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Abstract—The issue of embedding cost-awareness in the design
of communication network devices and protocols has been
growing at a fast rate in last years. Under certain connection
situations, however, network design is not enforced by a central
authority. This is the case, for instance, of power control for
wireless networks, where the cost of a link is a function of
the power needed to send a message to a remote node, which
increases with the distance. Here each player wishes to consume
as few power as possible to send its request and the main question
is how to avoid that players deviate from a socially optimal
network.

In this paper, we study strategic games based on connection
situations with the objective to coordinate self-interested agents
placed on the nodes of a graph to realize a more efficient
communication network. We address the problem of the design
of cost allocation protocols that may guarantee the convergence
of the best response dynamic and we analyze the effects of
cost monotonicity and other state-dependent properties on the
optimality of a protocol.

I. INTRODUCTION

Due to economic and environmental concerns, reducing
energy consumption in telecommunications is a priority, and
the issue of embedding cost-awareness in the design of com-
munication network devices and protocols using game theory
has been growing at a fast rate in last years [27], [6]. In
particular, game theory applied to connection situations seems
to provide a powerful and realistic methodology to analyze
the design of cost allocation protocols. A connection situation
arises when there is a group of agents (e.g. devices of a
communication network) who all want to be connected with a
source 0 (e.g. a server), directly or via other agents, and where
connections are costly (e.g. due to data traffic costs). Cost
sharing problems on connection situations were introduced
by Claus and Kleitman [10] and have been studied with
the aid of cooperative game theory since the basic paper of
Bird [7]. Given a connection situation, Bird [7] introduced an
associated coalitional game (known as minimum cost spanning

tree (mcst) game), where the players are the agents placed
on the nodes and the cost incurred by a coalition is the
minimal cost of connecting this coalition to the source via
links between members of the coalition. Since then, many cost
sharing protocols have been proposed in the literature of mcst
games [16], [17], [28], [20], [21], [24], [28], [9], [21], [29]
with various desirable properties including budget balance and
cost monotonicity.

Budget balance consists of satisfying both cost recovery
(i.e. the cost of the service is recovered from all the players)
and competitiveness (i.e. no surplus is created because if any
surplus is created then a competitor can provide the service at
a cheaper cost by reducing the surplus) [11].

Many papers concerning the analysis of cost allocation
protocols using coalitional games have focused on cost mono-
tonicity properties, meaning that if some connection costs go
down (up), then no agents will pay more (less) (see for instance
[12], [28], [8], [5], [2], [8]). In the paper of [12], for instance,
a particular cost monotonic protocol was studied, where cost
monotonicity means that an agent i does not pay more if the
cost of a link involving i decreases, nothing else changing
in the network. The interest for monotonicity properties for
protocols in connection situations is explained by the fact
that in many real applications, connection costs may increase
or decrease with time, and therefore cost allocations which
are stable only in the original situation cannot guarantee the
cooperation among agents also under the new conditions. This
is the case, for instance, for telecommunication networks,
where it may happen that at a given moment the cost of
connections can increase (e.g. as a consequence of an im-
provement in quality and quantity of services supplied) or
decrease (e.g. by improving telecommunication technologies).
Another reason to analyze cost monotonicity is that it ensures
that no customers are motivated to voluntary increase the
cost of adjacent links, since according to a cost monotonic
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allocation protocol no customer will pay less. Note that this
kind of considerations arise from interaction situations which
are based on cooperative models, where the issue concerning
the “strategic” behavior of players is somehow left to the
intuition.

In parallel, since the seminal paper [1], another class of
related problems has been widely studied in the literature
of game theory applied to networks. The basic question of
such problems is to describe an endogenous process of the
formation of communication links, given some underlying
protocol for allocating the benefit of communication, namely
the Myerson value [23]. The paper by Aumann and Myerson
[1] introduced a model of link formation where links are
constructed sequentially. Later, Myerson [22] introduced a
model of link formation in strategic form where players
announce simultaneously the set of players they would like to
communicate with, and a link between two nodes is formed
if both nodes announce to form it. As in the previous model,
the payoffs of players is calculated according to the Myerson
value. Later, Slikker and van den Nouweland [26] introduced
an extension of such models for link formation that incorporate
costs of formation of communication links (see also [18],
[19]). An interpretation of these models with costs of link
formation is that players at first stage incur the costs of link
formation and divide these costs in a fair manner and then, at
a second stage, bargain over the division of the benefits (see
also [25]).

