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Abstract—We present a game theoretic framework for the
dynamical behaviors of a duopoly game in telecommunications
service providers’ context. Competition between two Service
Providers (SPs) is assumed to take place in terms of their pricing
decisions and the Quality of Service (QoS) they offer. According
to the SPs’ rationality level, we consider two schemes: 1) Both
SPs are rational, and 2) One SP is rational and the second SP
is boundedly rational. We describe the competitive interaction
and analyze the resulting equilibria. Later, we compute explicitly
the steady states of the dynamical system induced by bounded
rationality, and establish a necessary and sufficient condition for
stability of its Nash equilibria (NEs). We prove that there exists
exactly one NE which is fair whereas remaining equilibria are
unfair. A special feature is that the stability condition of the
Nash equilibrium coincides with the instability condition of the
boundary equilibria. Thus the system would never be absorbed
by any of the unfair equilibria which solves the equilibrium
selection issue ! Moreover, we show that considering the delay
case (i.e., assuming a market with memory) increases the stability
of the system. Here, the size of the memory could be considered
for multi-level rationality, which means that bounded rationality
tends to rationality as the memory size increases. We finally show
that boundedly rational SPs with delay have a higher chance of
reaching the fair Nash equilibrium.

Index Terms—Pricing, QoS, Nash equilibrium, bounded ratio-
nality, delay, Stability.

I. INTRODUCTION

One of the most fundamental concepts and/or assumptions
in game theoretic models is rationality. Rationality implies
that every player is reasoned by increasing his own payoff,
in other word, all information concerning the game is known
to all players, therefore, everyone is acting rationally, and
so, they are capable to maximize their own payoff. John V.
Neumann and Morgenstern justified the idea of maximizing
the expected payoff in their work [3]. In the real world, the
assumption of ”full rationality” almost never holds. This real-
world ”bounded rationality” is one of the major impediments
to applying conventional game theory in the real world. To
make those predictions, it is necessary to first have some
information/data concerning the system, to serve as the basis of
one’s prediction. Without such an information, science could

say nothing, and to pretend otherwise is erroneous. In the
real-world, bounded rationality strategy means that the player
makes its output decision from some partial information. In
the economic literature, and as pointed out by several authors,
[5]–[7], [9], partial information could efficiently be modeled
as a marginal profiles. Namely, players decide their strategy
according to their respective marginal profit.

The competitive model in economics or/and telecommu-
nications related issues assume generally a single parameter
game, [1], [5]–[7]. Yet, it is important and more realistic to
incorporate into the model more than one strategic parameter.
In this paper, we consider a telecommunication market shared
by two SPs. On one hand, each SP charges a tariff (price) for
the services it offer. On the other hand, each SP guarantees
some given QoS. The QoS metric could be delay, through-
put, loss probability, etc.. Later, we build a mathematical
framework where we include both price and some measure
of the perceived QoS. Although the problem becomes more
complicated, it provides many insightful results for the market
share game in telecommunication context. Next,we study the
general problem of joint price and QoS game with bounded
rationality. Each SP (player) acts under bounded rationality
and adjusts his price and QoS strategic parameters according to
its expected marginal profit. The study of this problem enables
us to realize that there exists more than one fixed point of the
nonlinear system. In some of them, one SP gets zero payoff,
we refer to those equilibria as boundary points. Boundary
points are definitely unfair, then the market owner would act
so as to eliminate them by fulfilling their instability conditions.
We proved that at most one fair fixed point exists, we will refer
to this point as the Nash equilibrium of the duopoly game. This
latter is characterized by a non-zero output of both SPs. The
stability of Nash equilibrium is also studied. A special feature
is that the stability condition of the Nash equilibrium coincides
with the instability condition of the boundary equilibria. Thus
the system would never be absorbed by any of the unfair
equilibria which solves the equilibrium selection problem ! In
other words, the boundary equilibria are unstable. Moreover,
we introduce the delayed bounded rationality to enable us to
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show that the memory size of the market share game increases
the stability of Nash equilibrium.

This paper is organized as follows: In Section II, we
provide a detailed description of duopoly game with bounded
rationality model. In Section III, we have presented a dynamic
model with bounded rationality using one parameter price
game, existence and stability of Nash equilibrium and the
boundary equilibria are studied. In Section IV, we have studied
the duopoly game with bounded rationality in presence of price
and QoS parameters. Finally, conclusions and future guidelines
are drawn in Section V.

II. PROBLEM FORMULATION

We formulate the interaction between two SPs as a non-
cooperative game. Each SP chooses the QoS to guarantee
(depends on the amount of requested bandwidth) and the
corresponding price.

In this paper we consider a duopoly game which describes
a market with two SPs, who decide their price and QoS
strategies in order to maximize their incomes. Let pi and qi be,
respectively, the tariff/pricing policy and the QoS guaranteed
by SPi. Now, each customer seeks to subscribe to the operator
which allows him to meet a QoS sufficient to satisfy his needs,
at adequate price. We consider that customers’ behaviors has
been handled by a simple function so called demand functions,
see equation (1). This later depends on the price and QoS
strategies of all SPs. From a tagged SP’s point of view, the
question is to set the best pricing strategy and the best QoS
(amount of bandwidth to request from the network owner).
SPs are supposed to know the effect of their policy on the
customers subscription policy. Whereas from customers point
of view, the question is to find the SP that has the best price-
QoS tradeoff conditions.

A. Demand model
We consider that the demand function Di for services of

SPi is linear with respect to the set price pi and the promised
QoS qi, see [2]. This demand function depends also on prices
p−i and QoS q−i set by the competitors. Namely, the demand
function of SPi depends on p = [p1, p2] and q = [q1, q2].
Eventually, Di is decreasing w.r.t. pi and increasing w.r.t.
pj , j �= i. Whereas it is increasing w.r.t qi and decreasing
w.r.t. qj , j �= i. Then, the demand functions w.r.t services
of SPi can be written as follows:

Di(p, q) = D
0
i − α

i
ipi + β

i
iqi + α

j
ipj − β

j
i qj , j �= i. (1)

where D0
i is a positive constant used to insure non-negative

demands over the feasible region. While αj
i and βj

i are positive
constants representing respectively the sensitivity of SPi to
price and QoS of service provider j.

We consider the following assumptions, which will be
useful throughout this work :

Assumption 1: For any pricing profile, the price mutual
sensitivities satisfy:

αi
i ≥ αj

i , ∀ i �= j ∈ {1, 2}. (2)

Assumption 1 is a reasonable condition, because it implies
that the influence of an SP’s price is significantly greater on
its observed demand than the prices of its competitor.

