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Abstract— In this paper, we consider the joint scheduling, the purpose of optimizing network resource allocation
routing and congestion control mechanism in [4] while and designing cross-layer protocols in wireless networks,
incorporating a comprehensive physical layer model that with [8] providing a survey. The main idea of these

considers both primary half-duplex constraints and the ks is t bine th fi trol fi d
power-SINR-rate relation, and heterogeneous nodal power WO'KS IS 10 combine the congestion control, routing, an
budgets. We consider a cross-layer scheme comprisingScheduling functionalities in wireless networks to de-

of a primal-dual congestion controller and an energy sign a cross-layer resource allocation mechanism. These
aware back-pressur€EABP) scheduler that decides routing, works achieve confluence with the back-pressure based
scheduling, power and link rate selection based on the stability approach of [3] by showing that a decentralized

queue length information as well as an excess energy ti troll t the t t King |
consumption state at each node. The handling of nodal congestion controfler at the transport layer, working In

power constraints in our scheme is essentially the same Conjunction with a queue-length-based scheduler at the
as that in [9] and [6]. For completeness, we provide a MAC layer, asymptotically achieves system stability, op-
self-contained proof that the cross-layer scheme asymp- timal routing, and fair rate allocation, with the operations

totically achieves optimal fair allocation of the network ; _
resources. Then this scheme is used to motivate the design.Of different layers coupled through local queue-length

of a scalable and implementabledistributed slow time-scale information. . .
(DSTS) power control algorithm, which can be combined  In the above works, the physical layer is abstracted as

with rate adaptation and known distributed link scheduling  a convex rate vector region. With such a model, physical
algorithms to approximate the centralized EABP scheduler. |ayer issues like power control cannot be explicitly
In this way, we provide a candidate solution to complete the 4qqressed in the cross-layer framework. In [10], a joint
network utility maximization (NUM) based protocol stack . ;
for multi-hop wireless networks. We provide simulation congestion control and power control SCheme for wire-
results that show what are potential performance gains. €SS networks based on the NUM framework is proposed,
assuming that all the links can be active simultaneously,
Keywords which means that_ a node can tra_msmit and re(;eive at the
Cross-layer design, resource allocation, energy awar@me time. That is, there are pamary constraintsin
power control, multi-hop wireless networks practice, concurrent transmission and reception on the
same band is not feasible with the current technology
of wireless transceivers. Moreover, power control in
[10] only serves the goal of maximizing the throughput
. INTRODUCTION achieved by the network, while energy efficiency is not
In the seminal paper [1], the idea of distribute@¢onsidered. In practice, wireless nodes often have limited
flow control for wireline networks based on systemenergy resources, which is an important characteristic
wide utility optimization was developed. This workof wireless networks that needs to be considered in
was followed by many others that further investigatedesigning a cross-layer resource allocation scheme.
distributed congestion control mechanisms to drive the |n this paper, we introduce a comprehensive physical
rates of elastic end-to-end flows toward values thaiodel that takes both primary constraints into account as
maximize a system-wide objective [2]. In a separai@ell as incorporating the relationships between transmit
pioneering work, [3] showed that a rate-weighted queugower, link rates, and signal-to-noise-and-interference
length backpressure maximizing scheduler is throughpittios (SINR). Such a coherent model reflects more
optimal for networks with concurrency constraints. Ifaithfully the characteristics of current wireless hard-
recent years, the network utility maximization (NUM)ware, such as the widely used IEEE 802.11 transceivers.
approach has been further studied in [4], [5], [6], [7] foFurthermore, we assume that each node in the wireless
network has its own average power constraint, which
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conjunctionwith the primal-dual congestion controllerboth primary and secondarynterferences into account
(PDC) described in [4], will asymptotically ensure stabilunder theSINR model. The power control algorithm only
ity of the system, as well as achieve optimal routing angtquires information of certain average statistics from
fair rate allocation under the average power constrainttss two-hop neighborhood for each node to update its
The EABP scheduler decides the routing and schedulipgwer level, in a distributed and asynchronous manner.
based not only based on the queue-length informatiofhe DSTS algorithm is rooted in the NUM framework,
but also on theexcess energy consumption state of ea@nd the approximations used in its design are motivated
node. When all the nodes are allowed infinite averadw the goal of developing a distributed, scalable, and
power, the EABP scheduler simply reduces to the queuegactable power control algorithm. It can be combined
length based back-pressure scheduler. with link rate adaptation and distributed scheduling,
In a recent work [9], the notion ofirtual power or a random access MAC such as RCMAC [15], to
queueis introduced, and aenergy constrained control approximate the EABP scheduler.
algorithm (EECA) is proposed, which is aware of the The rest of this paper is organized as follows. In Sec-
energy consumptions. It has been shown to be a througien Il, we describe the system model and formulate the
put optimal policy for the wireless network with theobjective of the resource allocation as an optimization
average power constraints. In another parallel work [6],Rfoblem. In Section Ill, we describe the cross-layer re-
general NUM framework for joint congestion control angsource allocation scheme, which comprises of an EABP
processing control of queueing networks is developesgheduler that is implemented at the physical, MAC and
and the case where each node has certain power resomg&vork layers, and a primal-dual congestion controller
constraints is considered. Similarly, virtual queues af the transport layer. We provide a self-contained proof
used to keep track of the energy usage, angreedy Of the optimality and stability of the cross-layer scheme
primal-dual (GPD) scheduler is used which is aware oih Section IV. We then discuss the issue of how to derive
the energy usage. The EABP scheduler used in this pagégtributed algorithms to approximate the centralized
is essentially similar to the GPD and EECA schedulerEABP scheduler without physical layer power control
However, congestion control is not considered in thand rate adaptation in Section V. In Section VI, we
framework in [9], while the congestion controller usedlevelop a distributed algorithm to incorporate power
in [6] is different from that in [4], and the latter schemecontrol and rate adaptation, thus providing a candidate
is what we adopt in this work. For completeness, wdistributed cross-layer scheme motivated by the NUM
give the proof of the stability and optimality of theframework. The performance of the cross-layer scheme
scheme with the centralized EABP scheduler and tfigevaluated through simulations in Section VII. Section

