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Abstract—In this paper, we illustrate how a mobile network a real options method to hedge against the risk that demand
operator can plan an upgrading investment to anticipate explo- evolves in an unexpected way leading to a premature invest-
sions of the traffic demand, taking into account the expected mant decision or a too late one. To perform that, we introduce

generated profit and the customers satisfaction. The former . : .
parameter grows with the demand, whereas the latter sinks if 2" American call that allows its owner (the mobile operator)

the demand is too high as individual Quality of Service (QoS) to buy an equipment at a fixed price, possibly less than the
may collapse due to capacity saturation problems. In addition real one, until a maturity date. Given the profit analytical

to that, as the equipment price decreases with time, it may be model and the option’s parameters, we propose a dynamic

interesting to wait rather than to invest at once. Taking into programming method to price the option. At the same time,
account this trade off, we propose a real option strategy to hege btain th ted best | ¢ t dat
against the risk that the investment has to take place earlier than we obtain the expected best invesiment date.

expected. At last, we price this option with a backward dynamic
programming approach, using recent improvements based on RELATED WORK
least-squares estimations.
| INTRODUCTION Recently, the real_options framework [1] hag been widgly
used for evaluating investments under uncertainty when tim
Today, it is expected that the mobile data traffic will bgqg is a critical issue and the infrastructure project reegii
significantly growing. To face these soaring volumes of daife commitment of huge costs up front. The real options
to be transferred, mobile operators must periodically aggr approach evaluates a firm's opportunity to invest in a real,
their equipments to offer higher throughputs and avoid QQsartially or completely irreversible, project, in uncentéuture
(Quality of Service) problems. However as the demand doggyironment by evaluating the managerial flexibility as a
not increase steadily and must be considered as partly @nd@nancial option [2]. The first applications of real options
the upgrading investment date is difficult to be forecast.  \yhere in natural resource investments as in [3] where the
In this article, we consider upgrade investments in gthors valued a Gold Mine as an option. Afterwards, the
telecommunication network, with an application to Beyo& 3ea| options method were used for evaluating transportatio
wireless systems. In this context, when the traffic increaseyojects [4], sustainable development investments [Sh6id
the operator naturally increases its profit until the demargen intellectual property rights [7], etc. In these cotgex
approaches the limiting capacity of the network. In thisecasyncertainty can come from the project revenue [3], from the
the network starts experiencing saturation, throughpdtQoS §jemand [4][5], or from R&D efforts that may reduce the
problems, so the operator’s profit may fall. The operatortmug,estment costs [6][8].
then upgrade its network to increase the capacity. An ex@mpl |, e field of telecommunications, real options are clas-
of an upgrading means consists in adding a frequency carrigea )y used for evaluating strategic decisions like ragah
The operator then faces the following trade-off: of the telecommunication market [9], definition of tarifferf
« The later the investment, the lower individual thrOUghpU@F)erators [10], or pricing of spectrum licenses [11]. This
and customer satisfaction. Permanent non—satisfactiﬂ,@rk focuses on a less macroscopic app]ication, but that is

will result into churn and additional loss of profit. of high importance for operators: deploying mobile network
« The sooner the investment, the more expensive the cogf§astructures for an already licensed system, in order to
of upgrade elements. respond to the progressive increase of customer demang. Onl

This article aims at resolving analytically this trade-offfew works was interested by applying real options on thiglfiel
Throughout the paper, we propose a general methodology &t instance, d’Halluin presented a method to determine the
illustrate it on the practical example of HSDPA networks. Wbkest investment date in a fixed [12] or a wireless [13] network
first derive analytical value for operator’s profit, takingtd based on real options and a simple network capacity model. To
account randomness of the rising demand, and decreasahefbest of our knowledge, this work is the first that consider
network element costs according to time. We second int@duaption’s pricing for capacity investments in mobile netk&r
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based on realistic network capacity models, and that pexposhe customer satisfaction as a negative exponential fumctf
both optimal timing and risk hedging for the investments. the throughput:

