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Abstract—In the context of smart energy grids, demand-side
management refers to the ability of dynamically controlling and
scheduling energy-consuming tasks. In one potential deployment
scenario, smart appliances are controlled by a local intelligent
software agents, which implement a given optimization algorithm
for scheduling such tasks. The higher the fraction of users
adopting such technology, the higher the advantage for the energy
operator, due to the ability to control load curve and smooth
peaks. At the same time, single users may incur some penalties,
related to the fact that energy-consuming tasks may be deferred,
thereby causing inconveniences.
In this paper we take a game-theoretical perspective at demand-
side management techniques. Tools and solution concepts from
evolutionary games are employed: we are interested in the
dynamics of the adoption of demand-side management schemes
by intelligent software agents. We focus on distributed control
schemes that can be enforced by the operator through pricing
schemes. Agent-based numerical simulations are provided to
validate our theoretical results.

Index Terms—demand side management, customer adoption
model, pricing schemes, incentives, game theory, evolutionary
stable strategies, replicator dynamics

I. INTRODUCTION

Energy systems are customarily dimensioned based on peak
demands. If the demand curve presents a high peak-to-average
ratio, this introduces inefficiency and additional costs for the
utility providers. Also, when a power supplying company
receives more demand for electrical power than it can deliver,
it has to resort to rationing of the available electricity to its
customers, possibly incurring in contractual violations due to
the performed load shedding. Solutions able to smooth peaks
in the demand pattern are therefore appealing for operators,
in that they can lead to significant savings in both capital and
operational expenditures.

In order to smooth peak demands, systems for dynamically
adapting demand have been applied in the past to cope
especially with “big customers” demands, i.e., big industrial
plants with specific type of provisioning, which can be planned
“on demand” at the operator side with no need for large scale
deployments. However, the situation is recently changing [13],
due to the possibility to install smart energy meters on a much
larger scale, e.g., covering thousands of domestic appliances
in residential areas.

To this respect, the term “demand response” is used to
denote a class of new methods for dynamically adapting
demands according to some form of control policies. Demand-
side management (DSM), in particular, refers to a technique

for the automated control and scheduling of the execution of
tasks whose completion requires a given amount of energy.
Such tasks can be performed, e.g., at the premises of the
customer of an electricity provider as in the case of domestic
appliances.

The control can be performed in a centralized fashion by the
electricity distribution (as in direct load control [12], [3]) or
performed in a distributed fashion by intelligent and networked
software agents [18], [15]. In the first case, the operator tries
to optimize the aggregated demand curve, aiming therefore at
maximizing cost savings. In the second case, agents operate
on behalf of the user, trying to optimize an objective function
that depends on the costs incurred as well as on the delay in
the completion of tasks’ execution.

In both cases, the adoption of DSM techniques let the
users incur some form of penalty, in the form of costs for
upgrading their appliances to DSM-enabled ones and/or of
discomfort related to delays in tasks’ execution. The operator
shall therefore adopt appropriate pricing and incentive schemes
to encourage adoption by customers of DSM technology, while
maximizing its own payoff in terms of cost savings. Much
literature exists on the investigation of the effect of real-time
pricing [4], [12]. Notwithstanding, the question of how to
effectively design pricing schemes to foster the adoption of
DSM solutions by customers remains unsolved.

In this paper, we present a game-theoretical framework
for analysing and predicting the adoption of DSM solutions
by users under two different pricing schemes. The pricing
schemes analysed differ in the way the costs sustained by a
user change as a function of the fraction of customers adopting
DSM solutions. In particular, such schemes can be used as
transitional solutions in order to incentive the adoption of DSM
and to overcome existing barriers.

The most innovative contribution of our work is that we
account for interactions among users (or, more precisely:
between control agents serving different users). In this way
agents can compare their actual electricity costs, and possibly
decide to change their strategy to obtain an economical benefit.
To model and study this problem, we rely extensively on
concepts and tools from evolutionary games theory [23], [28],
[10], [6].

We consider a number of pricing schemes that energy
distributor may apply and, for each of them, we derive the
equilibrium points of the system (in the form of Evolution-
ary Stable Strategies [28]), i.e., the ones at which, roughly
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speaking, the fraction of smart agents adopting DSM schemes
does not change over time in the presence of (limited) per-
turbations, including, e.g., the presence of ’irrational’ choices.
In particular, we are able to determine various conditions on
the pricing schemes that can affect the resulting equilibrium.
Not always the adoption of DSM will be able to “invade” the
whole customers population: non-trivial equilibrium may arise,
in which only a fraction of agents adopt DSM, even in the
presence of a fully homogeneous population. Our theoretical
findings are validated by means of numerical simulations
obtained using an agent-based simulator.

The remainder of the paper is organized as follows. In
Sec. II we revise the relevant state-of-art. The system model
we use (including the two pricing schemes considered) is
elucidated in Sec. III. Results in terms of equilibria and
system dynamics are presented in Sec. IV. Validation through
comparison with simulation outcomes is provided in Sec. V.
Sec. VI concludes the paper pointing out directions for future
extensions.