PDC congestion controller in Section IV. VIII contains some concluding remarks.
The EABP scheduler is however a centralized algo-
rithm. In this paper, we focus on the design of a complete Il. PROBLEM FORMULATION

distributed protocol stack based on the NUM frameworR. System Model
for multi-hop wireless networks. The centralized EABP Consider a wireless network that is represented by

scheduler simply serves as a stepping board for designigagyraph,g = (N, L), where N is the set of all the
approximating distributed algorithms. In [11], [12], [13],nodes, andC is the set ofall the ||| — 1| directed
[14], the impact of decentralized implementation of thgnks. Denote the transmitter and receiver node of link
back-pressure scheduler has been studied. As discussef ¢(;) and r(I) respectively. For any link € £,

in Section V, the EABP scheduler can be similarly exhode ¢(1) can send packets to nodél) at data rate
tended to a distributed and asynchronous implementatign and transmit powerPt(l), subject to the following

as long as we assumegaaph modelapproximation of jnterference constraints

the physical layer, where we fix the power levels and linky Half-duplex constraintsA node cannot transmit and
rates. However, the graph model does not fully captufgceive at the same time due to thelf-duplexnature
the physical layer characteristics of wireless networkgf the wireless transceiver. Nor can a node transmit
such as power control and rate adaptation. On the othgr (unless they are broadcast packets) or receive from
hand, with theSINR mOdel, there are distributed pOWeﬁNO or more nodes Simu|tane0us|y_ In other WOTdS,
control algorithms such as [10] which assume no primagyo links that share a common node cannot be active

constraints. However, when the combinatorial interfegimultaneously. These are called fivémary constraints,
ence constraints are taken into account, the power contjgich can be represented as

problem becomes intractable. These two approaches do

not appear to have a unifying solution yet. Z Tii(y=ny + Z Tory=ny <1, VneN, (1)
Motivated by this, in this paper, we proceed to develop €<’ let!

a distributed slow time-scaléDSTS) power control al- whereZy., is the indicator function, and’ C £ denotes

gorithm based on the NUM framework, which does tak#he set of concurrently active links.



2) Rate-basedSINR thresholdsBecause wireless is apower consumption constraints. To take this into account,
shared medium, the transmission of one link can cauge assume that each nodéhas a certain average power
interference to another link such that they cannot ®nstraintP,. Then for any feasible pointu, P) € T,
concurrently successful. This gives rise to what we calle will require that

secondary constraints. Assume that for each link data AE =

rate/i, there is asignal to interference and noi{SINR) Po=) by < Po, Vne N, )
threshold y(j1) for the receivers such that when the §

receiving SINR is above this threshold, the data rate W& @ssume that there are a seffiofvs, denoted by

is achieved; otherwise, the transmission is corrupted, that share the resources of the network. Using the
Denote the channel gain from nodeo node;j by H;;. same convention as in [4], we denote the b_eglnmng and
For convenience, we do not consider channel fading §f'd nodes of flow by b(f) ande(f), respectively . We

our model. However, the model can be easily extend@fC @ssume that a separate queue is maintained at each
to include time-variations [17]. We can describe thgode, for all the flows that have the same destination.
secondary constraints through the so-cai#iR model, Denote the source rate of floy by z;, and letz =

by requiring that the following be satisfied in order to./}fex D€ theflow rate vector. LetZ(n) denote the
achieve a data rat@ on any linkl € £: set of all the incoming links to node, and O(n) the