The remainder of this paper is organized as follows: in
a first section, we build an analytical model of the oper- Hy(X;,C) = e P/Qu(Xe,0),
ator’'s profit and illustrate it on an HSDPA network. Then
we introduce in section Il an American option to hedg&or examplej can be chosen &= log(2)-qi 2, whereg, /»
against the risk aforementioned. We define the underlyisgtasis the throughput value ensuring a satisfactiorb@fo.
and the option’s payoff. To price the option we use a risk=or voice service, QoS is an access rate (probability of not
neutral approach, whose mathematical justification liehé& being blocked), so users that have access to the service are
appendix. In section Ill, we show how dynamic programminfully satisfied, while the others are completely unhappyt Le
can help solving the pricing problem, and the best investmer(X;, C') be the access rate when the traffic intensity is equal
date problem as well. In section IV, we present the numeridal X; and the cell capacity i€, the satisfaction is thus directly

results before concluding the paper. equal to this access ratél;(X;, C) = a(Xy, C).
Finally, the operator’s profit can be calculated.jlfs the
[I. THE BASIC MODEL: OPERATOR S PROFIT AND transfer price (say in $/Mbit for elastic traffic or in $/Enig
INVESTMENT COST for real-time traffic), the gross daily profit per cell is givby:
In this section, we calculate the operator’s profit, that wil gross
be used next in evaluating the investment. g =0Xy, @)
A. Traffic Demand However the gross profit should be weighed by the customer

satisfaction to account for the quality of the communiaagio

The operator profit depends on the amount of data flowgge net profitis thus calculated as the product of"*** by
by the network. The traffic is generally composed of regl .

time (voice, streaming) as well as elastic traffic. Real time
traffic is measured in minutes of communication per hour per mi(Xt) = 0 X Hi(Xy, C)
cell, generally translated into Erlang/cell. For elastiaffic,
this demand is expressed in Mbits/sec/cell (aggregatdiictraC. Upgrading Investment
demand from all clients in a typical cell). We denote the ailer
traffic (real-time or elastic) byX;, where the time = 0, 1...
variesdiscretely

To model the evolution of(X;);cn, let us consider it

When traffic increases, QoS will surely degrade, and so
the satisfactiond,. If no upgrading action is taken, the profit
will progressively tend to zero. Once the operator decides t
. . . . upgrade, he can install additional equipments offerindéig

2 %apacity (e.g., by adding transmitters operating on dffier
(X(.t’ Wt))teRf' As many random phenomena relatgd to equency bands). In such a case we obtain a higher @ue
social bghawor _(e.g. [5]), we assume thai(t, W) is a of the capacity. The profit becomes:
geometric Brownian motion:

X(t Wt) — xoe(a—<’2/2)t+UWf,7 te Rt , ﬂ';/(Xt) = 5Xth(Xt, C/)

where W, is a standard Brownian motiom is the trend of On the other hand, the upgrading (equipment) cost is a

the demand and is its volatility. decreasing function of time (due, for instance, to the R&D
progress or the serialization in the manufacturing chdim).
B. Customers satisfaction and operator’s profit this paper we assume it decreases exponentidllyt) =

. : ! . . Koe <), wheree is the depreciation rate.
In this section, we define the relationship between the’ ) ¢ P

traffic, the capacity, the QoS and the profit. Let the capacity _
of a typical cell of the network be equal . The QoS D. Total Profit

perceived by users depends on the load, defined by the rati(Eet us introduce datd’, at which the investment becomes

between the traffic and the capacity. In all cases, the QoS isg | : h ds. th di b
function Q;(X;, C) that decreases when the traffic increases 30 Eti (in (;: e W?r S’dt © prophose_z mvestme(r:']lt cannot be
and that increases when the capacity is higher. This QoSu% ertaken aftefr’). If we denote the investment date by

generally expressed in throughput for elastic traffic antbas (6 <to < 1), the total profitliy(to) actualized at = T'is:

probability for real-time traffic. to—1 T
Now we can compute the customer satisfaction, which can T (ty) = Z Tt o Z eC(T_t)WQ’ 2
reasonably be supposed to depend on the QoS. For elastic =0 i—to

traffic, subjective satisfactions have been shown to be more
sensitive to small variations at low throughputs than athig where( is the actualization rate. For simplicity, we assume
throughputs. Endegland Lagrange proposed in [17] to modehat ¢ is constant during the period, 7).
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Fig. 1. Peak data rate versus distance to the base statiensydtem is Fig. 2. Daily Profit generated by demand’ = 2 Mbits/sec/cell,
HSDPA in a dense urban environment. 6 = 0.1 $/Mbit, x = 14000 sec. Two values @f are considered, corresponding

to target throughputs; ;, = 1 Mbit/sec and 0.5 Mbit/s. It can be observed
that the profit is better when users are satisfied with a smtalteaghput, but