II. BACKGROUND AND RELATED WORK

A. Games, Rationality and Nash Equilibrium

The standard theory of non-cooperative game theory dates
back to 1944, with seminal works of von Neumann [26] and
later, in the 1950s, of Nash [16]. Since then, game theory has
been applied to diverse domains, in particular in economics
and in the military strategies field.

According to game theory terminology [8], agents are
entities with autonomous decision-making capabilities.1 Their
decision is in terms of strategy to be adopted.

In non-cooperative games, agents cannot or do not want to
communicate with other agents and reach a binding agreement
on the joint strategy set to be used (e.g., on the way they would
share resources). Thus, each agent can react to the current
conditions of the system, i.e., a configuration of players’
strategies, e.g., a state, and try to improve her own utility
in a selfish fashion.

A cornerstone of game theory is the notion of Nash equi-
libria. They are defined as configurations of the strategies of
players such that no one of them can increase its payoff by
unilaterally deviating from the current profile, provided that
all other players do not deviate. The celebrated results of
Nash establish the existence of a mixed Nash equilibrium for
any finite game, i.e., a game with a finite set of players and
strategies and where each user chooses strategies according to
a (possibly non-atomic) probability distribution.

Such a notion of equilibrium presents three issues. The first
one is on the efficiency of a Nash Equilibrium with respect to
a centrally enforced socially optimal strategy profile. In many
situations of practical interest, Nash equilibria tend to be rather
inefficient in terms of social welfare. The second issue relates
to the assumption that players are rational, i.e., that a player

1In this paper we will use, with a slight abuse of terminology, the word
agents interchangeably for both the entities taking decisions as well as their
actual embodiment in a computer program.

would always choose a best response to the system state, in
terms of maximizing her own utility. When agents are humans,
they may behave in an irrational way or may not be aware
of the complete structure of the game, thereby taking non-
optimal decisions. The third issue relates the reachability of
an equilibrium: under which conditions the system’s dynamics
is actually able to drive the system to a certain configuration
and how much it would take for the system to stabilize there.

B. Evolutionary Games

The latter two questions have been addressed extensively in
the domain of evolutionary games, developed first for biologi-
cal systems [14], [23]. Evolutionary games deal precisely with
the dynamics of strategies within a population, i.e., how many
players adopt a certain strategy. The goal is to understand what
is the resulting mixture of strategies. E.g., in a two-strategy
game, we are interested in the fraction of players adopting
the first strategy or the second one. In evolutionary games,
assumptions on users’ rationality are weak; users are supposed
to follow a myopic imitation scheme [21], i.e., to decide on
which strategy to adopt based on the immediate advantage they
could get. This is done by assuming that players may interact,
so that they may revise their strategies based on some form of
comparison of the relative utility that they can get using one
strategy or the other, and possibly switch to the other one. This
may happen for example after a local interaction, i.e., when
a player confronts an opponent in a two player game. At a
larger scale, the system’s evolution is driven by repeated local
interactions and by the revision of strategy that the players
perform 2. Overall, evolutionary game theory studies non-
cooperative games that are played repeatedly, and identifies
distributions of strategies over the population that persist over
time because are able to provide the highest fitness of a user.

This type of models – defined initially in the context of bio-
logical systems – have been later applied to engineering [24],
[2] and economics [21].

1) Evolutionary Stable Strategies and Replicator Dynam-
ics: The two main concepts in evolutionary games are the
notion of an Evolutionary Stable Strategy (ESS), and the
dynamics of the game. The ESS was introduced first by 1972
by the biologist Maynard Smith [14]. ESS provides a notion
of stability of a population against invaders, i.e., subsets of
players who deviate from a given configuration of the system
state. Those invaders are called mutants. The presence of
an ESS for the system guarantees that whenever the ESS is
reached, then the proportions of each strategy in the population
do not change over time. Furthermore, at ESS, populations are
immune from being invaded by small fractions of mutants.

The second main concept in evolutionary games is that
of replicator dynamics. It describes how, in an evolutionary
game setting, the distribution of strategies (or ’types’) of
a population evolve over time. Initially, it was introduced
in a biological setting to model how the population size

2One classical assumption is that interactions occur pairwise and revisions
follow a Poisson process: in this case the dynamics can be shown to converge
to a replicator dynamics [10].



of different species competing for a given (shared) resource
changes over time. In this respect, the payoff of a given agent
was meant to represent her reproductive rate. The replicator
dynamics is usually based on a set of ordinary differential
equations, of the Lotka-Volterra type, that define how the
distribution of strategies/types evolves over time, as a function
of the difference between the actual payoff of a given strategy
and the average one in the population. While all ESSs are
asymptotically stable in the replicator dynamics [28], the
converse is not true. It can be shown that a strategy profile
is an ESS if and only if it represents a strongly stable point
for the replicator dynamics [10]. This identifies conditions
under which the replicator dynamics converge to ESSs [10],
[21]. In the presence of multiple ESSs, the replicator dynamics
converges to one of them, depending on the initial conditions.
Further, it can be shown that the real dynamics of the system
converges, properly scaled, to the replicator dynamics [10],
[21]. The replicator dynamics is widely used as a good
approximation of the actual dynamics of the system.