. set of all the outgoing links from node. As in [4],
Hyayr@yPray > (i) @ per-destination queues are maintained. &gf be the
S Hugoro Py + No — T fraction of time allocated during transmission mdden
) ) link [ to packets destined for node and leté denote the
corresponding vector. Then the necessary and sufficient

ﬁ\]g?v;,évg olf ;r::?i\?ecilsfrgr?;vrﬁirﬁmgft’e Fhit {)0;22 tﬁe_llrgj( S conditions for the stability of the per-destination queues
y ) Hi =" s the existence ofp,d) such that

We will additionally assume that all link rates are upper-
bounded byi.,.q., and all the transmit powers are upper- .4, + Z 1L f)=n.e(f)=d} < Koy V0 # d; (B)
bounded byP,, .. I’

where u%(n) = > pr >, 5llfd ar and ué(n)
B. Transmission Modes and the Capacity Region ko leZ(n)

, 8k k. We call (p, §) a scheduling vectgr
Let i = {ju}iec denote the vector of the data rategk,: Pl ,eg%n) Ld M (p,9) 9 9

of all the links, andP = {pn}ne./\/ denote the vector of it determines the allocation of link rates to the per-
the transmit powers of all the nodes. At any time instandestination queues at each node.
the set of concurrent transmissions that are ongoingThe capacity regionof the network, denoted by, is
can be described by a two tuplg, P), where all the defined as the set of all the feasible flow rate veciors
active links must satisfy both the primary and secondafly that the network can support under the interference
constraints, while all the links that are not active havand average power constraints, i.e., that there exists
Pt(l) = 0 and f; = 0. We call such a two tuple aa scheduling vectofp, §) such that both the average
transmission mode. In the sequel , we use the superscgiptver consumption constraints (4) and the flow stability
k as the index to denote a transmission mode. conditions (5) are satisfied. Let

Let I' denote the set of all the possible transmission
modes of th_e network, ard := co(f) denote the convex o ._ (p,8)>0: Zpk’ —1, Z o =1
hull of T'. It is known that any poinfu, P) € I" can be . ’

. i X ) L kel deN\{t()}

attained by time-sharing between different transmission (6)

modes inl', wherep is an achievable average link rateThen we can formally define the capacity region as

vector, andP is the corresponding average power vector L
needed to achievp. Let p; be the fraction of time that A:={z > 0:3(p,9) € O satisfying(4) and (5)} .

transmission modg € I is activated. Then each feasible )
point (u, P) € T' corresponds to amctivation vector

p = {pr}yers With 37, pr, = 1, such that

C. Network Utility Maximization and the Dual Problem

We assume that there is a utility functioi(zy)
> priif =, V1, and Y pp Py = P,, ¥n. (3) associated with each floy, which is a twice differ-
k k entiable, strictly concave, and nondecreasing function of
H{e flow ratex;. As in [4], we assume that for every

In wireless networks, the average power available ; B -
T, < xyp < 00, there exist constansand C that

each node may be limited in many cases. Hence tHe
achievable link rate vector region is not limited just by 0<é 1 5

. ) . o <c< —— <C< oo, Vr € l|zm, xzrm]. (8
the interference constraints, but is also limited by the - U (x) [ ul- (8




Our goal is to design a cross-layer resource allocatioroden at timet, that are destined for node We define
scheme for the wireless network that maximizes the su,,, [t] := 0. Let s{[] := min(x{'[t], g¢(1),[t]) denote the

of the utilities of the end-to-end flows: actual number of packets that are sent over liit slot

t. For eachn,d € N,n # d, the evolution ofg, 4[t] is
ZEN Z Us(wy). ©) given by
fer

whereA is defined in (7). We refer to this as tipeimal Gnalt +1] = gnalt] + szI{b(f):n,e(f):d}

problem Due to the strict concavity of/;(-) and the f

compactness and convexity of the capacity regign +s%(n) [t] — SdO(n) [t], (12)