Assumption 2: We assume that the demand function of each
SP-i satisfies, for all i ∈ {1, 2},

Di(p
max − pmin

i , 0−i, q) ≤ 0, ∀q, (3)

where pmin
i represents the minimum price in the strategy space

of SP-i and pmax is the maximum price in the strategy space
of both SPs.
In view of demand function in equation (1), and according
to Assumption 1, if we choose pmax large enough then
Assumption 2 will hold.

B. Utility model
The net revenue of SP-i is the difference between its total

income, piDi(p, q), minus its total outcome. We assume that
we have a single network owner, this latter charges each SP-i
a cost ϑi per unit of requested bandwidth. In order to insure
the customers loyalty, the amount of bandwidth µi purchased
by SP-i should depend on Di(.) and on the QoS qi it wishes
to guarantee to its customers, so

Πi(p, q) = Di(p, q)pi − Fi(qi, Di), ∀i ∈ {1, 2}.

where Fi(qi, Di) is a total fee paid by SP to get bandwidth
µi: Fi = ϑiµi (qi, Di).
As already assumed in [2], we consider that the amount of
bandwidth required by user SP-i has the following form:

µi(qi, Di) = Digi(qi) + hi(qi). (4)

where gi(.) and hi(.) are positive functions.
So, the utility function of SP-i has the following form:

Πi(p, q) = Di(p, q)(pi − ϑigi(qi))− ϑihi(qi), ∀i ∈ {1, 2}.
(5)

Later, and in order to have a closed formula of the utility
function, we will restrict to some special cases where QoS is
simple enough (e.g. QoS as expected delay or QoS as Loss or
rejection probability).

C. Rationality and bounded rationality
In game theory, players are rational if each one knows all

information and rules which allow to maximize his incomes
and minimize his costs, or certainly choose their best response,
and so, he is able to deduce all the consequences of his
decision. Most of the game theorists assume that players are
rational. A common example is the pricing issue in economics
field. In the general equilibrium model of price theory, [1], [2],
it is assumed that every player is rational, but it is not assumed
that players understand the whole structure of the economic
model that the price theorist is studying.

It is clear that the mechanism of rationality does not
represent perfectly the interactions (actions and reactions)
of players in the market. A more realistic approach is to
assume a bounded rationality mechanism, the latter assumes
that players do not have sufficient capacities and information



to choose rational strategies in the sense of maximizing their
utilities. Instead, the players choose an action by means of
some heuristic rules. This sort of choosing is called ”bounded
rationality”.

In this paper, we assume that players are boundedly rational,
and their rationality is limited by the information that they
have. We focus on a player’s ability to anticipate the reaction
of its opponent, so, the bounded rationality is defined as
follow: when a player at given time, t, decide his price/QoS
strategies, he does not know how the competitor reacts at
time t + 1, and so, he does not know the benefit that it
may have, because this latter depends on the reaction of the
other player. However, as pointed out by Bischi and Naimzada
[9], the bounded rationality strategy means that the player
makes its output decision in terms of the local estimate of
the marginal profit. Namely, one player decides to increase its
strategy (Price or QoS) if it has a positive marginal profit, or
decreases its strategy if its marginal profit is negative. Hence,
if we consider single parameter price game, the dynamics of
the duopoly price game has the following forme:
�

pi(t+ 1) = pi(t) + θipi(t)
∂Πi(t)
∂pi

, i ∈ {1, 2}

where θi, i = 1, 2 is a positive parameter which represents
the speed of adjustment.

To find out the impact of rationality of players on the
competition of market, we will study two different scenarios:

1) Asymmetric Scenario: That arise when an SP is rational
(he knows all the market information), while the other
is boundedly rational.

2) Symmetric Scenario: When both SPs are Boundedly
rational.

The third possible scenario is the case when both SPs are
rational, this case is already studied in [1] and [2].

III. PRICE-BASED GAME

In this section, we assume that the vector of QoS parame-
ters, q, of all SPs is fixed at some predetermined point, q̄, and
we consider only the price game. At the discrete time, t, the
profit of SP-i is given by:

Πi(t) = Di(t)(pi(t)− ϑiḡi)− ϑih̄i, ∀i ∈ {1, 2}, (6)

where ḡi = gi(q̄i) and h̄i = hi(q̄i) are positive real constants.
In the following, we would like to analyze the impact of
rationality on the competition in the market, so we shall
proceed as follows: First, we examine the asymmetric scenario,
in this latter, we consider that SP-1 is rational, whereas SP-2
is boundedly rational. After that, we will study the symmetric
scenario, when both SPs are boundedly rational.

A. Asymmetric Scenario
In this scenario, we distinguish between two types of

players. On the one hand, we assume that SP-1 is rational, it
means that he has knowledge of how his competitor will react
to his decision, the second derivative of the utility function of
SP-1 is given by

∂
2Π1(p, q̄)
∂p

2
1

= −2α1
1 < 0,

this mean that the utility function of SP-1 is concave.
Thereafter, we shall show that at strategy price that maximizes
profit of SP-1 (p∗1), the optimality condition : ∂Π1(p,q̄)

∂p1
= 0,

is checked. To do, it suffices to prove that the point p∗1 is
an internal point of the interval

�
pmin
1 , pmax

�
, where pmax

is the maximum price, and pmin
1 is minimum price of SP-

1. We note that, pmin
1 , is a function of the QoS fixed by

SP-1, q̄1, this condition will allow us to eliminate explicitly
strategies that will result in negative profits for SP-1, so,
in view of profits formula in equation (5) we deduce that :
pmin
1 = ϑ1g1(q̄i) = ϑ1ḡ1. Besides, we have

lim
p1→ϑ1ḡ1

∂Π1(p1, p2, q̄)
∂p1

= D1(ϑ1ḡ1, p2, q̄) ≥ 0 (7)

lim
p1→pmax

∂Π1(p1, p2, q̄)
∂p1

= −α
1
1p

max + α
1
1ϑ1ḡ1 +D1(p

max
, p2, q̄)