The objective of this paper is threefold. First, we want to
integrate cost allocation protocols for connection situations
with the model of network formation with communication
costs. In this direction, a game in strategic form is presented
where agents are placed on the nodes of a graph and the
strategy of each player is to construct a single link which
connects himself to another node in the network (that may be
another agent or a source). Each link is costly, as in usual
connection situations, and the cost of remaining disconnected
from the source is larger than any finite cost that should be
supported to guarantee the connection with the source. So,
agents want to be connected to the source at any cost, but
of course they are self-interested to save their own money.
Actually, this strategic game has been already introduced in
[15], but in that paper the authors focused on a specific cost
allocation protocol for trees: the Bird rule [7] assigning to
each player i the cost of the link from i to the its predecessor
on the unique path from the source to i (see also [13], [3], [4]
for other strategic models applied to connection situations).

The second objective of this paper is to analyze properties
for cost allocation protocols (including but not limited to the
Bird one), and in particular the role of cost monotonicity and
other state-dependent properties in the convergence of the best
response dynamic [14]. Contrary to the situation based on a
cooperative setting, where cost monotonicity seems to interpret
a condition of stability in dynamic situations [20], we show
that cost monotonicity of protocols is incompatible with the
optimality of associated best response dynamics.

Finally, the third and main goal of this manuscript is to

answer an open question concerning the existence of a cost
allocation protocol that guarantees the convergence of each
best response dynamic to a network of minimum connection
cost. This is not the case, for instance, of the cost allocation
protocol based on the Bird rule, which allows for the possi-
bility of Nash equilibria which do not correspond to a graph
of minimum cost [15].

We start in the next section with a brief introduction of the
main notations and the definition of the model of strategic
game applied to connection situations. Section III focuses on
the relation between cost monotonicity and the state-dependent
property with the property of optimality for protocols. Section
IV is devoted to two optimal protocols and to the analysis of
their properties of convergence. Section V concludes.

II. PRELIMINARIES AND NOTATIONS

Let G = (V,E,w) be an undirected, connected and
weighted graph on n = |V | vertices and m = |E| edges
where V = {0, 1, · · · , n− 1} and where each edge e ∈ E has
a non negative weight w(e) ∈ R+. Node 0 is called the root
(or the source) and any other node is an agent who wants to
be connected to 0 either directly or via other nodes which are
connected to 0. For any set of edges E′ we denote by w(E′)
its total weight: w(E′) =

∑
e∈E′ w(e).

As a notation V (.) and E(.) are two functions which
designate the vertex set and edge set of their argument,
respectively. The subgraph of G induced by the vertex set
V ′ ⊆ V is denoted by G[V ′].

We consider a strategic game form (V \ {0},NG(1) ×
NG(2) × · · · × NG(n − 1)) where the strategy space NG(i)
of every player i ∈ {1, · · · , n − 1} is his neighborhood in
the graph. When a player i plays its neighbor j then the
edge (i, j) is built. A state (or strategy profile) S is a vector
(S1, S2, · · · , Sn−1) ∈ NG = NG(1)×NG(2)×· · ·×NG(n−1).
In the following, S−i denotes S from which the strategy of
player i was removed and (S′

i, S−i) denotes the state S from
which Si was replaced by S′

i.
The edges built by the players and associated with S is

denoted by E(S) and defined as {(i, Si) : i = 1, · · · , n− 1}.
Let S be any state. We denote by con(S) and dis(S) the
players who are connected and disconnected from the source,
respectively. Let CCS be the connected component of E(S)
that contains the source and E(CCS) be the edges of the
connected component CCS . TS = E(CCS) ∩ E(S). Note
that TS is a tree, since TS is connected by construction and
contains exactly |TS |+1 vertices. Note also that con(S) is the
vertex set of CCS \ {0} and TS = {(i, Si) : i ∈ CCS \ {0}}.

We suppose that every player wants to be connected to
the source at the least possible cost. To do so the players
interact with a protocol which, given the strategy profile,
allocates a cost to the players. More formally, given a graph
G, a cost allocation protocol (or, simply, a protocol) is a
map c : (R+)m × NG → (R+)n−1, which assigns to every
weight vector w ∈ (R+)m and every state S ∈ NG a cost
vector (c1(w, S), · · · , cn−1(w,S)) ∈ (R+)n−1 (if the weight



function is clear from the context and no confusion arises we
simply denote it as (c1(S), · · · , cn−1(S))).

A cost allocation protocol c such that
∑

i∈con(S) ci(S) =
w(TS) for every strategy profile S is said budget balanced.
This property implies that the cost of the edges in the network
connected to the source is fully supported by its users. In
the remaining of the paper we will focus on budget balanced
protocols and the associated strategic games (V \{0},NG , c).

Given a protocol c, a strategy x ∈ NG(i) is a better response
of player i with respect to the strategy profile S if ci(x, S−i) <
ci(S). We say that x is a best response when ci(x, S−i) =
miny∈NG(i) ci(y, S−i).