there is a unique optimal solutian* to (9), which we J J J

call theoptimal fair rate allocation. where s7,[t] = > ezm)siltl and sp [t =

Denote the Lagrange multipliers associated with thezicon) i [t]. Here and below, we assume that the
constraints (4) and (5) by3,,} and{\,. 4} respectively. length of each slot is normalized to one unit of time.
From duality theory, we can write theual functionof ~ Besides the queue lengths, as similar to [6], [9], each
the above primal problem, and after reorganizing termdoden also keeps track of itsxcess energy consumption

as the sum of two terms (10) and (11): level denoted bye,,, which is an energy relatestate
variable that the scheduler needs to perform energy
DAB) = max {Up(z) = 2 Mup)en } (10) aware scheduling. At the end of each sipeach node
feF = n updates its excess energy consumption level by
N _ 9+
+ max Pk Z Z §?n,m),dﬂ](€n,m) En [t + 1] = [En[ﬂ + Pn[t] - Pn} ) (13)
P.0)e6 | (nimye deN{n)

where[]T := max(-,0).
_ - Ak 5 The primal-dual congestion controlleis the same as
(Ana = Am.a) %;/BHP” + %;/@"P”' (11) in [4]. At the end of slott, each flowf updates the data

. ratex ¢[t| based on the queue length of its corresponding
We can interpret the two terms as follows. The term (1Q)astination queue at the source nagg,) . [t] as
represents aongestion control sub-problemhere each '

source node adapts its flow ratg according to the dual z[t+1] = [zf[t] + o (KU (2[t]) — auipy,eplt]) ],
price Ay(s).e(r)- The term (11) represents scheduling (19
sub-problenthat determines the allocation of link ratesvhere[z]% clamps the value of: in the range ofa, b),
according to the dual price$), 4} and {3,}. Thus anda, K > 0 are system design parameters. Note that
the dual problem naturally decomposes into separaggch a congestion controller can be implemented in a
congestion control and scheduling sub-problems. In tigecentralized fashion [2].

dual problem,), s can be interpreted as the price of Theenergy aware back-pressure scheduler, as in [6],
transferring a unit amount of data from nodeo node [9], performs scheduling based on the information of
d, andg,, can be interpreted as tipgice of a unit amount both the queue lengths and the excess energy con-
of transmit power at node. This motivates the cross-sumption levels. More specifically, at each slota
layer resource allocation scheme that we will descriigansmission modég[t], Pt]) € I' is used that satisfies

in the next section.

M

1[t], Plt]) € iF
(i[t], P[t]) € arg  max > i e

Ill. ENERGY AWARE CROSSLAYER RESOURCE “k PR -
(r P yer (n,m)eL

ALLOCATION SCHEME

In this section, we describe the energy aware cross- (qn.alt] — qm.alt]) — Z Pke,[t]] , (15)
layer resource allocation scheme for wireless network, ’ ’ neN

which comprises of g@rimal-dual congestion controller . . o o
P rimal-dual congestion controlle and each link(n, m) that is active in that transmission

and an energy aware back-pressure scheduler. The . .
primal-dual congestion controller is the same as in [4 ode serves the queue holding packets destined for node
am) [t] := argd max (qn.alt] — gm.qa[t]). In (15), the

while the energy aware back-pressure scheduler perfor eM\{n}

the scheduling not only in response to queue lengths, latq[t]’'s are thereal queue-lengths at each node, while

also taking into account thexcess energy consumptiore,,[t]’s are virtual energy states that each node needs

levels at different nodes, in a manner essentially similtes update according to (13) at each skotThe first

to [6] and [9]. term in the square brackets in (15) is the normal back-
The actions of the congestion controller and the schegressure scheduler, which assigns a weight to each link

uler are coupled through the queue lengths. As in [4], l¢hat equals the maximum differential backlog between

us usey, 4[t] to denote the number of packets located dhe transmitting and receiving nodes. It thus tries to serve



the queues that are most backlogged relative to their< d; < oo such that
neighbors. The second term modifies the weight of each

link according to the current excess energy consumption h?iigp Z ¢nalt] < diK?, and (17)
level of the transmitter of the link. As one would desire, n,deN n#d

the transmitters whose average power budgets have been lim sup Z ] <d K2 (18)
overrun are less likely to be selected for transmission t—oo

=Y
by the scheduler. Without the energy budget constraints, Proof: Consider the Lyapunov function

the second term disappears, and the scheduler simply 1 ) )
reduces to the normal back-pressure scheduler. L(g,e) = 5 Z Qn,d T B} ZEW
Notice that the terms in the square bracket of (15) mdeN n#d n

establishe the tradeoff between selection of transnWe can express its drift as

powers and link rates. This allows us to incorporate

power control and link rate adaptation, together with link ~ AL:(q.€) := L(q[t + 1], e[t + 1]) — L(q[t], e[t])
scheduling under the same cross-layer framework. Also

note that the cross-layer scheme can be extended to more < B; + Z In.dlt Z T[T b f)=n,e(f)=d}
realistic time-varying channel models, and to many other n,d

scenarios, such as inelastic traffic, fixed routing [17]. - _

IV. OPTIMALITY AND STABILITY OF THE ENERGY ~ WhereB; < oo is a constant. .
AWARE CROSSLAYER SCHEME Now we definezs,,, to be the maximum flow rate

that can be provided to all the flows:

In this section, for completeness, we provide a self-
contained proof that the primal-dual congestion con-
troller, when operated together with the energy awamyr( < ¢ < Tsym — Ty, We have
back-pressure scheduler, achieves flow rates arbitrarily
close to the optimal fair rate allocation under the energiL:(q,€) < By + Z QB f),e(f) [ (Tsym — €)
constraints. The full analysis of the scheme with a f
continuous-time fluid model can be found in [17]. Also _
note that when congestion control is absent, throughput qu e S = oym + ) = 3 an.ald]
optimality of a similar scheme has been established in . _
[9]. With congestion control present, convergence to an (SO(n) (1] = 57(n) [t]) + Y ealt] (Pn[t] - Pn) - (19)

Toym :=max{z >0: (z,---,z) € A}.

optimal allocation has been proved in a general context n

in [6] albeit for a slightly different scheme. From Lemma 1, we have
Before proving the main theorem, we first establish p p

relationship between potential service ratés and the iqn d (SO(n) ] = 870wl ])

actual service rates’’s.
Lemma 1: For the discrete-time system described by> Z fn,m) [t ]max (Gn,dlt] — gm,alt]) — B2 (20)
(12-15) in Section Ill, for any(t], there exists a finite (n,m)eL

constantB > 0 such that the following holds for some constant3, Also note that sincer,,m :—

(Zsym, -+, Tsym) € A, there exists a scheduling vector
Z Z K, (1] (an,t] = Gm.alt]) — B (p',8') € © that can suppor,,,,, from which we can
(n,m)€L d#n derive (see [17] for details)
n m) qn d[ ] qM,d[t]) . (16) k
@Z SRNRARRHICED 9 SISt
The proof can be found in [17]. Note that we can also f
replaceu‘(in oy lt] With fu, ) [¢] i the lemma, because < Z X (qn,alt] — qm.alt])
with the back-pressure scheduler, each active (inkn) (nm)eL dEN \{ }
will serve the destination queug with the maximum
— P, [tlen[t (21)

backlog (qn,d[t] - qm,d[t])' n%;/

We next establish the ultimate boundedness of the
gueue-lengths and the excess energy consumption Iev@l%(,JI that

and hence the stability of the system. I Pk P
= ) P ePrenlt] < enlt] Prn- (22)
Proposition 1: Fora = 1/K?, there exists a constant Z Z g g zn: g



Substituting(20), (21) and (22) into (19), we get Zf T3 L(n(f)=n.e(f)=d}, @Nd rearrange terms to get

AV, (z, qu) = Visi(z,q,e) — Vi(x, q,€)

ALi(q,e —ez W(f).e(nlt] + Bi + B < KZ aylt] — a3) (Up(aslt]) — Upa})) 27)
" Zf: Wl = Tom + o) (29) -y Z zylt (Ab(f) e(f) ~ Go(r)e(n) [t ]> (28)
2
+ (KU (a£[t]) = ao(s),ecn[t] (29)
As in [4] and we can find a constant such that Z d (el )
- Z (a0en 1) = Ny e ) (@ =) (30)
II?SUPZ%(f) e [t)(@f[t] — sym +€) < a1 K.
! + Z And (SO(H) [t] — 5% [1]
After substituting this result in (23) and finding a large — mef{b(f) ne(f)=d}) — Zﬂ; (Pn[t] P, ) (31)
enough constani, we can write n
+ Z Gn,altl Y Ty =ne(f)=d}
ALi(g.e) < —€I(s ayp) s l2dK} ! _
+ clKI{Ef qb(f),e(f)[t]<dK}7 (24) +SI(n)[ + ZEn ( n - P, ) (32)

from which we can establish the asymptotlc boundedness - Z Z T f)=n.e(f)=dy + (1]
of L:(q,e) and hence those OE a5 4lt] andZs [t].