It is worth remarking that, while in the biological context
the replicator dynamics models the self-organization of the
strategy distribution in the population, in the engineering or
economic scenario it can model the adoption of certain tech-
nology [2] or explain the performance of a system [1], which
makes the theory very appealing also to design incentives and
pricing schemes able to drive the system to a desired operating
point.

One classical framework for evolutionary games starts from
the analysis of local interaction made by symmetric two
players games, which fits the framework we deal with in the
following sections. In such games there are two players using
two strategies and the utility attained playing each strategy
against any chosen strategy does not depend on the player. A
classic yet very illustrative example from evolutionary biology
is the Hawk–Dove game [23]. In this game, there is a large
population of animals, i.e., players. Occasionally two animals
find themselves in competition on the same piece of food.
An animal can adopt an aggressive behavior or a peaceful
one. Hawk and dove are thus the two alternative strategies
that agents (or players) have the option to play in order to
gain a valuable resource. The standard evolutionary outcome
is a polymorphic population of hawks and doves. Yet, this is
not the optimal configuration for all individuals: in fact, when
all agents played Dove, the highest reproductive success for
all individuals would be attained. The analysis of the Hawk–
Dove game provides valuable insight into the conflict between
behaviors that are beneficial for the group and individual
behavior, and the corresponding population dynamics [28].

2) Stochastic Evolutionary Dynamics for Games: Replica-
tor dynamics is a deterministic model. However, evolutionary
games are inherently stochastic.

Indeed, depending on the scale one looks at the system,
one may need to account for several noise sources. In bio-
logical models, for instance, noise is useful to model inherent
differences between individuals. A general source of noise is
interaction noise [6]: individuals in a given population, in fact,

interact at random points in time (following some probability
distribution), and this has an impact on the relative density of
strategies in the system. Spatial or temporal perturbations in
the environment may also be present, leading to the introduc-
tion of further elements of randomness. The case of external
noise [7], [11] is not considered in this paper

Stochastic evolutionary games [22] is a branch at game the-
ory that looks at the stochastic evolution of the distribution of
strategies in an evolutionary game. This is useful in particular
for understanding the long-term behaviour of the system.

C. Demand-Side Management and Pricing
Schemes

Demand-side management [9] represents a technique for
modifying, either directly or indirectly, the aggregated electric-
ity demand curve. Usually, DSM is used to try to smooth peaks
in the energy demand curve, allowing electricity operators to
make a more effective use of available power plants.

In the recent years, thanks to the introduction to the mass
market of smart meters and remotely controlled electric ap-
pliances, there has been a surge in research works aimed
at designing effective ways to controlling and managing
energy demands. Besides direct load control (in which the
operator has full control over the customers’ appliances), it
is imperative to devise schemes to foster the adoption and
effective usage by customers of DSM technology, in the form
of ’energy boxes’ to be installed at the customer’s premises
and which run smart control agents, acting on behalf of the
users. Such schemes can take the form of pricing schemes
or incentives. One widely studied approach is to use pricing
signals (in particular: real time prices) to let agents adapt
autonomously their demand curve in such a way to achieve a
suitable aggregated one. In this scheme, agents are assumed to
be selfish and willing to minimize their electricity bill, subject
to some constraints to ensure usability of their appliances.

Authors of [12] analyze scheduling policies for both inter-
ruptible and non-interruptible loads; under causality assump-
tions the problem that the scheduler needs to solve is a Markov
decision process under utility maximization at the provider
side side.

In [4], a model for optimally adjusting the hourly load level
of a given consumer in response to hourly electricity prices
is presented. The objective is to maximise the utility of the
consumer subject to a number of constraints on load levels
and aggregated consumptions.

The authors of [20] provide an interesting game-theoretical
framework (based on algorithmic mechanisms design) for the
utility company to effectively price users employing DSM. It
is shown that the pricing scheme can be designed in such a
way that, by acting selfishly, users end up reaching the optimal
system-level operating point.

In [3] a dynamic pricing scheme incentivizing consumers
to achieve a suitable aggregate load profile is presented. It is
shown that, if users agree to share all their load profiles, an
efficient distributed mechanisms (based on cooperative game
between consumers) can be introduced.



A number of relevant works has been recently developed
within the multi-agent systems community. In [27] the authors
propose an agent-based decentralised control mechanism to
manage micro-storage in the smart grid based on a dynamic
pricing scheme. One work close in spirit to our one is [19], in
which the authors study a decentralized demand-side manage-
ment scheme in which agents coordinate to smooth load peaks.
It is shown that through such schemes significant reduction
in peak demand can be achieved. In the paper, the authors
also introduce an evolutionary game model; they show that
under their scheme the usage of demand-side management
mechanisms is always convenient. (In game theoretical terms,
the usage of DSM is a strictly dominating strategy.) In such
conditions the dynamics of the game is straightforwardly con-
verging to the single Nash equilibrium. Our work differs in that
we do not make specific assumptions on the DSM algorithm
employed, and consider all possible situations arising in terms
of user-perceived trade-off between monetary savings and
discomfort.

Last, a recent work by Couillet et al. [5] analyses, using
mean field games, the impact that the introduction of electric
vehicles can have on the variation and dynamics of electricity
prices.