A state S is a Nash equilibrium of the game, if for every
player i, it holds that Si is a better response of player i to
S−i. For a state S and a player i, let NS(i) be the sets of
strategies of player i resulting from a better response of player
i, ie., NS(i) = {j ∈ {0, . . . , n − 1} : ci(j, S−i) < ci(S)}; in
particular, NS(i) ⊆ NG(i) and S is a NE iff NS(i) = ∅ for
every i ∈ {1, . . . , n− 1}.

A Better Response Dynamic (BRD, also called Nash dy-
namics) (associated with a protocol c) is a sequence of states
S0, S1, . . . , such that each state Sk (except S0) is resulted by
a better response of some player from the state Sk−1. Note that
if a better response dynamic reaches a Nash equilibrium after
a finite number of states, then no further changes of strategies
are expected (if we assume that a player changes his strategy
only if he strictly prefers a different strategy).

III. DYNAMICS OF PROTOCOLS

In this section we are interested in analyzing properties of
cost allocation protocols in connection situations where agents
are continuously prepared to improve their payoff in response
to changes made by other agents. How should we design cost
allocation protocols to minimize the efficiency loss caused by
selfish players that are only willing to perform update leading
to an immediate reduction of their individual cost shares?

A natural approach to this problem is the analysis of each
BRD associated with a certain protocol. With this objective,
the following properties should be considered.

Definition 1 (CONV): We say that a cost allocation pro-
tocol converges to an equilibrium iff every associated BRD
reaches a Nash equilibrium.

We say that a Nash equilibrium S is efficient iff the corre-
sponding graph E(S) is a minimum cost spanning tree (mcst)
(i.e. w(E(S)) equals the minimum cost over all networks
connecting all nodes in V ).

Definition 2 (OPT): We say that a cost allocation protocol
is optimal iff every associated BRD reaches an efficient Nash
equilibrium.

Obviously the OPT property implies the CONV one. The
protocol based on the Bird rule, which charges each player i
in state S with the weight w(i, Si) is budget balanced, CONV
but not OPT [15].

Consider the following property for cost allocation proto-
cols.

0

1 2

2 3

1

Fig. 1. Illustration of Proposition 1.

Definition 3 (IMON): We say that a cost allocation protocol
is Individually Monotonic iff for every S ∈ NG , i ∈ con(S)
and Ŝi ∈ NG(i)

w(i, Ŝi) ≥ w(i, Si) ⇒ ci(Ŝi, S−i) ≥ ci(S).

Looking at the motivations that justify the interest in mono-
tonicity properties in the cooperative setting, one could erro-
neously argue that individual monotonicity is a good candidate
property to guarantee the implementation of a network of
minimum cost. However, it is easy to show that there is no
cost allocation protocol which satisfies both IMON and OPT
properties, implying that a large family of cost monotonic
solution from the literature on minimum cost spanning tree
games are not optimal in this framework [20].

Proposition 1: There is no cost allocation protocol which
satisfies both IMON and OPT properties.

Proof: Suppose it exists a protocol c which is IMON and
OPT. Consider the instance of Figure 1 and the suboptimal
strategy profile where player 1 plays 2 while player 2 plays
0. If a player changes his strategy then his cost increases.
Indeed, if player 1 plays 0 then his cost increases by IMON.
Meanwhile, if player 2 plays 1 then he is not connected
anymore so his cost is infinite. So this state is a Nash
equilibrium but not an efficient one1.

Another property that is particularly valuable in the anal-
ysis of the endogenous formation of networks is the state-
dependent property, saying that the allocation of the cost of
the network TS connected to the source in a state S should
not depend on the edges not constructed under S.

Definition 4 (SDEP): We say that a cost allocation protocol
is State Dependent iff for every state S, for every weight
functions w ∈ (R+)m and w′ ∈ (R+)m, with w(e) = w′(e)
for every e ∈ TS , then ci(w,S) = ci(w

′, S) for every
i ∈ con(S).

This property allows for the continuous control of the charge
procedure by means of the simple observation of the edges
constructed under state S, without assuming the knowledge of
the weights of the links of the entire network (see for instance
the class of construct and charge (CC)-rules in [21] for a
family of cost allocation protocols that meet the requirement of
continuous monitoring by the agents involved). Unfortunately,
also this property is incompatible with the OPT property, as
it is shown by the following proposition.

Proposition 2: There is no cost allocation protocol which
satisfies both SDEP and OPT properties.

1For illustrative purposes, this proof is based on a situation with only two
players; obviously, the same considerations apply to situations with more than
two players.



Proof: By Proposition 1, it is sufficient to prove that if
a cost allocation protocol satisfies SDEP and OPT properties
than it is satisfies IMON property too.