2 1 /. N
u — shwlt]) + 5 (Pl - Pu) - 39)
Next we state the main stability and optimality the-
orem which shows that the average rate of each flausing the same arguments as in [4], we conclude that

achieved by the cross-layer scheme can be made ar¥i7) < —CK]||z[t] — =*|[>. Note that (28) and (30)
trarily close to its fair share as defined in problem (9kancel each other. From Lemma 1, we can replace the

by choosingK sufficiently large. potential service rateg{’s with the actual service rates
Theorem 2: Fora = 1/K2, there exists a constantsi 'S in (31) and (32), with a difference bounded by a
0 < B < oo such that for allf € F we have constantd < By < oo. After the replacement, we can

show that terms (31) and (32) are negative, by applying
the duality conditions, and using the fact thét € A,

B o= respectively (see [17] for details). Since the link rates,
Ty — \/? < hTHi}OIif T Z (] flow rates and transmit powers are all upper bounded at
t=0 any slot, we can find a constadt< B; < oo such that
T-1 He
1 B 33) < B;. Combining all the above, we have
<hmsup—2xf x’}—&—\/—» (25) (33) ! g
. K AViw.q.¢) < Bo+ By — CK|lalt] - 2|
Proof: We study the drlft of the Lyapunov function 2
defined as follows + Z (KU (z¢[t]) = ausy.enlt]) -
e — %) g — AE )2 Summing both sides of the above inequality frem=
V(x,q,e) = Z (f27f) + Z M 0,---,T—1, noting thatV (-) is a non-negative quantity,
feF @ n;éd rearranging the terms, dividing both sides By and

taking the limit asT" goes to infinity, yields

+ Z (26)

neN . C’K - *
h;nj;pT Z ||2[t] = *||* = By — B1 <
We can handle the boundary constraints of the T_1

1 2
rates, queue-lengths and excess energy levels (sgg sup — (KU x4lt]) = anipyecp ) (34)
[17] for details), adde( ) = )‘b(f) e(f)’ subtract 7T—oc ; Ef: FAS (£),e(f) )



The right side of (34) can be upper bounded by some/I. A CANDIDATE DISTRIBUTED POWER CONTROL

constantBy < oo becauseU’(-)'s are bounded and AND LINK RATE ADAPTATION ALGORITHM
the total queue-length is also bounded, as shown in
Proposition 1. LetB? := By + By + By /C, we have In this section, we propose a distributed power control
and rate adaptation scheme motivated by the NUM
T-1 B2 based cross-layer framework. The key idea we use
11;118111)* S lzft) — 27| < a (35) to develop a distributed scheme is throutjme-scale
— 00 t=0

separationof slow, medium and fast operations, and
approximation The capability needed is for the receiver
to approximately separate the signal from interference
plus noise. This feature is available in current 802.11

V. DECENTRALIZED SCHEDULING ALGORITHMS ~ Wiréless transceivers [16].

In our scheme, the link scheduling is performed at a

The scheduler (15) we use in the cross-layer scherfest time-scaldeach slot), with fixed power levels and
described above is however centralized. It requires dthk rates, which are updated by slower time-scale algo-
the information in the network to find the optimalrithms to be described next. This can be approximated
transmission mode in each slotin practice, however, a by the distributed scheduling algorithms or regulated
decentralized scheduler is needed which uses only logahdom access schemes discussed in Section V.
information. Recently, there has been much work on To enable link rate adaptation and power control, we
finding distributed scheduling algorithms to approximatgaquire that the receiver node of each lihkeeps track
the centralized scheduler in wireless networks [1la)f its interference p|us noise |eve| denoted b%] at

[12], [13], [14]. These works approximate the secondagyach slott. Let £]t] denote the active link set at slot
constraints with agraph model. Under this approxima-Then we have

tion, the scheduling problem can be generalized to a

maximum weighted independent ¢bWIS) problem, I[t] = No + Z Hyanyey Poary- (38)
and various distributed algorithms are then developed to Vel Al

find approximate solutions to the problem.

Notice that if the power levels®,’s and link rates When link] successfully decodes a packet, we can deter-
fi(n,m)’S In the scheduler (15) are given, then we camine I;[t] by subtracting the signal power from the total
assign a weight to each lire, m) in transmission mode received power. Otherwise, it is simply the total received
k € I' that equals to power. Meanwhile, the receiver nod€) also maintains

a moving average of the noise plus interference level as,

from which we can derive (25). [ ]

(Qn d[t]_Qm d[]) P 571[] ) i
(36) IV = @ =" + pnp,

then (15) is equivalent to the following MWIS problem:
wheren is a moving averaging parameter. We assume

(@u[t], P[t]) € arg max Z w(n m) [t], (37) that the receiver of each link can feed this informa-

k
NN | 4
w(n,m)[] :u(n m) dGN\{ }

(i p* Vel (num)eL tion back to the transmitter at medium time-scale.
Then the transmitter can calculate the estimated SINR
with the transmission mode yielding the maximal sum 5, = H,),yP;y/1;, and adapt its link rates ()

of the weights of active links being selected. Hence, alccordingly.