III. SYSTEM MODEL

We consider a population of players able to choose between
two strategies: i.e., use or do not use DSM techniques. That is,
we do assume that software agents deployed at the customers’
premises have an embedded DSM algorithm, and can decide
whether to use it or not. In case DSM gets used, the user
may get a reduction in the energy bill, which depends on
(i) the DSM algorithm adopted and (ii) the total number of
agents adopting DSM, in that this influences the consumption
peaks and thereby the cost exposed by energy operators. At
the same time, the user incurs a penalty, due to the fact that
energy-consuming tasks may get deferred; again, such penalty
depends on the specific DSM algorithm used. The payoff the
agent obtains is the negation of the cost she sustains.

The main innovation of our model comes from the fact
that we couple the behaviour of different agents. That is, we
consider models in which the price experienced depends not
only on the strategy chosen by a given agents, but also on the
fraction of agents having opted for the usage of DSM.

A. Pricing Schemes

In this paper we consider two main pricing schemes. They
are different in the way prices for DSM adopters (and, hence,
costs sustained by the agents adopting DSM), vary as a
function of the fraction of the agents’ population which adopts
the DSM technology. For the sake of simplicity, we assume
that agents who do not use DSM techniques experience a
cost that is constant, irrespective of the fraction of DSM
adopters. (In this way opportunistic, ’freeriding’ behaviour
get discouraged, and only users adopting DSM are the ones
sharing the benefits of their choice.)

• Reinforcing incentives: the agents experience a reduction
in costs that is monotonically increasing in the fraction of
agents adopting DSM. The rationale behind this incentive
scheme is that the operator can better control the demand
curve (and hence reduce its costs) if there is a larger
share of the demand that is performed by DSM-enabled
customers and for which the demand can be managed in
elastic fashion.

• Vanishing incentives: the agents experience a reduction in
costs that is monotonically decreasing in the fraction of
agents using DSM. While this seems counter-intuitive,
it is an approach used in a variety of situations for
fostering usage of a new technology with key advantages
for the provider (in this case: the electricity distribution
operator)3

As we will see in the following, both schemes can perform
well as transitional mechanisms for the DSM technology
adoption, but attention should be paid to the dimensioning
of models’ parameters.

B. Notation and Terminology
We denote by S = {0, 1} the set of strategies, where “1”

denotes the usage of DSM technology. With standard notation
X = {(x1, x2) ∈ R2

+ : x1 + x2 = 1} defines the fraction of
the population using strategy i ∈ S [21]. In the case at hand
a single parameter is sufficient to describe the simplex, x, in
order to represent the fraction of agent using DSM: (x1, x2) =
(x, 1− x).

The total number of agents is N ; in the following, we will
also consider the limiting case in which the population has
infinite size.

The population state takes values in the set

XN = {(x1, x2) ∈ X : N · x ∈ Z2}

For instance, N · (x1, x2) = (10, 90) means that 10 agents do
not use DSM and 90 do.

The payoff function associated to playing strategy i when
the population is in state x is denoted by Fi : X → RN . We
denote by F0(x) (respectively, F1(x)) the function giving the
payoff of a agent deciding to adopt strategy 0 (respectively:
1) when the fraction of the population adopting strategy 1 is
given by x.

3An example in the energy sector comes from incentives to the
adoption of renewable energy sources (RESs). Let us consider, for
the sake of simplicity, the Italian situation. The feed-in scheme
(http://www.gse.it/en/feedintariff/Pages/default.aspx),
first introduced in 2003 with the D.L.387/2003, which is based on the EU
directive 2001/77/CE and operational since 2005 provides economic
incentives for the deployment and installation of renewable energy sources
plants. Over the years the feed-in scheme has gone through a number of
programmes (currently the 4th one is active), which have seen the progressive
reduction of the incentives provided (approximately 20% reduction from
the first to the fourth programme, with incentives dropping progressively by
another ∼ 40% until 2016). Such policy was meant to control the increasing
deployment of RESs plants. The situation has indeed come to the point at
which operators of conventional plants (in Italy mostly thermoelectric ones)
are driven by market forces to limit the number of productive hours of their
plants. However, below a given limit it becomes uneconomic to operate the
plants, whose availability is nonetheless necessary to ensure reliability and
security of supply in face of massive intermittent RESs.



In the case of the first pricing scheme (reinforcing incen-
tives), the payoff function takes the following form:{

F0(x) = −α;
F1(x) = −γ − α · (1− ϕ(x));

(1)

where ϕ(·) is a monotonically increasing function. To avoid
trivial situations, we further assume ϕ(0) ≥ 0 and ϕ(1) < 1.

For the second pricing scheme (vanishing incentives), the
payoff function takes the following form:{

F0(x) = −α;
F1(x) = −γ − α · (1− η(x));

(2)

where η(·) is a monotonically decreasing function. To avoid
trivial situations, we further assume η(0) < 1 and η(1) ≥ 0.

Agents may change their strategy according to a revision
protocol ρ : RN × X → RN×N+ . A revision protocol [22] is
formally defined as a function that takes as inputs the vector
of current payoffs and the population state, and returns non-
negative matrices as outputs. The (i, j) − −th element of
the matrix is the (normalized) rate at which an agent playing
strategy i switches to strategy j 6= i.