Suppose it does not. This means there exists S, i and Ŝi such
that w(i, Ŝi) ≥ w(i, Si), and ci(w, (Ŝi, S−i)) < ci(w,S).
Take a weight function w′ ∈ (R+)m, where w′(e) = w(e)
if e ∈ TS ∪ {(i, Ŝi)} or if e /∈ E(CCS), and the cost of all
the other edges with vertices in CCS is maxe∈E{w(e)}+ 1.
So the graph TS is the unique optimal tree with respect to
w′. By the SDEP property, we have that ci(w′, (Ŝi, S−i)) =
ci(w, (Ŝi, S−i)) < ci(w,S) = ci(w

′, S), which yields a
contradiction with the OPT property.

Therefore, in order to prosecute in our research for the
OPT property, we must renounce to some interesting and
well studied properties of cost allocation protocols in the
cooperative setting, like obligation rules [28], which are cost
monotonic, and CC-rules [21], which are state-dependent.
Nevertheless, next section shows that optimal budget balanced
protocols exist.

IV. TWO OPTIMAL PROTOCOLS

We assume that the edges of G satisfy w(e1) ≤ w(e2) ≤
· · · ≤ w(em). In the following, we always compute a mcst
with Kruskal’s algorithm applied on that edge order.

Let T ∗
S be the mcst built using Kruskal’s algorithm on the

subgraph G[con(S)]. We denote by OPTS the total weight
of T ∗

S , and by S∗ a state which corresponds to T ∗
S .

We say that a player i ∈ con(S) follows T ∗
S in S iff Si =

S∗
i . In other words, the strategy of player i is his first neighbor

in the unique path from him to the source 0 in the tree T ∗
S .

Let ∆(S) =
∑

e∈E(CCS) w(e)−OPTS ; it is the difference
between the weight of the edges built by the players connected
to the source and the minimal weight for connecting these
players.

We propose two protocols. Recall that the cost of a non
connected player is infinite, so to define a protocole we shall
define the cost of connected players (as previously noted, all
the players will be connected in any Nash equilibrium).

In the first protocol, all connected players fairly share the
cost of an optimal network (namely OPTS

|con(S)| ) except one
player, denoted by f(S), who is charged OPTS

|con(S)| plus the
extra cost of the current state ∆(S).

In the second protocol, all connected players who follow
the optimal strategy profile T ∗

S pay according to the Bird rule
while the other connected players (who do not follow T ∗

S) pay
what they should pay in T ∗

S with the Bird rule plus an extra
cost. We assume that this extra cost is fairly distributed, but
actually the result holds for any extra cost.

Our protocols rely on a particular set of players: we define
V̂ (S) as the players of con(S) such that Si ̸= S∗

i and
con(S) = con(S∗

i , S−i). In other words, these players do
not follow T ∗

S and if they unilaterally change their strategy to
follow it, then the set of connected players remains unchanged.

Lemma 1: The following properties hold for every state S:
(i) If ∃i ∈ con(S) such that Si ̸= S∗

i then V̂ (S) ̸= ∅.

0
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Fig. 2. Two connection situations with two agents, one with symmetric
agents and two mcsts (left side) and one asymmetric agents (right side).

(ii) If dis(S) ̸= ∅, then ∃i ∈ dis(S) such that NG(i) ∩
(con(S) ∪ {0}) ̸= ∅.
Proof: Let S be a state.

For (i). Take any player i ∈ con(S) such that Si ̸=
S∗
i . Removing the edge (i, Si) from E(CCS) provides two

connected components CC0 (where the source is) and CCi

(where i is). If S∗
i belongs to CC0 then i ∈ V̂ (S) because

con(S) = con(S∗
i , S−i). Otherwise S∗

i ∈ CCi and consider
the path, in T ∗

S , from i to the source. Denote by j the last
node of CCi visited when walking from i to 0 on the path. It
must be S∗

j ∈ CC0 and Sj ̸= S∗
j (otherwise E(CCS) is not

a tree). Thus j ∈ V̂ (S).
For (ii). Assume dis(S) ̸= ∅ and let j ∈ dis(S). Since

G is connected there is a path from the source 0 to j. Let
i ∈ dis(S) be the first encountered vertex of this path when
we start from 0. Hence, an edge (i′, i) belongs to this path
with i′ ∈ (con(S) ∪ {0}).

A. An egalitarian protocol

Let f(S) = min V̂ (S) be the node of V̂ (S) with minimum
index if V̂ (S) ̸= ∅ and f(S) = ∅ otherwise (using (i) of
Lemma 1). In the protocol, f(S) is charged OPTS

|con(S)| +∆(S)

while any other connected node pays OPTS

|con(S)| .
Formally, we get: ci(S) = OPTS

|con(S)| for i ∈ con(S) \
{f(S)}, cf(S)(S) = OPTS

|con(S)| + ∆(S) if f(S) ̸= ∅ and
ci(S) = +∞ for i ∈ dis(S).