the distributed algorithms [11], [12], [13], [14] can be We resort to the NUM framework to guide the design

applied to our cross-layer scheme. In wireless networls$ our power control algorithm. Let* and NV'* denotes

where a random access MAC is desired, we can emplfhe set of active links and transmitting nodes in transmis-

the RCMAC [15] to distributedly approximate the schedsion modek, respectively. For each transmit power vec-

uler (37) by modulating the access probabilities with ther P, we can define the correspondlng capacity region

link weights (see [17] for details). A(P) by settingif = mZesry, andP = PoZnensy
However, if we further take the power levels andn (4) and (5) respectively. The correspondmg NUM

link rates selection into consideration, then the probleproblem for power control can be expressed as

becomes complicated. The scheduling problem (15) is

a nonlinear and combinatorial optimization problem, max max Ulzy)

which is intrinsically hard to solve, even in a centralized P xenP) ;7

way. To find approximating distributed algorithms that

can achieve some local optimum is a challenging proBollowing the same primal-dual decomposition argu-

lem. We propose such an algorithm in the next sectioments as in Section II-C, we can derive the joint power



control and scheduling problem as This is motivated by the goal of avoiding the need to
correlate which local interference level corresponds to
what global mode, which requires excessive information
mﬁxmgxz Pk Z F(n,m) exchange between the nodes.
kel (n,m)eLk Note that the quantityd, ;. ;) Py () is the signal power
of link I, which can be measured at nodg). Also note
max  (gn,d — Gm,d) — Z enPr|, (39) that in practice the effect of, on the links that are
deEN\{n} neN® far away from noden is negligible. Denote the set of
links that are in the interference range (typically two-hop
neighborhood) of node by £(n). We will assume that

8"’ . . . .
wherewe have replaced,, 4 by the actual queue-length 5= ~ 0 for [ ¢ L£(n). Also we maintain the statistics
gn.a» and 3, by the excess energy consumption staf@f average backlog,

Viena(P)

e, respectively as in Section Ill. From Section IV, we L T
know that for a givenP, the joint congestion control and ANq — max  (qa.alt] — ar@.alt])
scheduling algorithm will find the optimal time-sharing T ;dEN\{t(l)} (. @]

vector p yielding the optimal flow rate allocation. Weand average excess energy level
use the gradient method to update the power levels, In '
search of the solution to the problem (39): R 1
, o WViena(P) T Zdﬂ’
P = pt) L 25T AP, Vne N, (40) =t
n at each node, wher@” is the time averaging window.
wheret’ is the time index of the power updates, ahd® Then we approximatg%'(m as follows
is the power update step size. The power level updates o
of different nodes can be asynchronous. Wsena(P) ~ Z Ofu qu g, (42)
The difficulty of implementing the power control rule 0Py leL(n) 0P,
(40) is that the time-sharing coefficient vectpr in
(39) is not known to each node. The distributed CI’OSﬁ:l
layer schemeautomatically drives the system toward

the proper time-sharing among the modes, but thereglgslow time-scale. We also assume that a node knows

no central entityin the network which can monitor the . . .
time-sharing coefficients of all the transmission modegﬂ.Ie path loss gain to its two-hop neighbor nodes. Then

Our approximation method is based on the fact that aqPCh noder can updatg its power level dlstnb_uted and
the nodes can keep track of the average statistics ynchranously according to (40) at a slow time-scale.

certain variables with respect to time, which are in fa e will call this solution adistributed slow time-scale

: . STS) power control algorithm.
asymptotically equal to the averagesth respect to the (i : L
time-sharing coefficients We have thus arrived at a complete distributed scheme

for the energy aware cross-layer resource allocation

we expl_ore this idea to_look for distributed alg(.)mhmsscheme motivated by the NUM framework. The solution
to approximate (40). Without loss of generality,

. . . WSorms a candidate protocol that is comprised faét

ﬁjsrfcl{[:gﬁ_that the link rate is determined by the Shannﬁ)rr}le—scaleprimal—dual congestion control at the transport
' layer, back-pressure routing at the network layer, dis-
HiywyryPrry tributed link scheduling (or RCMAC) at the MAC layer,

I[t] ' medium time-scalénk rate adaptation at the link layer,

. . - ndslow time-scaldSTS power control at the physical

where W is the syster_n bandwidth. The derivative o ayer. We evaluate this crg)ss—layer scheme thrguéh some
put] with respect toF, is simulations in the next section.