Changes take place according to a Poisson process. Each
agent can change her strategy at times {tn(i)}, where the
sequence is a Poisson process with rate R. At each change
opportunity a agent selects an ’opponent’, and imitates her
only if the opponent’s payoff is higher than her own one. In
this case, the change takes place with a probability propor-
tional to the payoff difference:

ρi,j = xj · [Fj − Fi]+. (3)

where [a]+ = 0 if a ≤ 0 and [a]+ = a if a > 0.
We denote by Y (t) the process describing the population

composition (in terms of strategies played) at time t. The
process Y (t) takes values in XN . Given the assumptions
described above, Y (t) is a Markov process, with jumps
taking place at times {tn}n∈Z, where the sequence {tn} is
a Poisson process with rate N ·R. We consider the embedded
Markov chain Zn = Y (t+n ), which has transition probability
Π = (Πx,x+u) given by:

Πx,x+u =


1
Rxiρi,j(F (x), x) ifu =

ej−ei
N ,

i 6= j ∈ S;
1−

∑
i∈S

∑
j∈S,j 6=i

1
Rxiρi,j(F (x), x) ifu = 0;

0 otherwise.

The process {Z1
n} denotes the evolution of the number of

agents adopting DSM. It is easy to check that {Z1
n} is a

birth-and death process [21]: in the next section we relate
the macroscopic behavior of the system to the agents’ payoff
induced by reinforcing and vanishing incentives.

IV. EQUILIBRIA AND DYNAMICS

A. Visual Analysis

In order to explain the behaviour of the system, we provide
a visual representation of the payoffs experienced by the users
—for the two strategies they may choose— as a function

of the fraction of users adopting DSM. As this is meant to
provide insight into the resulting system-level behaviour, we
will assume for the sake of simplicity that the population size
N is infinite, i.e., the variable x can take any value in [0, 1].
Extension to the discrete case can be easily handled.

Consider the reinforcing incentive scheme. Let us assume,
for the sake of simplicity, that ϕ(x) is linear in x and that
ϕ(0) = 0. The resulting structure is reported in Fig. 1. There
are two options. First, we notice that F1(0) is always smaller
than F0(0), as γ > 0 and ϕ(x) ≥ 0. If the payoff for DSM
adopters is always below the dashed line (representing F0(x)),
then it is never convenient for users to adopt DSM. This
happens if F1(1) = −γ − α[1 − ϕ(1)] < −α = F0(1).
Otherwise, the two payoff functions cross at some point
0 < xeq < 1. Above this point, it becomes more convenient to
adopt DSM. There is therefore a clear dependence on initial
conditions. If initially there is a low number of DSM adopters,
then it is anti-economical to adopt it. Viceversa, in the presence
of a large number of DSM adopters it makes no sense not to
adopt it.

Fig. 1. Payoff as a function of the fraction of DSM adopters for the
reinforcing incentives scheme.

Now we move to considering the vanishing incentive
scheme. Again, we assume for the sake of simplicity that
η(x) is linear and η(1) = 0. We further assume that ,
η(0) > γ/β , which ensures that, if nobody is using DSM,
there is an incentive for adopting it. The resulting structure
is depicted in Fig. 2. Again, there are two cases. If the solid
line (corresponding to F1(x)) is always above F0(x), which
happens if F1(1) = −γ − α[1 − η(1)] > −α = F0(1),
then it is always convenient to adopt DSM, regardless of
the fraction of users choosing it. In the other case, the two
curves have a crossing point. In this case, it is convenient
to adopt DSM if few users are doing it. But it becomes
economically unattractive if there are too many users adopting
DSM. At the point where the two curves cross the population



is in equilibrium. Nobody adopting DSM has an advantage in
dismantling it, nor nobody not adopting DSM has an incentive
to change strategy.

Fig. 2. Payoff as a function of the fraction of DSM adopters for the vanishing
incentives scheme.

In the next subsections we will formalize these intuitions us-
ing the concepts from game theory described in Sec. II. Some
remarks are worth being adding. First, from the reasoning
above it is clear that the actual shape of the functions ϕ(·) and
η(·) has no big impact. What matters is only whether the two
curves cross. Similarly, the assumption that F0(x) = −α could
be easily relaxed and replaced by an appropriate monotone
function. Again, the system-level behaviour would just depend
on whether the two curves F0(·) and F1(·) cross.

B. Local interaction
In this section we provide a standard game theoretical view

of the evolutionary dynamics. The key result that we will be
using is that the ESS set, i.e., the set of evolutionary stable
strategies is a subset of the set of Nash equilibria of the
local interaction games that occur during interactions between
members of the population [21], [25].

In particular, we model the local interaction as a two
player game with state-dependent payoffs. In the game two
users confront each other and compare their relative costs in
adopting the DSM technology given the current fraction of
agents adopting it (what we call the state). We further assume
that the state does not change on the basis of the strategy
chosen by the two players (which represents an approximation
if the population size is large). The game has the normal form
representation [21] reported in Table I. In particular, the case
when Ψ(·) = φ(·) represents the reinforcing incentive scheme,
whereas replacing Ψ(·) = η(·) we obtain the vanishing
incentive scheme.

It is easy to check that if γ < α · Ψ(x) the best response
against DSM is DSM. Otherwise, it is non-DSM. And vicev-
ersa for playing against non-DSM.

