents the total capacity
allocated to user i. In this problem formulation, because
deadlines do not exist, we propose the following index
Ii(t):

Ii(t) = g(Zi(t)). (6)

We then rank users according to their index. The users
with higher index values have higher access priority.

In the simulation, we considered g(x) = x. Since our
goal is to finish all work earlier, favoring better channel
condition improves the throughput when there is no
deadline constraint. There is a little bit of subtlety
in this formulation. In wireless channels, when the
number of users is large, the overall (opportunistic)
capacity is higher. For example, suppose that our policy
is to choose the best of users to transmit. Then the larger
the number of active users, the higher the capacity. It
has been well studied in the opportunistic scheduling
literature that this capacity gain increases as log(log(n),
where n is the number of users. Therefore, in principle,
to minimize the completion time, one should also
consider the number of (remaining) users in the system.
However, since the capacity gain increases as log(log(n),
the difference is significant only when the number of
users is small. Therefore, for simplicity, we ignore its
impact in the current algorithm. It is our future work to
further explore this situation.

6. Real-life Trace
For realistic evaluations on the performance of the
proposed algorithm, it is crucial to collect real-life
traces from the general public and conduct trace-driven
simulations with diverse system parameters.

In this paper, we strive to realistically evaluate
the benefit of leveraging delay tolerant traffic for
the general public in real life scenarios. To achieve
this goal, we collected data from the users of an
Android application called PhotoSync1. We published
PhotoSync on Google Play[11] in July 2012. There have
been more than 10,000 downloads in the first eight
months. Among them, with clear privacy notification,
about 1700+ users participate in our data collection.
After filtering out the profiles with zero-length and
corrupted data, we ended up with the profiles from
∼ 700 users. Among them, we have more than 100
users with 30+ days of profiles, which are used in our
performance evaluations.

We collect from users, among other metrics, 3G signal
strength, WiFi connectivity, and application traffic.
We observed that the top 50 applications contribute
∼ 80% of the traffic, and the top 10 applications
contribute ∼ 60% of the traffic. We also roughly classify
the applications into two groups, applications that
generate: (i) delay tolerant and (ii) real-time traffic.
For downlink traffic, we consider Dropbox, social
network content pre-fetching, and application update

1The app follows the required privacy guideline, fully discloses the
information collected, and allows users to easily opt out from sending
their profiles to us. We observe that a large number of users choose to
opt out, an indication of user privacy-awareness and the effectiveness
of the privacy disclosure. Furthermore, we only keep a hashed user
ID through a one-way hash function, which is not reversible to ensure
anonymity.
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as delay tolerant; and Android browser and YouTube
as real-time. For uplink traffic, we consider Dropbox,
social network photo backup as delay tolerant; and
browser, messaging, and video conferencing as real-
time. Examples of the applications generating delay
tolerant traffic include cloud storage applications (such
as Dropbox) and social network applications (such as
Facebook and Google+), which may tolerate delays in
the order of minutes, and photo sharing applications
(such as Instagram), which may tolerate delays in the
order of hours [12]. For applications that are in the
grey area, we consider them as real-time traffic, to
be conservative. We then compute the per-user delay
tolerant traffic fraction of the top 50 applications (in
each direction). There are on average 65% (uplink) and
70% (downlink) delay tolerant traffic, which shows the
potential of the proposed algorithm.

Real-life simulations use the same setup described in
§7.1. The network condition Zi(t), file size Fi(t), and job
arrival time Ai used in the simulations are extracted
from the user traces.

7. Evaluation
In this section we evaluate the proposed algorithm
using simulations with both synthetic traces and real-
life traces collected from the general public. We
compare the performance of our algorithm under three
different optimization goals, namely average delay,
missed deadline, and completion time, with a naive
algorithm that evenly allocates resources to all users
and a baseline algorithm that allocate resources solely
base on channel condition.

7.1. Simulation Setup
First, we explain the simulation setup. We assume the
time is slotted. There are totally N users in the system
who have exactly one file to transmit during the test. In
the completion time tests, all files arrive at time slot 1.

When a job arrives, it has a deadline Di (if necessary,
not considered in the average delay case and the
clearance case). At each time slot, each user experiences
a channel condition Zi(t) distributed between 1 and 4.
At each time slot, the available resource is between 1
and 50.