= D
0
i − 2α1

1p
max + β

1
1 q̄1 + α

2
1p2 − β

2
1 q̄2

+α
1
1ϑ1ḡ1

≤ D
0
i − 2α1

1p
max + α

2
1p

max + β
1
1 q̄1 − β

2
1 q̄2

+α
1
1ϑ1ḡ1

= D
0
i − α

1
1p

max + (−α
1
1 + α

2
1)p

max + β
1
1 q̄1

−β
2
1 q̄2 + α

1
1ϑ1ḡ1 (8)

< D
0
i − α

1
1p

max + β
1
1 q̄1 − β

2
1 q̄2

+α
1
1ϑ1ḡ1 (9)

= D1(p
max − ϑ1ḡ1, 0, q̄)

< 0 (10)

the transition from (8) to (9) is based on the Assumption 1
whereas the last transition is due to Assumption 2. From (7)
and (10) we have that: p∗1 ∈

�
pmin
1 , pmax

�
, thus, p∗1 is a unique

solution of the optimality condition:

∂Π1(p, q̄)
∂p1

= 0

so, to maximize its profit, SP-1, will choose his best response
strategy price according to the first order conditions:

p1 =
C1 + α

2
1p2

2α1
1

, (11)

where C1 = D
1
0 + α

1
1ϑ1ḡ1 + β

1
1 q̄1 − β

2
1 q̄2.

On the other hand we consider that SP-2 is boundedly ratio-
nal, and as mentioned by Bischi and Naimzada [9], a bounded
rational player modifies its output decisions according to its
marginal profit: ∂Π2(p)

∂p2
. The dynamical equation for decisions

of SP-2 has the form:

p2(t+ 1) = p2(t) + θ2p2(t)
∂Π2(pe1(t+ 1), p2(t))

∂p2
,(12)

such that pe1(t+1) is expected price of SP-1 in the next time
step (t+1). Because of the dynamic, the price decided by the
SP-2 in equation (12) may exceed the maximum price pmax,
or it may be below the minimum price pmin

2 , to prevent this
excess, we project equation (12) on the interval

�
pmin
2 , pmax

�
,

so, equation (12) becomes:

p2(t+ 1) =

�
p2(t) + θ2p2(t)

∂Π2(pe1(t+ 1), p2(t))

∂p2

�pmax

pmin
2

(13)



From (11) and (13), the dynamical system of a duopoly game
with asymmetric scenario is:





p1(t+ 1) =
C1+α2

1p2(t+1)

2α1
1

,

p2(t+ 1) = p2(t) + θ2p2(t)
�
−α

2
2(p2(t)− ϑ2ḡ2)

+D2(p
e
1(t+ 1), p2(t))] .

(14)

As it was considered by Gibbons in [10], it makes sense
to assume that in the bounded rationality term, the expected
price pei (t+ 1) decided by SP-i is equal to its previous value
pi(t). However to anticipate pei (t+1), it may make more sense
to assume that SPs each one has a memory for storing prices
decided in previous slot time before time, t. So to anticipate the
expected price of his competitor at (t+1), SP-2 use previous
prices i.e. p1(t − 1), p1(t − 2), ..., p1(t − T ) with different
weights, this point of view has been studied [6] [11] in dif-
ferent contexts. Generally, the expected price of SP-i become:

pei (t+ 1) =
T�
l=0

ωlpi(t− l), ωl ≥ 0 and
T�
l=0

ωl = 1, the

constants ωl, l = 0, 1, .., T are the weights given to previous
prices and T represents the size of memory, so (14) become:






p1(t+ 1) =
C1+α2

1p2(t+1)

2α1
1

,

p2(t+ 1) = p2(t) + θ2p2(t)
�
−2α2

2p2(t) + C2

+α
1
2(

T�
l=0

ωlp1(t− l))

�
.

where C2 = D2
0 + α2

2ϑ2ḡ2 + β2
2 q̄2 − β1

2 q̄1.
For simplicity we set (T = 1), in this case the previous
dynamical model, with one step (T = 1) is given by:





p1(t+ 1) =
C1+α2

1p2(t+1)

2α1
1

,

p2(t+ 1) = p2(t) + θ2p2(t)
�
−2α2

2p2(t) + C2

+α
1
2(ω1p1(t) + (1− ω1)p1(t− 1))

�
.

(15)

To study the stability of (15), we rewrite it as a third
dimensional system in the form






r1(t+ 1) = p1(t)

p1(t+ 1) =
C1+α2

1p2(t+1)

2α1
1

p2(t+ 1) = p2(t) + θ2p2(t)
�
−2α2

2p2(t) + C2

+α
1
2(ω1p1(t) + (1− ω1)r1(t))

�
.

(16)

The dynamic system (16) has two fixed points in the following
form:

E1 =
�

C1

2α1
1
, C1

2α1
1
, 0
�

E∗ =
�

2α2
2C1+α2

1C2

4α2
2α

1
1+α1

2α
2
1
, 2α2

2C1+α2
1C2

4α2
2α

1
1+α1

2α
2
1
, 2α1

1C2−α1
2C1

4α2
2α

1
1+α1

2α
2
1

� (17)

Noticeably, E1 is boundary equilibrium point. The fixed point
E∗ is a Nash equilibrium point. The fixed point solutions have
economic meaning when the following conditions are satisfied:

�
C1 ≥ 0

2α1
1C2 ≥ α1

2C1.
(18)

In order to study the stability of the fixed points of the
three-dimensional system (16), we compute eigenvalues of the
Jacobian matrix of this system.

Lemma 1: The boundary equilibrium E1 is an unstable
solution.

Proof: A detailed proof is available in our technical report
in [13].

1) The stability of Nash equilibrium: In order to study
the stability of Nash equilibrium E∗ of the system (15), We
estimate the Jacobian matrix J at E∗ which is:

J(E∗) =




0 1 0

α2
1α

1
2(1−ω1)
2α1

1
B α2

1α
1
2ω1

2α1
1

B α2
1

2α1
1

�
1 + 2α2

2B
�

α1
2 (1− ω1)B α1

2ω1B 1 + 2α2
2B





where B = θ2(−2α1
1C2+α1

2C1)

(4α2
2α

1
1+α1

2α
2
1)

,
We consider that P3(λ) is the characteristic polynomial of

J(E∗), so, eigenvalues of Nash equilibrium correspond to
the roots of P3(λ) = 0. The Nash equilibrium is stable if
the necessary and sufficient condition for the roots of the
polynomial P3(λ) to satisfy |λ| < 1 can be obtained by
applying Jury’s test [12]. The characteristic polynomial has
the form:

P3(λ) := λ3 + aλ2 + bλ+ c = 0,

where: a = −tr(J(E∗)), b = tr(com(J(E∗))) and c =
−det(J(E∗)) in other word:
a = −1− α2

1α
1
2ω1

2α1
1

B − 2α2
2B

b = −α2
1α

1
2(1−ω1)
2α1

1
B

c = −det(J(E∗)) = 0
where com(·) denotes the comatrice operator. Recalling

Jury’s test [12] for stability of Nash equilibrium, we get the
necessary and sufficient conditions for |λi| < 1, i = 1, 2, 3:
(i)

1) 1 + a+ b+ c = 2α1
1C2−α1

2C1

2α1
1

θ2 > 0,

2) 1− a+ b− c = 2 +B
�
2α2

2 +
α1

2α
2
1(2ω1−1)
2α1

1

�
> 0,

3) 1− c2 > |b− ac|, ie 1 >
���−α2

1α
1
2(1−ω1)
2α1

1
B
���,

4) |c| < 1.
The Nash equilibrium point is locally asymptotically stable

if the condition equations (i) to (iv) are satisfied. Moreover,
when ω1 is sufficiently small the Nash equilibrium point E∗ is
stable. The stability region with respect to delay ω1 is defined
by both conditions (ii) and (iii). Hence, we deduced from
above analysis that delay has a stabilization effect for the Nash
equilibrium point.

2) Numerical Simulations: The objective of these Numer-
ical experiments is to show that the delay has the effect of
increasing the stability domain for system (16). In order to
study the local stability properties of the equilibrium points it
is convenient to take the parameters’ values in Table 1:

α1
1 = α2

2 α1
2 = α2

1 β1
1 = β2

2 β1
2 = β2

1 D1
0 = D2

0
0.7 0.3 0.7 0.3 20

q̄1 = q̄2 ḡ1 = ḡ2 ϑ1 = ϑ2 ω1 θ2
5 10 1 0.5 0 < θ2 < 0.1

TABLE I
PARAMETERS’ VALUES USED FOR NUMERICAL SIMULATIONS.

Figure 1 plots the bifurcation diagrams of pi with respect to
θ2, it shows that the trajectories converge to the equilibrium



(28.78, 18.62) for θ2 < 0.073. By cons, when θ2 > 0.073
the Nash equilibrium becomes unstable, period doubling bi-
furcation appears at θ2 = 0.073 and finally chaotic behavior
occurs.

Fig. 1. Bifurcation diagrams of p1 (blue) and p2 (red) with respect to θ2 in
delay case (ω1 = 0.5).

Figure 2 and 3 show respectively the bifurcation diagrams of
p1 and p2 with respect to θ2 in two cases: non-delay (ω1 = 1,
blue graph) and delay (ω1 = 0.5, red graph). Comparing the
bifurcation diagrams (blue and red) in each Figure (2 and
3), it is observed that period doubling bifurcations in delay
case is delayed w.r.t θ2, this result is what we expected.

Fig. 2. Bifurcation diagrams of p1 with respect to θ2 in two cases: non-delay
(blue) and delay (red).

Fig. 3. Bifurcation diagrams of p2 with respect to θ2 in two cases: non-delay
(blue) and delay (red).

Depending on the size of memory, T , Figure 4 plots the
maximum value of θmax

2 which guarantees the stability of the
equilibrium (point doubling bifurcation). We note that θmax

2

increases with respect to size of memory, this result shows
that the size of memory (delay) has the effect of increasing
the stability domain for system (16).
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Fig. 4. Convergence speed θmax
2 , of price game with respect to memory

size of rational SP.

B. Symmetric Scenario
As explained above, in symmetric scenario, we consider

that both SPs are boundedly rational, and as pointed out by
Bischi and Naimzada [9], a bounded rational players modify
their output decisions dynamically according to their marginal
profit: ∂Πi(p)

∂pi
, i ∈ {1, 2}. So, the dynamical system for

decisions of SPs has the form:
�

p1(t+ 1) = p1(t) + θ1p1(t)
∂Π1(p

e
1(t+1),pe2(t+1))

∂p1
,

p2(t+ 1) = p2(t) + θ2p2(t)
∂Π2(p

e
1(t+1),pe2(t+1))

∂p2
.

(19)

Where pei (t + 1) is the expected price of SP-i in the next
time step (t+ 1), as explained above, and if we consider that
T = 1, the expected price pei (t+ 1) is given by:

pei (t+ 1) = ωipi(t) + (1− ωi)pi(t− 1),

so, the dynamical model (19) becomes:





p1(t+ 1) = p1(t) + θ1p1(t)
�
−2α1

1p1(t) + C1

+α
2
1(ω2p2(t) + (1− ω2)p2(t− 1))

�
,

p2(t+ 1) = p2(t) + θ2p2(t)
�
−2α2

2p2(t) + C2

+α
1
2(ω1p1(t) + (1− ω1)p1(t− 1))

�
.

(20)

In order to study the dynamical system (20), we rewrite it as
a fourth dimensional system in the form:






r1(t+ 1) = p1(t)
r2(t+ 1) = p2(t)
p1(t+ 1) = p1(t) + θ1p1(t)

�
−2α1

1p1(t) + C1

+α
2
1(ω2p2(t) + (1− ω2)r2(t))

�
,

p2(t+ 1) = p2(t) + θ2p2(t)
�
−2α2

2p2(t) + C2

+α
1
2(ω1p1(t) + (1− ω1)r1(t))

�
.

(21)

The steady states of system (21) are:

E1 = (0, 0, 0, 0)

E2 =
�
0, C2

2α2
2
, 0, C2

2α2
2

�

E3 =
�

C1

2α1
1
, 0, C1

2α1
1
, 0
�

E∗ =
�

2α2
2C1−α2

1C2

4α2
2α

1
1−α1

2α
2
1
, 2α1

1C2−α1
2C1

4α2
2α

1
1−α1

2α
2
1
, 2α2

2C1−α2
1C2

4α2
2α

1
1−α1

2α
2
1
, 2α1

1C2−α1
2C1

4α2
2α

1
1−α1

2α
2
1

�

where E1, E2 and E3 are the boundary equilibria. The equi-
librium E∗ is called Nash equilibrium. From Assumption (1)
we deduce directly that 4α2

2α
1
1 − α1

2α
2
1 > 0, so, fixed points



of the dynamical system (21) have economic meaning when
the following conditions are satisfied:






C1 > 0 and C2 > 0
2α1

1C2 > α1
2C1

2α2
2C1 > α2

1C2.
(22)

Lemma 2: The boundary equilibria E1, E2 and E3 are
unstable solutions.