C. Nash Equilibria of Local Interaction

By inspection of the normal form representation, we can
determine the possible Nash equilibria of the local interaction
games. We need to specialize to the case of the two pricing
schemes.

Reinforcing incentives: Ψ(·) = φ(·): We assume that ϕ(·)
is monotone increasing, so that F1(·) is also increasing. We let
Fo(0) > F1(0); denote xeq the solution of Fo(xeq) = F1(xeq).
As the best responses depend not on the which agent plays
which strategy but only on how many play strategy ’1’, we
will —with a slight abuse of notation— denote Nash equilibria
in terms of the fraction of agents playing strategy ’1’. (This
corresponds, for mixed equilibria, to a plurality of assignments
of strategies over the population.) Then,

Proposition 4.1: Under reinforcing incentives:

1) x = 0 is always a Nash equilibrium. If F1(1) < F0(1),
it is unique.

2) If F1(1) > F0(1) then x = 1 is a Nash equilibrium.

Proof: Both cases follow by inspection of the payoff
matrix under a continuity argument. For large enough N , since
F0(0) > F1(0), for any continuous ϕ it means that that there
exists [0, δ), where 0 < 1/N < δ and F0(y) > F1(y) in
1− delta)

First, as F0(0) > F1(0), there exists an interval [0, δ), 0 <
δ < 1/N , such that Fo(y) > F1(y) for any y, so that x =
0 is a Nash equilibrium. If F1(1) < F0(1), 0 is a strictly
dominating strategy and the uniqueness follows. In case (2),
F1(1) > F0(1) means that there exists interval (1 − δ, 1],
0 < δ < 1, such that F1(y) > F0(y) for any y therein. Again,
it follows that in such case x = 1 is a Nash equilibrium. The
fact that no other Nash equilibria exist follows from a simple
monotonicity argument.

Vanishing incentives: Ψ(·) = η(·): We assume that η(·)
is monotone decreasing, so that F1(·) is also decreasing. As
before, we let F1(0) > F0(0). We have

Proposition 4.2: Under vanishing incentives:

1) If F1(1) > F0(1), then x = 1 is the unique (pure) Nash
equilibrium;

2) If F1(1) < F0(1), then x = xeq is the unique Nash
equilibrium.

Proof: The first case can be easily demonstrated by
simply noting that ’1’ is a (strictly) dominating strategy. The
second case follows by inspection; showing that xeq is a
Nash equilibrium is straightforward, the uniqueness can be
demonstrated considering the shapes of F1(·) and F0(·).

The main difference with the first pricing scheme lies in the
second case, in which we have one single mixed equilibrium.

D. ESSs and Stability of the Mean Field Dynamics

The mean field dynamics is characterised by the following
differential equation [22], [25]:

ẋi =
∑
j∈S

xjρj,i (F (x), x)− xi
∑
j∈S

ρj,i (F (x), x) . (4)



DSM non-DSM
DSM −γ − α(1−Ψ(x)),−γ − α(1−Ψ(x)) −γ − α · (1−Ψ(x)) ,−α
non-DSM −α,−γ − α (1−Ψ(x)) −α,−α

TABLE I
NORMAL FORM REPRESENTATION OF THE LOCAL INTERACTION AS A TWO PLAYERS GAME. Ψ = φ REPRESENTS THE REINFORCING INCENTIVE SCHEME

WHEREAS Ψ = η REPRESENTS THE VANISHING INCENTIVE SCHEME.

After few computations it can be shown that, for the revision
protocol introduced in (3), (4) becomes the standard replicator

dynamics ẋi = xi ·

[
Fi(x)−

∑
j∈S

xjFj(x)

]
.

We observe that all strict Nash equilibria are by default
evolutionary stable strategies [28]. All the Nash equilibria
identified above can be shown to be strict and hence also ESSs.

Also, the following result of Hofbauer, Schuster and Sig-
mund (1979)

Theorem 4.1: Every evolutionary stable strategy is asymp-
totically stable in the replicator dynamics

Nevertheless, we should also recall that there is a deeper
connection of the replicator dynamics (4) with the true dy-
namics of the system: in particular, there exist results for the
convergence of the sample path dynamics to the replicator
dynamics [22]. Hence, not only the system state trajectory will
converge to an ESS, but also the sample path trajectories of the
system will be well approximated by the replicator dynamics
equation.

E. Stochastic Dynamics

We now look at the stochastic dynamics of the system.
Under the assumptions made above on ϕ(·) and η(·), we have:

Proposition 4.3: The following hold:
1) For increasing incentives:

a) If F1(1) < F0(1), the Markov process {Z1
n}

is stationary ergodic and converges to a steady
state distribution π with πN = 0, i.e., no users
eventually adopt DSM;

b) If F1(1) > F0(1) the Markov process {Z1
n} has

two recurrent states, x = 0 and x = 1; all other
states are transient;

2) For vanishing incentives:
a) If F1(1) > F0(1), the Markov process {Z1

n}
is stationary ergodic and converges to a steady
state distribution π with πN = 1, i.e., all users
eventually adopt DSM;

b) If F1(1) < F0(1), the process {Z1
n} is irreducible

and thus πi > 0 ∀i. The limiting distribution
can be numerically computed using local balance
conditions.