In a single test, at the beginning of each time slot j, we
observe the current network condition Zi(t) for all users
who have file to transmit. Each time slot, the system has
η(t) units of resources left for delay tolerant jobs. The
proposed algorithm allocates xi(t) units of resources
to each job i. The allocated resources for each file is
guaranteed not to exceed needed resources nor the total
available resource. Thus the final transmission rate per
time slot for each file is xi(t) · Zi(t). The remaining size
of each file is updated after transmission at the end of
each time slot.

Objective Index Priority

Deadline
Zi(t)/(Fi(t)∗
max(Di − j, 1))

Jobs close to
deadline

Delay Zi(t)/Fi(t) Short jobs
Completion Zi(t) ∗ Fi(t) Long jobs

Table 1. Summary of different objectives and index functions.

Next, we evaluate the proposed index policies via
simulation with both synthetic and real-life traces.
In both simulations, we compare the index policies
with different objectives against two baseline policies,
a channel-only policy and an even policy. The index
algorithm is noted as index in all figures. Channel-only
policy is a special index policy with Ii(t) = Zi(t), which
favors users with the best channel conditions, noted as
channel-only in the figures. Finally the baseline policy
where resource η(t) is evenly allocated to all users, is
noted as even in all figures. The average delay, missed
deadline, and completion time of the index algorithm
is compared against the previously mentioned two
baseline policies. Note that different index functions
are used for different objectives. We summarize the
index functions used in the policies and their intuition
in Table 1. In all the index functions, we favor users
with good channel conditions with a linear function,
which takes inspiration from the majority of optimal
policies in multi-user diversity scheduling schemes.
In addition, under different objective, file size and
deadline are considered differently. In the simulations,
different functions of file size and deadline are also
considered, including log and square root functions, but
not reported here individually for conciseness.

The completion time J is calculated for each test,
which is the latest time all job finishes. The average
delay of all jobs and the number of jobs which missed
its deadline are also collected for all tests.

7.2. Synthetic Trace
First we evaluate the proposed algorithm using syn-
thetic traces to evaluate its performance in a theoretic
context where we can control system parameters and
isolate specific behaviors. For example, the system load
is hard to control when the file size are from real traces,
and we cannot control parameters such as max file size
and channel variation.

For average delay and missed deadline tests, file i has
a random arrival time Ai , uniformly distributed in the
test horizon (which is similar to the effect of Poisson
arrival).

The deadline Di is uniformly distributed between the
current time and the horizon. Each file is of a random
size uniformly distributed between the minimum file
size 1 and the maximum file size 100. The difference
reflects the diversity of applications. At each time slot,
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each user experiences a random channel condition, such
that Zi(t) is uniformly distributed between 1 and 4.
At each time slot, the available resource is randomly
chosen between 1 and 50.

In synthetic simulations, we assume all users have
homogeneous channel conditions. This is to allow us to
focus on the impact of file size and load. If the users
have heterogeneous channel conditions (e.g., being
close to or far away from the base station), appropriate
normalization may be considered; e.g., normalizing
over its own average condition so that high value
indicates relatively good channel condition.

Each test is repeated 500 times to be statistically
meaningful. The parameters such as system load are
adjust to study the impact of that particular argument.
System load represents the ratio of total traffic versus
available system resource available during the whole
test. If we define total number of file as N and the total
length of the simulation asH , the system load is defined
as

L =
N · E(Fi0)

H · E(η) · E(Zij )
. (7)

The load is an indicator of how busy the network is.

7.3. Simulation Results
Average Delay. We first evaluate the performance of
the proposed index algorithm under the objective of
minimizing average delay. The index function used is

Ii(t) = Zi(t)/Fi(t) (8)

We note that the proposed index policy favors jobs
with shorter remaining time and thus results in lower
average delay compared to the channel only policy and
even policy.

For the synthetic simulation, average delay are
plotted in Figure 1 for the three policies as the system
load varies from 0.7 to 1.5. For the real-life simulation,
average delay are plotted in Figure 2 for the three
policies as the system load varies from 0.5 to 1.5.
From the figures, we observe that both index policy
and channel-only policy show significant improvement
over the even policy, which indicates the user diversity
gain. The index algorithm outperform the channel only
algorithm by over 20% in terms of average delay.

Figure 3 shows the throughput of all three algo-
rithms. Throughput defined as the total size of all com-
pleted jobs during the simulation. While the index pol-
icy focuses on average delay in this cases, its throughput
remain similar to channel only policy.