One can observe that the total weight of E(CCS) is always
covered by the connected players, i.e., the protocol is budget
balanced.

Example 1: Consider the connection situations depicted in
Figure 2. Note that on the left side, the agents are symmetric
in the graph (two nodes i and j are symmetric in a graph if
w(i, k) = w(j, k) for every other node k). As a consequence,
there are two minimum cost spanning trees of total cost
20: {(1, 2), (0, 2)} and {(1, 2), (0, 1)}. Differently, in the
connection situation on the right side, there is a unique mcst
of cost 20: {(1, 2), (0, 1)}.

The strategic games associated with the protocol introduced
in this section with respect to the mcst T ∗

S = {(1, 2), (0, 1)}
and the connection situations depicted in Figure 2 are shown
in Table I. Looking at the left table, corresponding to the
network depicted in Figure 2, left side, we observe that even if
players 1 and 2 are symmetric, in state (0, 0) player 2 seems to
be penalized (he pays more than its direct connection to the
source). On the other hand, both Nash equilibria (2, 0) and
(0, 1) are efficient.



TABLE I
STRATEGIC GAMES CORRESPONDING TO FIGURE 2 USING THE

EGALITARIAN PROTOCOL.

1\2 0 1
0 10, 30 10, 10
2 10, 10 ∞,∞

1\2 0 1
0 10, 50 10, 10
2 30, 10 ∞,∞

Instead, in the right table, corresponding to the network in
Figure 2, right side, we observe that agent 1 is better off when
passing from state (2, 0) to state (0, 0), even if the weight of
the link to edge (1, 2) is smaller than the weight of edge (0, 1).
As expected, the protocol does not satisfy the IMON property
(similarly, we may observe that neither the SDEP property
holds: simply increase the cost of the edge (0, 1) from 20 to
22 in the network of Figure 2, right side, all the other costs
remaining the same; we have that under the state (2, 0) the
protocol would attribute 29 to player 1 and 11 to player 2).

Proposition 3: Every state corresponding to a mcst is a
Nash equilibrium

Proof: Let OPT be the weight of any mcst. In a state
S corresponding to a mcst, all players pay OPTS/(n− 1) =
OPT/(n−1) because ∆(S) = 0. Thus, no player can deviate
and decrease his cost. Note that f(S) can be non empty if an
optimal solution is not unique.

Proposition 4: Any state S which does not correspond to
a mcst is not a Nash equilibrium.

Proof: If ∆(S) = 0, then TS is a mcst on G[con(S)]
and not on G. So, dis(S) ̸= ∅; By (ii) of Lemma 1, there
is a player i ∈ dis(S) which can play j ∈ con(S). Let
S′ = (S−i, j) be the state resulting of this modification. We
have ci(S

′) < +∞ = ci(S).
If ∆(S) > 0, then the player f(S), who pays OPTS

|con(S)| +

∆(S), can play S∗
i and pay OPTS

|con(S)| .
As indicated in the previous sections, we consider the better

response dynamics (BRD), a well known process which starts
from any given state and, while it is possible, let one player
take a better move. We say that BRD converges if it always
ends.

Let Φ be a potential function which maps a state S to the
vector

(|dis(S)|, |E(S∗) \ E(S)|, f(S), |NS(f(S))|)

where we recall that NS(f(S)) is the set if strategies
corresponding to a better response for f(S).

A vector X ∈ Nr is lexicographically smaller than another
vector Y ∈ Nr, denoted by X ≺ Y , if one of the following
cases occurs:

• X1 < Y1

• Xi < Yi for some i ∈ {2, · · · , r} while Xj = Yj for all
j < i.

Lemma 2: Let S and S′ be two states which only differ on
the strategy of one player i. If ci(S

′) < ci(S) then Φ(S′) ≺
Φ(S).

Proof: Player i has taken a better move. Suppose i ∈
dis(S). We get that i /∈ dis(S′) and after i’s deviation,

the number of disconnected players can only decrease strictly,
meaning that Φ(S′) ≺ Φ(S).

Now suppose that i ∈ con(S). It is clear that i ∈ con(S′)
since i takes a better move. It immediately follows that
con(S) = con(S′) and OPTS = OPTS′ .

If ci(S) = OPTS

|con(S)| then there is no way for i to change his
strategy and decrease his cost so we can assume that ci(S) =

OPTS

|con(S)| +∆(S), implying that i = f(S).
If i = f(S) deviates and plays S′

i = S∗
i instead of Si then

|E(S∗)\E(S)| decreases by one unit while |dis(S)| remains
unchanged; thus Φ(S′) ≺ Φ(S).