Assume that there is a message passing mechanism
at sends the informatiofl, ;) Py, I and Ag;, to
den from the nodes in its interference ranggn),

wi[t] = Wlog <1 +

WHnr(l) H
e if n=2¢t(l
88’?3[15] — { Il[tHIIgIm((lf)];ffzf)?(Z)Pm) ), VII. NUMERICAL RESULTS
— z z if t(1). : : ;
" @l Heayray Py i [E]? n # t(0) We now use simulations to illustrate the cross-layer

gcheme developed in this paper. We use the network
topology as shown in Fig. 1. There are 9 nodes in
a 1000m by 1000m square, and 6 unicast flows, with
_WHuwrwy if n=t(l), utility functions all given byUy(zf) = logz . All the

We approximate the sensitivity of the link rates to th
transmit powers, by replacing[t] with the averagd.

Oy i+ Hyrio Prty : : -
3F. _lWHn%)tf,izw)Pt(z) it 1 () (41) possible links can be u;ed for bagk_—pressure routing.
n L+ Hyry Py L n : The path loss from nodeé to node j is assumed to
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(a) With the DSTS power control algorithm
be H;; = di‘j3, where d;; is the distance between

node: and j. We choose the system bandwidth to be
W =2 x 107Hz, and noise power to b&/, = 10712,
Each node has a maximum powéY,,, = 1 Watt.

The congestion controller parameters are chosen to be
a = 0.05, K =100, z,, = 0 andz; = 108. A simple 80|
greedymaximal weighted matchingigorithm is used to
distributedly schedule the link transmissions. We assume
that the link rate adaptation at the transmitters selects the
link rate according to (41) by replacing[t] with ;. We o/
choose the slot time to be = 1ms. The power levels

120

100+

60

Flow rates

Flow 3
Flow 4
Flow 5

are updated at a slow time-scale of every 50 slots. The | Flow 6

200/

moving average parameter is setsjo= 0.01. We run ‘ ‘ ‘ ‘

the simulation forl” = 10000 time slots. 0 2000 O tion (sots) 8000 10000
We first choose the average power constraints of each

node to beP, = 0.05 Watt, and simulate the cross-

layer scheme with the DSTS power control algorithrgig. 2. The evolution of data rates of the flows with the DSTS power

incorporated in the physical layer. The top figure imontrol algorithm (top) and without power control (bottom).

Fig. 2 shows the evolution of the achieved data rates

of all the flows in the network. Fig. 3 illustrates the

evolution of the transmit power levels controlled by the

slow time-scale DSTS algorithm. We can see that the

distributed power update converges to the power levels . ‘ evolution of poer levels

in the following ways. All the nodes reduce their power \;\

levels to save energy consumption. And the power levels  osr| \\

of node5 and7 are reduced also to avoid interference |

to the receiver node® and 6 respectively. R
For comparison, we also simulate the cross-layer

scheme without the DSTS power control included. In

such a scheme, all the nodes set their power levels to the

maximum transmit power, i.eP, = P4, = 1 Wait.

(b) Without power control

o o o
& 2 &
|

Transmit power levels (Watt)

o
n

The other parameters are chosen the same as in the \\

cross-layer scheme with power control. The evolution l T—

of the flows rate is shown in the bottom figure of ‘ ‘ ‘ ‘

Fig. 2. We compare the average flow rates of the two ° % power update eraions (x 50.5105) =

schemes achieved within the last 1000 slots in Table I.
We can see that without power control, the achievdtio. 3. Evolution of the power levels with DSTS power control.
flow rates are lower than the scheme with power control;
especially, the rate of flow 4, whose transmission is only



TABLE |
COMPARISON OF ACHIEVED FLOW RATES WITH AND WITHOUT POWER CONTRO(_pn = 0.05)

flow ID 1 2

3 4 5 6

with power control 102.5886 | 108.4461

108.4462 | 175.6249| 80.2681 | 80.2619

without power control || 97.2787 | 97.2787

97.2787 | 101.3320| 71.5927 | 71.5911

impravement (%) 5.4584 11.4798

11.4799 | 63.3704 | 12.1177| 12.1116

0.5

0.45

0.4

0.35F

0.3f

0.25

0.2

Average power consumption (Watt)

0 2000 4000 6000 8000 10000
iteration (slots)

and tractable manner. Such a power control algorithm,
is a possible candidate to fill the power control void
in the NUM based cross-layer protocol stack for wire-
less networks, ranging from congestion control, routing,
MAC scheduling to physical layer power control and rate
adaptation. The performance of the cross-layer scheme
is tested through some simulations.
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