Proof: A detailed proof is available in our technical report
in [13].

1) The stability of Nash equilibrium: At Nash equilibrium
E∗, the Jacobian matrix is:

J =





0 0 1 0
0 0 0 1
0 α2

1G1(1− ω2) 1 + 2α1
1G1 α2

1G1ω2

α1
2G2(1− ω1) 0 α1

2G2ω1 1 + 2α2
2G2





where G1 = θ1(−2α2
2C1+α2

1C2)

(4α2
2α

1
1−α1

2α
2
1)

and G2 = θ2(−2α1
1C2+α1

2C1)

(4α2
2α

1
1−α1

2α
2
1)

.
Stability conditions of Nash equilibrium E∗ are that all root

of the equation P4(λ) = 0 satisfy |λ| > 1, where P4(λ)
is the characteristic polynomial of Jacobian matrix in Nash
equilibrium point :

P4(λ) = λ4 + aλ3 + bλ2 + cλ+ d,

such that:
a = −2

�
1 + α1

1G1 + α2
2G2

�

b = 1 + 2α1
1G1 + 2α2

2G2 +G1G2

�
4α1

1α
2
2 − α2

1α
1
2ω1ω2

�

c = −α2
1α

1
2G1G2 (ω1 − 2ω1ω2 + ω2)

d = −α2
1α

1
2G1G2 (1− ω1 − ω2 + ω1ω2).

According the Jury criteria, [12], the Nash equilibrium
point is locally asymptotically stable if the following condition
equations are satisfied : (i)

1) 1 + a+ b+ c+ d > 0,
2) 1− a+ b− c+ d > 0,
3) (1− d)(1− d4)− b(1− d)2 + (a− c)(c− ad) > 0
4) 3 + 3d > b
5) |d| < 1.
2) Numerical Simulations: In this numerical experiments,

we used the same parameters’ values considered in Table
1. Bifurcation diagrams are drawn in Figure 5, we see that
duopoly model with bounded rationality (ω1 = ω2 = 0.5)
is stable for θ2 < 0.068 and θ1 = 0.05, period doubling
bifurcation appears at θ2 = 0.068 and finally chaotic behavior
occurs.

Figure 6 shows the bifurcation diagrams of p1 with re-
spect to θ1 when θ2 = 0.05 in two cases : non-delay case
(ω1 = ω2 = 1, blue graph) and delay case (ω1 = ω2 = 0.5,
red graph). Comparing the bifurcation diagrams (blue and
red), it is clear that period doubling bifurcations in delay
case is delayed w.r.t θ1, so, we deduced that delay has a
stabilization effect for the Nash equilibrium point. Figure 7
plots the bifurcation diagrams of p1 w.r.t ω1 = ω2. From this
Figure we deduce that the delay increases the stability domain,
i.e when ω1 and ω2 are sufficiently small (less than 0.33 in
this parameters’ values example), the Nash equilibrium point
is stable.

Fig. 5. Bifurcation diagrams of p1 and p2 with respect to θ2 in delay case
(ω1 = ω2 = 0.5), when θ1 = 0.05.

Fig. 6. Bifurcation diagrams of p1 with respect to θ1 in two cases: non-delay
(blue) and delay (red), when θ2 = 0.05.

IV. JOINT PRICE AND QOS GAME

We consider simultaneous setting of both parameters by all
SPs, the joint price/QoS game arises when the SP-i decides
on his both price and QoS in order to maximize his profit.
Considering the bounded rationality duopoly game, the profit
resulting at the discrete time, t, for SP-i, i ∈ {1, 2} , is
given by :

Πi(t) = Di(t)(pi(t)−ϑigi(qi(t)))−ϑihi(qi(t)), ∀i ∈ {1, 2},
(23)

where Di(t) = Di(p(t), q(t)).
We suppose that the measure defining the QoS, qi cor-

responds to some function of the expected delay. We shall
use the Kleinrock delay function1 which is a common delay
function used in networking games [4]. So : qi = 1√

Delayi
=√

µi −Di, that mean : µi(qi, Di) = q2i +Di, from this latter
and according to equation (4), we have that gi(qi) = 1 and
hi(qi) = q2i , so, equation (23) become:

Πi(t) = Di(t)(pi(t)− ϑi)− ϑi(qi(t))
2, ∀i ∈ {1, 2}, (24)

As pointed out above (Section III), a bounded rational player
SPi modifies its output decisions (price, pi, and QoS, qi)
according respectively to its marginal profits : ∂Πi(p,q)

∂pi
and

∂Πi(p,q)
∂qi

. Therefore, the dynamical equation for decisions of

1This function corresponds to the queuing delay in an M/M/1 queue
with first-in-first-out discipline or to the more general M/G/1 queue under
processor sharing delay.



Fig. 7. Bifurcation diagrams of p1 with respect to ω1 = ω2.

SP-i has the form:

�
pi(t+ 1) = pi(t) + θipi(t)

∂Πi(pD,qD)
∂pi

.

qi(t+ 1) = qi(t) + ρiqi(t)
∂Πi(pD,qD)

∂qi

(25)

where, θi and ρi represent respectively the speed of adjustment
of price and QoS of ith SP, and pD = (pi(t), pej(t + 1)),
qD = (qi(t), qej (t+ 1)), such that pej(t+ 1) and pej(t+ 1) are
respectively the expected price and QoS of the opponent in
the next time step, (t+ 1).
As explained above, and if we consider that T = 1, the
expected price pej(t+ 1) and the expected QoS qej (t+ 1) are
given by:

�
pej(t+ 1) = ωjpj(t) + (1− ωj)pj(t− 1)
qej (t+ 1) = νjqj(t) + (1− νj)qj(t− 1)

where the positive constants ωj and νj represent respectively
the weights given to previous prices and QoSs of SPj .
The marginal profits of the ith SP respectively at the point
(p1, p2) and (q1, q2) of the strategy space are :

�
∂Πi
∂pi

= −αi
i (pi − ϑi) +Di i = 1, 2.

∂Πi
∂qi

= βi
i (pi − ϑi)− 2ϑiqi i = 1, 2.