Now suppose that i = f(S) deviates and plays S′
i ̸= S∗

i .
Then |E(S∗) \ E(S)| and |dis(S)| remain unchanged. In
addition i belongs to V̂ (S′), meaning that f(S) ≥ f(S′).
Either f(S′) < f(S), implying that Φ(S′) ≺ Φ(S). Otherwise
f(S′) = f(S). Since i has taken a better move, ci(S) =

OPTS

|con(S)| +∆(S) > OPTS′
|con(S′)| +∆(S′) = ci(S

′) from which
we deduce that ∆(S) > ∆(S′) because OPTS = OPTS′

and con(S) = con(S′). Since the strategies of other players
remains unchanged, it follows that NS′(f(S′)) ⊂ NS(f(S)),
implying |NS′(f(S′))| < |NS(f(S))|; thus Φ(S′) ≺ Φ(S).

Theorem 1: BRD always converges after at most ∆(G)n3

rounds where ∆(G) is the maximum degree of the graph G.
Proof: Using Lemma 2, each state S is immediately

followed by another state S′ such that Φ(S′) ≺ Φ(S).
Thus BRD can not run into a cycle. Since a finite number
of states exists, there is at least one minimal state for ≺,
meaning that BRD always converge. Now, since for any state
S, |dis(S)| ≤ n− 1, |E(S∗) \E(S)| ≤ n− 1, f(S) ≤ n− 1
and |NS(f(S))| ≤ ∆(G), and Φ(S) always decreases lex-
icographically when the player who deviates plays a better
response, then BRD converges after at most ∆(G)(n − 1)3

rounds.
Corollary 1: BRD converges after at most n3 rounds if the

players play their best response.
Proof: Consider the function Ψ which maps any state S

to the vector (|dis(S)|, |E(S∗)\E(S)|, f(S)). First, observe
that either a disconnected vertex chooses to be connected, or
the connected vertex f(S) chooses to follow a strategy leading
to a new state S′ with f(S′) ̸= f(S) because f(S) plays a
best response. Since |dis(S)|, |E(S∗)\E(S)| and f(S) range
from 0 to n− 1, there are at most n3 values for Ψ(S).

B. A Bird’s like protocol

In this second protocol, the costs of players are given by:
• If i ∈ dis(S), then ci(S) = +∞,
• If i ∈ con(S) \ V̂ (S), then ci(S) = w(i, Si),
• If i ∈ V̂ (S), then ci(S) = w(i, S∗

i )+
∆(S)

|V̂ (S)| = w(i, Si)+
∆(S)

|V̂ (S)| where ∆(S) = w(TS) − OPTcon(S) (actually
here, we can take any cost function w(i, S∗

i )+gi(S) such
that (i) gi(S) > 0 and (ii)

∑
i∈con(S) gi(S) = ∆(S).

Note that the protocol is clearly budget balanced.
Example 2: Consider again the connection situations de-

picted in Figure 2.



TABLE II
STRATEGIC GAMES CORRESPONDING TO FIGURE 2 USING THE BIRD’S

LIKE PROTOCOL.

1\2 0 1
0 20, 20 20, 0
2 20, 0 ∞,∞

1\2 0 1
0 20, 40 20, 0
2 40, 0 ∞,∞

The strategic games associated with the protocol introduced
in this section with respect to the mcst T ∗

S = {(1, 2), (0, 1)}
and the connection situations depicted in Figure 2 are shown
in Table II. Looking at the left table, corresponding to the
network depicted in Figure 2, left side, we observe that even if
players 1 and 2 are symmetric, both Nash equilibria (2, 0) and
(0, 1) are efficient and correspond to the allocation provided by
the Bird rule under the network T ∗

S , which strongly penalizes
player 2 in the NE (2, 0) where the mcst {(1, 2), (0, 2)} is
constructed.

Again, in the right table, corresponding to the network in
Figure 2, right side, we observe that the protocol does not
satisfy the IMON property, passing from state (2, 0) to state
(0, 0).

Proposition 5: Every state corresponding to a mcst is a
Nash equilibrium

Proof: Assume that it is not the case. Thus, there is an
optimal state R (with w(TR) = OPT ) and another state S =
(R−i, j) such that ci(S) < ci(R). Note that ∆(R) = 0 so
ci(R) = w(i, Ri). ci(S) is finite so i is still connected and
con(S) = V \ {0}. The spanning trees TR and TS differ
only on one edge (w(i, Ri) in TR and w(i, Si) in TS) so by
optimality of TR we get that w(i, Ri) ≤ w(i, Si). We have
ci(R) = w(i, Ri) ≤ w(i, Si) ≤ ci(S), contradiction.

Proposition 6: Any state S which does not correspond to
a mcst is not a Nash equilibrium.

Proof: Assume con(S) = V since otherwise by (ii) of
Lemma 1 S is clearly not a Nash equilibrium.