Furthermore, in Figure 4, we illustrate the traffic
smoothing impact of the proposed opportunistic trough
filling scheme. The solid line indicates the load without
opportunistic trough filling (OTF) and the dashed line
is the load after trough filling. The load before OTF
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Figure 1. Average Delay when Index Policy Objective is
Minimizing Average Delay, Synthetic Trace
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Figure 2. Average Delay when Index Policy Objective is
Minimizing Average Delay, Real-life Trace

sometimes exceeds the available resource, which is
capped at 50. After trough filling, the traffic is much
more smooth. This figure is an intuitive illustration of
“trough filling”; i.e., filling the valley and reducing the
peak.

Deadline. We study the case where each job has a given
deadline in this section. The index function used is

Ii(t) = Zi(t)/ (Fi(t) ∗max(Di − j, 1)) (9)

For synthetic simulations, missed deadlines and
average delay are plotted in Figure 5 and Figure 6
respectively for the three policies as the system load
varies from 0.7 to 1.5.

In synthetic simulation, we also test the impact of the
file size variation. As shown in Fig. 7, the percentage of
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Figure 3. Throughput when Index Policy Objective is Minimizing
Average Delay, Real-life Trace
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Figure 4. Traffic smoothing

jobs missed the deadline increases as the maximum file
size increases in the synthetic trace. Intuitively when
the maximum and average file size increases, even the
system load stay the same, the it is more likely that the
larger jobs will miss the deadline.

For real-life simulations, missed deadlines and
average delay are plotted in Figure 8 and Figure 9
respectively for the three policies as the system load
varies from 0.7 to 1.5.

In Figure 5 and Figure 8, the x-axis is the load, the y-
axis is percentage of jobs which missed their deadlines.
Compared with the channel-only policy, the proposed
index policy favors users close to the deadline, and thus
has much lower missing rate. The cost of it is the slightly
longer average delay.

In Figure 10 shows the throughput of all three
algorithm in this simulation. The index policy strive
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Figure 5. Percentage of Jobs Missed Deadline when Index Policy
Objective is Minimizing Missed Deadlines, Synthetic Trace
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Figure 6. Average Delay when Index Policy Objective is
Minimizing Missed Deadlines, Synthetic Trace

to complete jobs within their deadlines, thus having a
higher throughput then the channel-only policy

Job Completion Time. As shown in Figure 11, in the
job completion time simulation, our index policy is
the same as channel-only policy, with Ii(t) = Zi(t). At
the first sight, this may look different from the classic
job scheduling literature, where the scheduling of the
largest jobs often significantly impacts the completion
time. However, in our case, there is one single pool
of resource that is shared by all jobs similar to a
single server queue with time-varying capacity. If users’
channel condition does not change over time, then any
work-conserving scheduling scheme will result in the
same performance. Therefore, channel-only scheduling
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Figure 7. Percentage of Missed Deadline with Different
Maximum File Size, Synthetic Trace
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Figure 8. Percentage of Jobs Missed Deadline when Index Policy
Objective is Minimizing Missed Deadlines, Real-life Trace
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Figure 9. Average Delay when Index Policy Objective is
Minimizing Missed Deadlines, Real-life Trace
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Figure 10. Throughput when Index Policy Objective is
Minimizing Missed Deadlines, Real-life Trace

works well in our simulations by opportunistically
favor users in good channel conditions.
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Figure 11. Job Completion Time when Index Policy Objective is
Minimizing Average Delay

8. Conclusion and Future Work
This paper is a first attempt to develop large-
time-scale opportunistic trough-filling schemes in
cellular networks. The objective is to alleviate network
congestion and improve cellular performance. Two
factors are considered: first, a large amount of jobs
are delay-tolerant, we can delay them to times when
the network is less congested. Second, because of this
delay-tolerance, users can be scheduled to transmit
in relatively good channel conditions that improves
spectrum efficiency; e.g., due to fading environment or
user mobility. Both effects alleviate network congestion
and improve user experience. We have considered
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three distinct objectives: minimizing delay, minimizing
missed deadlines, and minimizing clearance time.
Because of the practical and numerical complexity
involved in their optimal solutions, we resort to
heuristic index policies that take into account file
size, channel condition, and deadline. Numerical
results are promising, indicating large performance
gain over naive algorithms that do not perform such
opportunistic trough filling.

Many challenging problems are to be addressed.
First, our current schemes are heuristics, mostly
inspired by the existing literature on machine job
scheduling and opportunistic scheduling. We hope
to evaluate them in a more rigorous manner, using
metrics such as throughput optimality, average delay,
and average queue flow probability. We hope to further
develop optimal schemes to study the impact of user
channel variation in reality. In addition, we hope to
consider practical issues, including signaling overhead
and distributed implementations.
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