So, the dynamical model (25) becomes:






p1(t+ 1) = p1(t) + θ1p1(t)
�
D

0
1 + ϑ1α

1
1 − 2α1

1p1(t) + β
1
1q1(t)

+α
2
1 (ω2p2(t) + (1− ω2)p2(t− 1))− β

2
1 (ν2q2(t)

+ (1− ν2)q2(t− 1))]
p2(t+ 1) = p2(t) + θ2p2(t)

�
D

0
2 + ϑ2α

2
2 − 2α2

2p2(t) + β
2
2q2(t)

+α
1
2 (ω1p1(t) + (1− ω1)p1(t− 1))− β

1
2 (ν1q1(t)

+ (1− ν1)q1(t− 1))]
q1(t+ 1) = q1(t) + ρ1q1(t)

�
−2ϑ1q1(t) + β

1
1p1(t)− β

1
1ϑ1

�

q2(t+ 1) = q2(t) + ρ2q2(t)
�
−2ϑ2q2(t) + β

2
2p2(t)− β

2
2ϑ2

�

(26)

To study stability of (26) we rewrite it as a eight-dimensional

system in the form:






r1(t+ 1) = p1(t)
r2(t+ 1) = p2(t)
s1(t+ 1) = q1(t)
s2(t+ 1) = q2(t)
p1(t+ 1) = p1(t) + θ1p1(t)

�
D

0
1 + ϑ1α

1
1 − 2α1

1p1(t) + β
1
1q1(t)

+α
2
1 (ω2p2(t) + (1− ω2)r2(t))− β

2
1 (ν2q2(t)

+ (1− ν2)s2(t))]
p2(t+ 1) = p2(t) + θ2p2(t)

�
D

0
2 + ϑ2α

2
2 − 2α2

2p2(t) + β
2
2q2(t)

+α
1
2 (ω1p1(t) + (1− ω1)r1(t))− β

1
2 (ν1q1(t)

+ (1− ν1)s1(t))]
q1(t+ 1) = q1(t) + ρ1q1(t)

�
−2ϑ1q1(t) + β

1
1p1(t)− β

1
1ϑ1

�

q2(t+ 1) = q2(t) + ρ2q2(t)
�
−2ϑ2q2(t) + β

2
2p2(t)− β

2
2ϑ2

�

(27)

There exists sixteen fixed points of (27):

E1 = (0, 0, 0, 0, 0, 0, 0, 0)

E2 =
�
0, 0, 0, −Cq

2
2ϑ2

, 0, 0, 0, −Cq
2

2ϑ2

�

E3 =
�
0, 0, −Cq

1
2ϑ1

, 0, 0, 0, −Cq
1

2ϑ1
, 0
�

E4 =
�
0, 0, −Cq

1
2ϑ1

, −Cq
2

2ϑ2
, 0, 0, −Cq

1
2ϑ1

, −Cq
2

2ϑ2

�

E5 =
�
0, Cp

2

2α2
2
, 0, 0, 0, Cp

2

2α2
2
, 0, 0

�

E6 =
�
0, r62, 0, s

6
2, 0, p

6
2, 0, q

6
2

�

E7 =
�
0, 2Cp

2ϑ1−β1
2C

q
1

4ϑ1α2
2

, −Cq
1

2ϑ1
, 0, 0, 2Cp

2ϑ1−β1
2C

q
1

4ϑ1α2
2

, −Cq
1

2ϑ1
, 0
�

E8 =
�
0, r82, s

8
1, s

8
2, 0, p

8
2, q

8
1 , q

8
2

�

E9 =
�

Cp
1

2α1
1
, 0, 0, 0, Cp

1

2α1
1
, 0, 0, 0

�

E10 =
�

2Cp
1ϑ2−β2

1C
q
2

4ϑ2α1
1

, 0, 0, −Cq
2

2ϑ2
, 2Cp

1ϑ2−β2
1C

q
2

4ϑ2α1
1

, 0, 0, −Cq
2

2ϑ2

�

E11 =
�
r111 , 0, s111 , s112 , p111 , 0, q111 , q112

�

E12 =
�
r121 , 0, s121 , 0, p121 , 0, q121 , 0

�

E13 =
�
r131 , r132 , 0, 0, p131 , p132 , 0, 0

�

E14 =
�
r141 , r142 , 0, s142 , p141 , p142 , 0, q142

�

E15 =
�
r151 , r152 , s151 , 0, p151 , p152 , q151 , 0

�

E∗ = (r∗1 , r
∗
2 , s

∗
1, s

∗
2, p

∗
1, p

∗
2, q

∗
1 , q

∗
2)

such that:

Cp
i = D0

i + ϑiαi
i, Cq

i = βi
iϑi

r62 = p62 = 2Cp
2ϑ2−β2

2C
q
2

4ϑ2α2
2+(β2

2)
2 , s62 = q62 = β2

2C
p
2−2Cq

2α
2
2

4ϑ2α2
2+(β2

2)
2

r82 = p82 = 2Cp
2ϑ1ϑ2−β2

2C
q
2ϑ1+β1

2C
q
1ϑ2

ϑ1(4ϑ2α2
2+(β2

2)
2)

, s81 = q81 = −Cq
1

2ϑ1
,

s82 = q82 = 2β2
2C

p
2ϑ1+β2

2β
1
2C

q
1−4Cq

2α
2
2ϑ1

2ϑ1(4ϑ2α2
2+(β2

2)
2)

,

r111 = p111 = 2ϑ1ϑ2C
p
1+ϑ1C

q
2β

2
1−Cq

1ϑ2β
1
1

ϑ2(4ϑ1α1
1+(β1

1)
2)

, s112 = q112 = −Cq
2

2ϑ2
,

s111 = q111 = 2ϑ2β
1
1C

p
1−4ϑ2C

q
1α

1
1+Cq

2β
1
1β

2
1

2ϑ2(4ϑ1α1
1+(β1

1)
2)

,



r121 = p121
= 2ϑ1C

p
1−Cq

1β
1
1

4ϑ1α1
1+(β1

1)
2 , s121 = q121 = β1

1C
p
1−2Cq

1α
1
1

4ϑ1α1
1+(β1

1)
2 ,

r131 = p131
= 2Cp

1α
2
2+α2

1C
p
2

4α2
2α

1
1−α1

2α
2
1
, r132 = p132 = 2Cp

2α
1
1+α1

2C
p
1

4α2
2α

1
1−α1

2α
2
1
,

r141 = p141
= α2

1(2C
p
2ϑ2−β2

2C
q
2 )−β2

2(β
2
1C

p
2+Cp

1β
2
2)+2α2

2(C
q
2β

2
1+2ϑ2C

p
1 )