Hence, V̂ (S) ̸= ∅ by (i) of Lemma 1 (w(TS) ̸= OPT
and con(S) = V \ {0}). Then, there exists i ∈ V̂ (S) such
that (TS ∪ {(i, S∗

i )}) \ {(i, Si)} is a spanning tree. Consider
the state S′ = (S−i, S

∗
i ). Now, we have i /∈ V̂ (S′); so

ci(S
′) = w(i, S∗

i ). On the other hand, i ∈ V̂ (S) implies
ci(S) = w(i, S∗

i ) +
∆(S)

|V̂ (S)| > w(i, S∗
i ) because w(TS) >

OPT . Hence, ci(S′) < ci(S).
In any case, S is not a NE and the result is proved.
Let Φ(S) = (|dis(S)|, |V̂ (S)|,

∑
i∈V̂ (S) |ES(i)|) be a

potential function, where ES(i) = {j ∈ {0, . . . , n − 1} :
w(i, j) < w(i, Si)}.

Lemma 3: Let S and S′ be two states which only differ on
the strategy of a player i. If ci(S

′) < ci(S) then Φ(S′) ≺
Φ(S).

Proof: Player i has taken a better move. Suppose i ∈
dis(S). We get that i /∈ dis(S′) and after i’s deviation,
the number of disconnected players can only decrease strictly,
meaning that Φ(S′) ≺ Φ(S). Now suppose that i ∈ con(S).
Obviously, con(S) = con(S′). We prove that i ∈ V̂ (S).
Otherwise, i ∈ con(S) \ V̂ (S) and then, ci(S) = w(i, Si) =

w(i, S∗
i ). Now, if i changes its strategy, then i ∈ V̂ (S′), and

ci(S
′) = w(i, S∗

i )+
∆(S′)

|V̂ (S′)| ≥ w(i, S∗
i ) = ci(S), contradiction.

Hence, i ∈ V̂ (S) and then, ci(S) = w(i, S∗
i )+

∆(S)

|V̂ (S)| . Two

possibilities, either i ∈ con(S′) \ V̂ (S′) or i ∈ V̂ (S′).
• If i ∈ con(S′) \ V̂ (S′) = con(S) \ V̂ (S′), then

|V̂ (S′)| = |V̂ (S)| − 1. Hence, Φ(S′) ≺ Φ(S).
• If i ∈ V̂ (S′), then ci(S

′) = w(i, S∗
i ) +

∆(S′)

|V̂ (S′)| . Observe

that V̂ (S′) = V̂ (S). Since ci(S
′) < ci(S) by hypothesis,

we deduce that ∆(S′) < ∆(S). Thus, w(i, S′
i) < w(i, Si)

which means |ES′(i)| < |ES(i)|. On the other hand, ∀j ∈
V̂ (S) \ {i}, ES′(j) = ES(j).
In conclusion,

∑
j∈V̂ (S′) |ES′(j)| <

∑
j∈V̂ (S) |ES(j)|

and Φ(S′) ≺ Φ(S).
In any case, Φ(S′) ≺ Φ(S).

Theorem 2: BRD always converges after at most mn2

rounds, where m is the number of edges of G.
Proof: Using Lemma 3, each state S is immediately

followed by another state S′ such that Φ(S′) ≺ Φ(S).
Thus BRD can not run into a cycle. Since a finite number
of states exists, there is at least one minimal state for ≺,
meaning that BRD always converge. Now, since for any state
S, |dis(S)| ≤ n − 1, |V̂ (S)| ≤ n − 1 − |dis(S)| and∑

j∈V̂ (S) |ES(j)| ≤ mS ≤ m, then BRD converges after at

most mn2

2 rounds.

V. CONCLUSIONS

In this paper we have studied cost allocation protocols for
connection situations in a strategic setting. We have presented
a model that can be easily adapted to the model of network
formation on communication graphs, and we have analyzed
properties for protocols in relation the the convergence of
the best reply dynamics to efficient Nash equilibria. These
properties have driven our analysis to the definition of two
optimal budget balanced protocols. As a consequence, the
question concerning the existence of optimal protocols has
been positively answered in this paper.

The method used to define our protocols might lead to
the definition of many other optimal protocols, depending on
the rule according to which the cost of a mcst is allocated
among the players. As illustrated by numerical examples, the
inherent limitations of the optimal protocols proposed in this
paper is that symmetric players may be treated differently,
depending on the choice of an a priori selected mcst. The
question about the existence of optimal protocols which treat
symmetric players in a more equitable manner remains open.

SUPPORT

This work is supported by French National Agency (ANR),
project COCA ANR-09-JCJC- 0066-01.

REFERENCES

[1] R. Aumann and R. Myerson. Endogenous formation of links between
players and coalitions: an application of the shapley value. The Shapley
Value, pages 175–191, 1988.



