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Abstract—In this extended abstract we introduce an approxi-
mation algorithm for the evaluation of networks of fluid queues.
Such models can be used to describe the generation and storage
of renewable energy.

We discuss how our algorithm would be applied to an
example where the approximation performs very well, and note a
modification to the model which would result in a poorer result.

I. INTRODUCTION

Single fluid queues have received attention in the literature
and numerous results are known (see for example the surveys
of Kulkarni [10] or Ahn and Ramaswami [3]). However, the
analysis of a network of these queues is not an easy model to
consider and few results exist for these networks in general. It
has been shown that such networks do not exhibit the product-
form property held by many discrete queueing networks which
allows for quick and efficient evaluation of stationary metrics
[4], [9].

Recently the authors of this paper argued that fluid queue
networks can describe the problem energy producers face in
routing and allocating storing energy produced from renewable
sources [8]. As renewable power becomes more a more
prevelant source of generating capacity understanding how
these networks work will become increasingly important. The
Economist recently reported that the state of grid operator of
Texas (which has recently invested heavily in wind power)
found themselves being forced to buy electricity at time “an
eye-watering 30 times the normal price” [2]. The state has
plenty of capacity—nearly twice the level of total demand—
but wind power generates most power at night, while Texan
consumers use most power for air conditioning during hot
summer afternoons.

In this paper we introduce a simple example (previously
introduced in [8]) of an energy storage network and show how
we can use an approximation algorithm to compute an approx-
imate performance metric. We compare this to results from
simulations and our results are initially encouraging. There is
significant scope for both the model and approximation to be
improved and we highlight some ideas at the end of the paper.

II. FLUID QUEUES AND NETWORKS OF FLUID QUEUES

A. Fluid queues

A fluid queue is a bivariate stochastic process (Jt, Xt) with
an associated input rate vector λ and service rate scalar µ. The
process Jt is a continuous time Markov chain on the states
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Fig. 1. Sample trace from the fluid level at node 1. The areas with a light
grey highlight correspond to the times when one source was feeding the node
and the areas with a dary grey highlight correspond to the times when both
sources were feeding the node. The busy periods are highlighted with a thick
black line. The first is a complete busy period, the second has not finished in
the duration of this trace.

{1, 2, . . . , n} and r = λ−µ ·1 is an n-dimensional vector. Xt

is a stochastic process such that at time t, when Jt = i,

dXt

dt
=

{
ri if Xt > 0

max(ri, 0) if Xt = 0.

Fluid queues are a sub-class of piecewise deterministic
Markov processes. A sample trace from a fluid queue with
two inputs (node 1 in Figure 2) is shown in Figure 1. The
output process of a fluid queue Yt is given by

Yt =

{
µ if Xt > 0

λi if Xt = 0.

Such models have been studied extensively in the literature.
See [10] for stationary distribution results and [7] for com-
putation of the busy period distribution. The busy period is
the time period for which the fluid queue contains fluid (has
positive fluid level).

Node 1 is a fluid queue with µ = 25, λ = (60, 30, 30, 0)
and Q matrix given by the Kronecker sum of the two source
Q matrices.

A sample trace at node 1 is shown in 1 where a busy
period is highlighted with a bold line. The output process of
node 1 has two states: 0 and 25. The time spent in state 0 is
exponential with rate parameter 2. The time spent in state 25
is the busy period of the queue (highlighted with a bold line
in the trace) and is not exponentially distributed.

B. Fluid queue networks

In a fluid queue networks we consider a number of fluid
queues linked together in a feedforward manner. We define
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Fig. 2. The example network considered in this paper. Fluid is generated at
each of the four sources at rate 30.

a routing matrix P with rows i that describe the proportion
of fluid leaving node i that is sent to nodes 1, 2, . . . , n. In
the network considered here the routing matrix is particularly
simple as all fluid leaving a source or node is routed to only
one place. More generally we can apply the ideas here to
networks where nodes can be numbered in such a way that P
is an upper diagonal matrix with zeros on the diagonal. We
do not consider networks with loops/cycles.

III. EXAMPLE

A. Model description

We consider the example network in Figure 2. There are
four independent on/off sources, each of which produces
power for 1/3 of the time on average. A 33% capacity factor is
a reasonable approximation to that of a wind turbine (typically
20–40% [1]).

In Figure 2, nodes 1 and 2 represent storage facilities
that smooth out the intermittent power produced by the four
sources. Node 3 represents a customer who requires power at
rate 45. The four sources each have an on rate of 30.

We compute an approximation for the moments of the
busy period at node 3. The first moment (the mean busy
period) corresponds to the average length of time for which
the customer at node 3 has their power demands satisfied.

B. Approximation algorithm

We start the algorithm with details of the output of the
source nodes. We work through each node in the tree-like
network approximating the output as a Markov modulated
flow, using these approximations as inputs to approximate the
behaviour at sebsequent nodes.

We start at nodes 1 and 2 using the method in Field
and Harrison [5]. They note that the holding time of the
off period in the output process from these nodes has the
same distribution as the off period of the combined input
process–exponentially distributed with parameter 2. The on
period of the output from nodes 1 and 2 is approximated by
an exponential distribution with parameter chosen so as to
conserve throughput.

The output of nodes 1 and 2 is approximated by a con-
tinuous time Markov chain with with three states: 25, 25, 0
and structure as in [5]. Then we compute metrics for an
approximate node 3 fed by these two approximated inputs.

We use the recent Field and Harrison result [6] to compute
the busy period at this node. We found both the approximate
value and value from simulation to be 2.26, so we see the
approximation performs well.

(Due to complications in dealing with repeated eigenvalues,
the approximations actually assumed the service rates were
24.9 and 25.1 at nodes 1 and 2.)

IV. FUTURE WORK

In this paper we have applied a recent theoretical result
of Field and Harrison to improve the applicability of an
approximation algorithm previously proposed by the same
authors. We have considered a simple example and seen good
performance.

However, to extend this approximation method to a more
general network there are issues that need to be carefully
considered. The output from a general queueing node will
have more than two states (not just on/off) and these smaller
flow rates will need to be dealt with carefully, especially the
parameters chosen to link them to the busy period rates.

Also, the network considered here was particularly simple
as there were no dependencies between flows. Suppose we
had taken sources 2 and 3 and combined them in to one on/off
source of rate 60, the output of which was split between nodes
1 and 2 equally. This would increase the mean busy period to
3.00, while the approximation presented here (ignoring this
dependence) would remain unchanged.

With regards to the application we need to parametrise a
phase type input to describe real power sources and consider
losses at queueing nodes due to transmission/storage costs.
Finite buffers will also need to be considered, and the reaction
of the network to a full buffer. In a network with static routing
excess fluid will be lost and a buffer overflow, however some
dynamic routing protocol could help conserve fluid.
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