β2
2(−2β2

2α
1
1+α1

2β
2
1)+2ϑ2(4α2

2α
1
1−α1

2α
2
1)

,

r142 = p142
= 2α1

1(2C
p
2ϑ2−β2

2C
q
2 )+α1

2(2C
p
1ϑ2+β2

1C
q
2 )

β2
2(−2β2

2α
1
1+α1

2β
2
1)+2ϑ2(4α2

2α
1
1−α1

2α
2
1)
,

s142 = q142
= β2

2(2C
p
2α

1
1+α1

2C
p
1 )+Cq

2 (−4α2
2α

1
1+α1

2α
2
1)

β2
2(−2β2

2α
1
1+α1

2β
2
1)+2ϑ2(4α2

2α
1
1−α1

2α
2
1)
,

r151 = p151
= 2ϑ1(α

2
1C

p
2+2Cp

1α
2
2)+Cq

1 (α
2
1β

1
2−2β1

1α
2
2)

β1
1(α

2
1β

1
2−2β1

1α
2
2)+2ϑ1(4α1

1α
2
2−α1

2α
2
1)

,

r152 = p152
= 2α1

1(2C
p
2ϑ1+β1

2C
q
1 )+Cp

1 (2ϑ1α
1
2−β1

2β
1
1)−β1

1(C
p
2β

1
1+Cq

1α
1
2)

β1
1(α

2
1β

1
2−2β1

1α
2
2)+2ϑ1(4α1

1α
2
2−α1

2α
2
1)

,

s151 = q151
= β1

1(α
2
1C

p
2+2Cp

1α
2
2)+Cq

1 (−4α1
1α

2
2+α1

2α
2
1)

β1
1(α

2
1β

1
2−2β1

1α
2
2)+2ϑ1(4α1

1α
2
2−α1

2α
2
1)

,

Since Cq
i is a positive constant, then fixed points: E2, E3, E4,

E7, E8, E10 and E11 have at least one negative component.
Thus they don’t have an economic meaning, this is why we
will only consider the following fixed points : E1, E5, E6,
E9, E12, E13, E14, E15 and E∗. These latter fixed points have
economic meaning when all their components are positive.

Assumption 3: We consider that the necessary conditions to
ensure that fixed points E1, E5, E6, E9, E12, E13, E14, E15

and E∗ have an economic significance are satisfied.
The equilibria E1, ..., E15 are called boundary equilibria [9],
and the equilibrium E∗ is a unique Nash equilibrium with
components:

r
∗
1 = p

∗
1

=
�
4α2

2

�
ϑ1C

q
2β

2
1 + 2ϑ1ϑ2C

p
1 − C

q
1ϑ2β

1
1

�

+ β
2
2(−2ϑ1β

2
2C

p
1 − 2ϑ1C

p
2β

2
1 + C

q
1β

2
2β

1
1 − 2ϑ1C

q
2α

2
1

− C
q
1β

1
2β

2
1) + 2α2

1ϑ2

�
2ϑ1C

p
2 + C

q
1β

1
2

��
÷A,

r
∗
2 = p

∗
2

=
�
4α1

1

�
2Cp

2ϑ1ϑ2 − β
2
2C

q
2ϑ1 + β

1
2C

q
1ϑ2

�

+ β
1
1(−2β1

2ϑ2C
p
1 − 2α1

2C
q
1ϑ2 − 2Cp

2ϑ2β
1
1 + β

1
1C

q
2β

2
2

− β
1
2C

q
2β

2
1) + 2α1

2ϑ1

�
2Cp

1ϑ2 + C
q
2β

2
1

��
÷A,

s
∗
1 = q

∗
1

=
�
C

q
1

�
2ϑ2α

1
2α

2
1 − 8α1

1α
2
2ϑ2 + 2α1

1(β
2
2)

2 − β
2
2α

1
2β

2
1

�

+ β
1
1

�
2ϑ2α

2
1C

p
2 + 2α2

2C
q
2β

2
1 − (β2

2)
2
C

p
1 + 4α2

2ϑ2C
p
1

− β
2
2C

p
2β

2
1 − C

q
2α

2
1β

2
2

��
÷A

s
∗
2 = q

∗
2

=
�
C

q
2

�
2α2

1ϑ1α
1
2 − α

2
1β

1
1β

1
2 − 8ϑ1α

1
1α

2
2 + 2(β1

1)
2
α
2
2

�

+ β
2
2

�
4α1

1ϑ1C
p
2 + 2α1

1C
q
1β

1
2 − (β1

1)
2
C

p
2 − β

1
1C

p
1β

1
2

− β
1
1C

q
1α

1
2 + 2Cp

1ϑ1α
1
2

��
÷A,

such that:
A = 2ϑ1

�
8α1

1α
2
2ϑ2 − 2α1

1(β
2
2)

2 + β
2
2α

1
2β

2
1

�
+ β

2
2β

1
1

�
β
2
2β

1
1 − β

1
2β

2
1

�

+ 2ϑ2

�
−2α2

2(β
1
1)

2 + β
1
1α

2
1β

1
2 − 2ϑ1α

1
2α

2
1

�

A. Stability of equilibria
1) Stability of boundary equilibria: To study the stability

of equilibria of the dynamical system (27), we calculate
the Jacobian matrix of system (27) at the state variables
(r1, r2, s1, s2, p1, p2, q1, q2).

Lemma 3: The boundary equilibria E1, E5, E6, E9, E12,
E13, E14, and E15 are unstable solutions.

Proof: A detailed proof is available in our technical report
in [13].