[2] G. Bergantiños and A. Kar. On obligation rules for minimum cost
spanning tree problems. Games and Economic Behavior, 69(2):224–
237, 2010.

[3] G. Bergantiños and L. Lorenzo. A non-cooperative approach to the cost
spanning tree problem. Mathematical Methods of Operations Research,
59(3):393–403, 2004.

[4] G. Bergantiños and L. Lorenzo. Optimal equilibria in the non-
cooperative game associated with cost spanning tree problems. Annals
of Operations Research, 137(1):101–115, 2005.

[5] G. Bergantiños and J. Vidal-Puga. On some properties of cost allocation
rules in minimum cost spanning tree problems. AUCO Czech Economic
Review, 2(3):251–268, 2008.

[6] A. Bianzino, C. Chaudet, D. Rossi, J. Rougier, and S. Moretti. The
green-game: striking a balance between qos and energy saving. In
Proceedings of the 23rd International Teletraffic Congress, pages 262–
269. ITCP, 2011.

[7] C. Bird. On cost allocation for a spanning tree: a game theoretic
approach. Networks, 6(4):335–350, 1976.

[8] R. Branzei, Z. Gök, S. Moretti, and S. Tijs. Connection situations under
uncertainty and cost monotonic solutions. Computers and Operations
Research, 38(11):1638, 2011.

[9] R. Branzei, S. Moretti, H. Norde, and S. Tijs. The p-value for cost
sharing in minimum cost spanning tree situations. Theory and Decision,
56(1):47–61, 2004.

[10] A. Claus and D. Kleitman. Cost allocation for a spanning tree. Networks,
3(4):289–304, 1973.

[11] N. R. Devanur, M. Mihail, and V. V. Vazirani. Strategyproof cost-sharing
mechanisms for set cover and facility location games. Decision Support
Systems, 39(1):11–22, 2005.

[12] B. Dutta and A. Kar. Cost monotonicity, consistency and minimum cost
spanning tree games. Games and Economic Behavior, 48(2):223–248,
2004.

[13] V. Feltkamp, S. Tijs, and S. Muto. Birds tree allocations revisited. Game
Practice: Contributions from Applied Game Theory, pages 75–89, 2000.

[14] I. Gilboa and A. Matsui. Social stability and equilibrium. Econometrica,
59(3):859–867, 1991.

[15] L. Gourvès and J. Monnot. Three selfish spanning tree games. Internet
and Network Economics, pages 465–476, 2008.

[16] D. Granot and G. Huberman. Minimum cost spanning tree games.
Mathematical Programming, 21(1):1–18, 1981.

[17] D. Granot and G. Huberman. On the core and nucleolus of minimum
cost spanning tree games. Mathematical Programming, 29(3):323–347,
1984.

[18] M. Jackson. A survey of network formation models: stability and effi-
ciency. Group formation in economics: Networks, clubs and coalitions,
pages 11–57, 2005.

[19] M. Jackson. Social and economic networks. Princeton Univ Pr, 2008.
[20] S. Moretti. Cost Allocation Problems Arising from Connection Situations

in an Interactive Cooperative Setting. CentER, Tilburg University, 2008.
[21] S. Moretti, S. Tijs, R. Branzei, and H. Norde. Cost allocation protocols

for supply contract design in network situations. Mathematical Methods
of Operations Research, 69(1):181–202, 2009.

[22] R. Myerson. Game theory: analysis of conflict. 1991. Cambridge: Mass,
Harvard University.

[23] R. Myerson. Graphs and cooperation in games. Mathematics of
operations research, pages 225–229, 1977.

[24] H. Norde, S. Moretti, and S. Tijs. Minimum cost spanning tree games
and population monotonic allocation schemes. European Journal of
Operational Research, 154(1):84–97, 2004.

[25] M. Slikker. Decision making and cooperation structures. Tilburg:
CentER Dissertation Series, 2000.

[26] M. Slikker and A. van den Nouweland. Network formation models with
costs for establishing links. Review of Economic Design, 5(3):333–362,
2000.

[27] H. Tembine, S. Lasaulce, M. Jungers, et al. Joint power control-
allocation for green cognitive wireless networks using mean field theory.
In Proc. 5th IEEE Intl. Conf. on Cogntitive Radio Oriented Wireless
Networks and Communications (CROWNCOM), page 15, 2010.

[28] S. Tijs, R. Branzei, S. Moretti, and H. Norde. Obligation rules for
minimum cost spanning tree situations and their monotonicity properties.
European journal of operational research, 175(1):121–134, 2006.

[29] S. Tijs, S. Moretti, R. Branzei, and H. Norde. The bird core for
minimum cost spanning tree problems revisited: monotonicity and

additivity aspects. Recent Advances in Optimization, pages 305–322,
2006.