Proof: We deal separately with the four cases above: (1.a
) Regardless of the state Z1

n, the process can only move to
lower value, as in any case it is convenient to drop the usage
of DSM. The process is therefore a pure death one and the
result follows straightforwardly.

(1.b) First, we can check by inspection that x = 0 and x = 1
are absorbing states. By continuity there exist a value x̃ ∈
(0, 1) such that F1(x̃) ≤ F0(x̃) and F1(x̃+ 1

N ) > F0(x̃+ 1
N ).

Given the expression for the revision protocol used, we can
easily check that for x < x̃ the process has negative drift.
Similarly, it can be checked that the drift is positive for x > x̃,
and hence the result follows. In this case the value at which
Z1
n settles depends on the initial condition.

(2.a) Regardless of the state Z1
n, the process can only move to

higher values, as in any case it is convenient to adopt DSM.
The process is therefore a pure birth one and the result follows
straightforwardly.
(2.b) By inspection it can be checked that the chain has no
absorbing states. As the process Z1

n takes finite values, the
result follows straightforwardly.

V. NUMERICAL VALIDATION

In order to validate the findings presented in the previous
section, we implemented the proposed models in a Java-
based agent simulator. (In order to allow independent ex-
perts to repeat the experiments, the code developed has been
released under an open source license and can be found
at: http://dl.dropbox.com/u/15242937/e-EnergyJavaCode.zip).
Each agent corresponds to a user. Agents interact randomly
and can change their strategy according to the revision pro-
tocol defined in Sec. III. We used N = 100 as population
size. Each simulation run corresponded to 2000 interactions
among agents, intervals between subsequent interactions being
modelled as an exponentially distributed random variable with
average 100 s.4

The first set of experiments was focused on the reinforcing
incentives scheme. We first studied the convergence of the
system dynamics, in terms of fraction of agents using DSM
techniques. We considered ϕ(x) = βx2, γ = 1.5 and α = 5.
In these cases the two curves F0(x) and F1(x) cross at
x∗ =

√
γ
αβWe first considered an initial fraction of DSM

adopters equal to 30% and run simulations for β ∈ {0.6, 1, 2}.
According to the results in the previous section, it is easy
to check that in these cases the dynamics should converge
to the pure strategy “do not adopt DSM”. The results, for
three sample paths, are reported in Fig. 3. The arrow indicates
growing values of β. As it can be seen, in all cases the users
settle to not adopting DSM, regardless of the value of β, as
predicted by the model. The value of β only changes the speed

4This value is purely indicative, as changes in it would just imply a rescaling
of the time axis, but not a qualitative change in the resulting dynamics.



at which convergence takes place.
We then considered a different, much larger value of initial
DSM adopters, i.e., 75%. With the same set of parameters
described above, in this case the results in Sec. IV predicts
convergence to the pure strategy “adopt DSM”. The resulting
dynamics is depicted in Fig. 4. Also in this case the prediction
of the models are validated, and the value of β defines only
the speed at which the convergence takes place.
To get a more comprehensive picture, we fixed β = 1
and varied the initial fraction of DSM adopters. The results,
averaged over 10 runs, with error bars for the minimum and
maximum value over a single run, are reported in Fig. 5.
As it can be seen, there is a sharp phase transitions around
β ≈ 0.55. Again, this is consistent with the analysis carried
out in the previous Section. The large difference between runs
at x1(0) = 0.55 indicates that the system is in proximity
of a tipping point, with the stochastic effects related to the
interactions among agents can drift the system towards one of
the two ESSs.

Fig. 3. Sample paths of the dynamics of the fraction of users adopting
DSM, reinforcing incentives, ϕ(x) = βx2, x1(0) = 0.3, γ = 1.5, α = 5,
β ∈ {0.6, 1, 2}. The arrows indicates increasing values of β.

Fig. 4. Sample paths of the dynamics of the fraction of users adopting
DSM, reinforcing incentives, ϕ(x) = βx2, x1(0) = 0.75, γ = 1.5, α = 5,
β ∈ {0.6, 1, 2}. The arrows indicates increasing values of β.

Fig. 5. Final fraction of users adopting DSM vs. initial fraction of DSM
adopters,reinforcing incentives, ϕ(x) = βx2, γ = 1.5, α = 5, β = 1.

The second set of experiments was focused on the van-
ishing incentives scheme. In this case we considered a linear
incentive, i.e., η(x) = 1−x

2 . We took α = 1.5 and γ = β.
The crossing point (computed assuming an infinite population
model) is given by x∗ = 0.4. Given the results in Sec. IV
on the presence of one single ESS and the convergence
of the mean field dynamics, we do expect convergence to
x∗ regardless of the initial conditions. We run experiments
varying the initial fraction of DSM adopters. Results are
plotted, in terms of sample paths for x1(0) ∈ {0.1, 0.45, 0.9}
in Fig. 6. It can be seen that the behaviour of the system is
consistent with the predictions offered by the model.

Fig. 6. Sample paths of the dynamics of the fraction of users adopting DSM,
vanishing incentives, η(x) = 1−x

2
, x1(0) = 0.1, 0.45, 0.9, γ = 1.5, α = 5.