2) Stability of Nash equilibrium: The Jacobian at Nash
equilibrium E∗ is could be written as

J(E∗) =





0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

0 F
∗
1 0 G

∗
1 B

p∗

1 H
∗
1 L

∗
1 M

∗
1

F
∗
2 0 G

∗
2 0 H

∗
2 B

p∗

2 M
∗
2 L

∗
2

0 0 0 0 N
∗
1 0 B

q∗

1 0

0 0 0 0 0 N
∗
2 0 B

q∗

2





(28)
where:

F
∗
i = θip

∗
iα

j
i (1− ωj), G

∗
i = −θip

∗
i β

j
i (1− νj),

B
p∗

i = 1 + θi(C
p
i − 4αi

ip
∗
i + β

i
iq

∗
i + α

j
i (ωjp

∗
j + (1− ωj)r

∗
j )

−β
j
i (νjq

∗
j + (1− νj)s

∗
j )), B

q∗

i = 1 + ρi(−4ϑiq
∗
i + β

i
ip

∗
i − C

q
i ),

H
∗
i = θip

∗
iα

j
iωj , L

∗
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such that i, j ∈ {1, 2} and i �= j.
The characteristic polynomial P8(λ) of Jacobian matrix (28)
has the form:

P8(λ) = λ8+a7λ
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The stability analysis can be reduced to that of determining
conditions to ensure that all the roots of P8(λ) lie in the
open unit disk |λ| < 1. The stability conditions of Nash
equilibrium are given by recalling Jury’s conditions [12] which
are the necessary and sufficient conditions for |λk| < 1, k ∈
{1, 2, .., 8}. Consider the characteristic polynomial P8(λ) and
let:

bj = aj − a8−ja0, j = 1..8; b0 = 0

cj = bj − b8−j+1
b1

b8
, j = 2..8; c1 = c0 = 0

dj = cj − c8−j+2
c2

c8
, j = 3..8; d2 = d1 = d0 = 0

fj = dj − d8−j+3
d3

d8
, j = 4..8; f3 = f2 = f1 = f0 = 0

gj = fj − f8−j+4
f4

f8
, j = 5..8; g4 = g3 = ... = g0 = 0

hj = gj − g8−j+5
g5

g8
, j = 6..8;h5 = h4 = ... = h0 = 0

k8 = h8 − h6
h6

h8
, k7 = h7 − h7

h6

h8
, k6 = k5 = ... = k0 = 0

l8 = k8 − k7
k7

h8
, l7 = l6 = l5 = ... = l0 = 0

a necessary and sufficient conditions for stability of Nash
equilibrium E∗ are: b8 > 0, c8 > 0, d8 > 0, f8 > 0, g8 > 0,
h8 > 0, k8 > 0 and l8 > 0.

B. Numerical investigations

Numerical experiments are simulated to show the stability
and period doubling bifurcation route to chaos for system (27),
in addition, we will show that the delay has the effect of
increasing the stability domain. To do, it is suitable to take
the parameters’ values in Table 2:

α1
1 = α2

2 α1
2 = α2

1 β1
1 = β2

2 β1
2 = β2

1 D1
0 = D2

0
0.7 0.3 0.7 0.3 20

ν1 = ν2 ω1 = ω2 ϑ1 = ϑ2 θi ρi
0.5 0.5 1 0 < θi < 0.1 0 < ρi < 0.1

TABLE II
PARAMETERS’ VALUES USED FOR NUMERICAL SIMULATIONS.

In order to study the influence of delay ωi on the stability
of both price and QoS equilibrium, we plot respectively in
Figures 8 and 9 the bifurcation of price and QoS decided by
SP-1 w.r.t θ1 in two cases: no-delay case (ω1 = ω2 = 1)
and delay case (ω1 = ω2 = 0.5). On the one hand we note
that the bifurcation diagram of p1 and q1 in the non-delay case
ω1 = ω2 = 1 converges to Nash equilibrium as θ1 < 0.032, by
cons, when θ1 > 0.032 the Nash equilibrium of price and QoS
becomes unstable, period doubling bifurcation appear and after
chaotic behaviors occur for both price and QoS diagrams. Also
the bifurcation diagrams of p1 and q1 w.r.t θ1 in delay case are
plotted, in this case, the Nash equilibrium is converges as θ1 <
0.038, when θ1 > 0.038 the Nash equilibrium point becomes
unstable. On the other hand, it is observed that that period
doubling bifurcation are delayed in delay case, so, we deduce
that delay ωi increases the stability of the Nash equilibrium.

Fig. 8. Bifurcation diagrams of p1 with respect to θ1 with (red) and without
(blue) delay, where θ2 = 0.03, ρi = 0.05 and νi = 0.5.

Fig. 9. Bifurcation diagrams of q1 with respect to θ1 with (red) and without
(blue) delay, where θ2 = 0.03, ρi = 0.05 and νi = 0.5.

Now we study the influence of delay νi on the stability
of both price and QoS equilibrium, we plot respectively in
Figures 10 and 11 the bifurcation of price and QoS decided
by SP-1 w.r.t ρ1 in two cases: no-delay case (ν1 = ν2 = 1)
and delay case (ν1 = ν2 = 0.5). Bifurcation diagram of p1
and q1 in the non-delay case ν1 = ν2 = 1 converges to Nash
equilibrium as ρ1 < 0.030, contrariwise, when θ1 > 0.030 the
Nash equilibrium of price and QoS becomes unstable, period
doubling bifurcation appear and after chaotic behaviors occur
for both price and QoS diagrams. Comparing the bifurcation
diagrams of each Figure (Figures 10 and 11) we find that delay
νi affects the stability of Nash equilibrium point, and that SPs
using delayed bounded rationality have a higher chance of
reaching a Nash equilibrium point.

Fig. 10. Bifurcation diagrams of p1 with respect to ρ1 with (red) and without
(blue) delay, where ρ2 = 0.04, θi = 0.04 and νi = 0.5.



Fig. 11. Bifurcation diagrams of q1 with respect to ρ1 with (red) and without
(blue) delay, where ρ2 = 0.04, θi = 0.04 and νi = 0.5.

In Figures 12 and 13, we present simultaneously the price
and QoS of SP-1 at equilibrium w.r.t θ1 and ρ1.

Fig. 12. Bifurcation diagrams of p1 (blue) and q1 (red) with respect to θ1,
where θ2 = 0.03, ρi = 0.05 and ωi = νi = 0.5.

Fig. 13. Bifurcation diagrams of p1 (blue) and q1 (red) with respect to ρ1,
where ρ2 = 0.03, θi = 0.04 and ωi = νi = 0.5.

V. CONCLUSION

We studied the problem of price and QoS game for two SPs
assuming multi-level rationality under two schemes : Sym-
metric scenario where both SPs are rational, and asymmetric
scenario where one of them is rational and the second SP
has limited knowledge. We first provided many conditions for
stability of Nash equilibria. Second, we showed that the delay
enhances the stability of the equilibrium for both schemes. Fur-
thermore, we studied a duopoly game with bounded rationality
while considering both price and QoS as strategic parameters.

Stability conditions of Nash equilibria and the impact of the
memory size are also discussed. Results found in this work
can be further extended to general network considerations,
in particular under non-neutrality perspective or non-linear
demand.
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