A. DSM: a Reality Check

In the previous sections, in line with the spirit of this
paper, we made no specific assumption on the behaviour and



performance of the DSM scheme to be applied. In this section
we aim at presenting a reality check, in order to understand
the actual savings that a customer can obtain by means of
DSM in the presence of real-time prices and assess whether
real-time prices can actually provide sufficient incentives to
adopt DSM.

Modelling the real impact and behaviour of DSM schemes
with a sufficient level of generality represents a challenging
issue due to four main reasons:
• The load profile varies heavily according to a number of

contextual factors, including: period of the year, weather,
location, family composition, working habits etc.

• A huge variety of DSM mechanisms has been proposed in
the literature, including different architectures, algorithms
and signalling schemes. Even a minor difference in the
mechanism can have a rather large impact on the resulting
performance.

• In different countries different pricing schemes are ap-
plied by distributors. Further, energy prices vary signif-
icantly from day to day due to a number of contextual
factors (including weather, season etc.).

• It is difficult to estimate the ’discomfort’ caused by the
adoption of DSM schemes. In general, the more a job is
deferred, the higher the discomfort for the user. However,
it is very difficult to estimate it reasonably, as this depends
on a number of factors (related to the type of job but
also to cultural aspects) for which no reference model is
currently available.

We made a number of simplifying assumptions. As for
prices, we used data from Ameren (IL), corresponding to the
real-time prices (RTP) for Zone I measured on 30/4/20125.
The corresponding prices (in $/ kWh) are reported in Fig. 7.

Fig. 7. Real-time prices from Ameren measured on April 30th, 2012.

We also used data and models from [17] in terms of ’typical’
load profile for households (data for week days in Table B.II

5https://www2.ameren.com/RetailEnergy/realtimeprices.aspx

therein). Appliances are grouped in ten categories: (i) stove
and oven (ii) microwave and coffee maker (iii) refrigerator
and freezer (iv) dishwater (v) clothes-washer and tumble dryer
(vi) television and video recorder (vii) radio/player (viii) PC
and printer (ix) lighting (x) other loads. The profile is divided
into twenty-four one-hour intervals. Each category is assigned
a ’priority level’, with the starting time of jobs from category
(iii) being possibly deferred up to one hour, and those of
categories (iv) and (v) being possibly deferred up to six
hours. The loads from the other categories are considered non
deferrable.

We considered two DSM schemes. In the first one (’Simple
DSM’), a simple randomization scheme is used, with the
starting time of a deferrable job being deferred by a ran-
dom quantity drawn from a uniform distribution (within the
boundaries expressed by the maximum deferral period). It is
worth remarking that in such scheme no real-time pricing is
used, but a simple randomization local scheme can be used.
While this scheme is simplistic, it has the advantage of not
requiring communication between the local control agent and
the operator.6

In the second one (’Look-ahead DSM’) we assumed the
presence of an ’oracle’ being aware of the prices as they will
evolve in the future hours. Accordingly, jobs are deferred to the
time corresponding to the minimum electricity price (within
the boundaries expressed by the maximum deferral period).
This scheme, which is clearly idealistic, provides an upper
bound on the savings obtained by any implementable scheme.

The resulting profiles are reported in 8. A simple numerical
calculation reported that for the Simple DSM scheme the peak
electricity load reduction was below 1%, with an expected
savings for customers of 2.06%. With the Look-Ahead DSM
scheme the peak electricity load was increased by more than
50%, with an expected savings for customers of 8.25%.

These figures were obtained assuming that the prices are
independent from the fraction of users adopting DSM. The
following conclusions can be drawn:
• The actual savings a single user can get from DSM with

real-time prices are marginal and unlikely to foster by
themselves a wide adoption.

• The usage of real-time prices may lead to the creation of
peaks in the residential users’ profile. A careful design
is required to ensure electricity operators can actually
benefit from the widespread adoption of DSM solutions.

VI. CONCLUSIONS

In this paper we have analysed the effect of two different
pricing schemes on the adoption by intelligent software agents
of demand-side management techniques. In one of the pricing
schemes, the incentive for agents to adopt DSM is increasing
in the fraction of agents using it while in the second one
it is decreasing. Leveraging on concepts and results from
evolutionary game theory, we have shown that in the first

6A DSM scheme based on real-time pricing is likely to achieve much higher
performance gain at the cost of increased complexity.



Fig. 8. Resulting load profiles (original, Simple DSM and Look-ahead DSM).

case —besides trivial cases— there exists a phase transition in
the eventual adoption of DSM. In such a case, an electricity
distribution operator should provide means for ensuring that
a sufficiently large amount of agents adopt DSM before
the incentives kick in. In the second case, at the opposite,
the system converges (regardless the initial distribution of
DSM adopters) towards a mixed equilibrium, in which only a
fraction of the agents’ population uses DSM. The theoretical
findings have been validated by comparison with the outcomes
of agent-based simulations.

The present work represents a first step towards a coherent
framework for designing pricing and incentive schemes for
DSM adoption. Future extensions will include heterogeneous
population (with different users having different consumption
requests/profiles) and enhance the level or realism by consid-
ering models for the users’ discomfort caused by DSM.
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