E. Application to Beyond 3G networks it always collapses when the traffic approaches the maximaloityp

In this section, we show how to calculate the QoS and
the profit for elastic traffic in beyond 3G systems, including H, =0, i.e. if the cell is saturated, the net profit is null.
HSDPA, 3GL LTE and WIMAX systems. These Systems arg the satisfaction is maximal, i.eH, = 1, the net profit is
characterized by a throughput that depends on the positiongga to the gross profit (1). To sum up we have:
the users in the cell: Cell edge users have lower throughputs
than _cell_center ones, as_lllustrated in F_|gure 1. As far aanee T = 6X,eB/(C—X0) if X, <C
considering elastic services, users with degraded thimutgh
will stay longer in the cell and contribute more to the cell
load. It has thus been shown in [14] that the maximal capacityIntuitively, as the demand risesy; will increase as will
of the cell is equal to the harmonic mean of the throughpuhe profit (Fig. 2). Then, the profit will decrease because the

=0 otherwise

Let C' be this maximal capacity. unsatisfaction effect becomes dominant.
The load of the cell is thus equal to the ratio between the
offered traffic and the capacity;, = <. Using simple pro- I1l. RISK-HEDGING USING ANAMERICAN OPTION

cessor sharing arguments, it can be shown [14] that, prdvide
that the load is less than 1, the average flow throughput isA. Externalizing the financial risk

0,(X,,C) = C(1 - py) = C(1 — &) _Cc-X, (3) As shown above, there is a trade off between the growth

C of the demand (encouraging to invest) and the depreciation
However, when the load exceeds one, the throughput of €fithe equipment cost (encouraging to wait). Then the risk is

users falls to 0. The to be led to invest while the equipment is still expensive. In
N this section we show how to hedge against this risk using an
Qu(X:, C) = (C— Xy)7, (4)  American option. This option, acquired from a third parfseli

a bank, gives us the right to buy the equipment at pfice
instead ofK (¢), until datet* = ¢(K™). Let us recall that the
operator has the right but not the obligation to exercise thi
H, = e P/(C=X)7T option, but has to pay in returnmemiumto the bank, denoted
by P. If he has to invest before dat&, he will exercise the
option, give K* to the equipment provider and the bank will
79705 = § min(X,, C), (5) Pay the difference. Otherwise, he will not exercise theapti
and he will lose the premium, but he still can invest. In this

where§ is the transfer price (say in $/Mbit). Finally, the netection we will try to answer the two following questions:
profit is calculated as the product of"°** by H,:

wherext = max(z,0).
The satisfaction is thus calculated by:

and the gross daily profit per cell is given by:

« when is this option going to be exercised ?
7" = §min(X,, C)efﬂ/(Cth)f o how much does it cost (i.e. calculai® ?



B. Introducing the American option 2) The risk-neutralization approachunder this condition,

When is the option going to be exercised ? It depends Beg S([t’.t ]) be the set of stopping times with valuesfint’] )
. ' : . and define the following process known as the Snell envelope:
the additional profit expected from investing to upgrade the

network: at least, this additional profit has to be greatanth Y, = sup Eg [e*CTZ(T)|]-"t] _ (11)
K*. At datet, it can be expressed as follows: TES([t,t*])
T Here,Q* is the risk-neutral probability, whose density w.r.t.
S, =E l / e G (' (5, W) — 7(s, Wy)) ds ]—"t] . (6) P, the historical probability, is:
! d * 1 t* ) t*
Facing the decision to invest or not, the operator’s styateg P exp _5/0 05 ds — /0 05 dWs | .

is to compare the profit realized if investing with the value
of waiting, typically to check that the traffic is not goingln fact, since we will have to simulate trajectories of the
to decrease unexpectedly which would make the upgradiagset beyond date® (until date T'), we will rather choose
expenditure a sunk cost. This appears to be the classita probabilityQ, whose density w.r.tP is:
problem of finding the exercise strategy for an American
option, with the following features: dQ _ Ly — exp (1 /T 02 ds — /T a, dWS> . a2
o t* as the option’s maturity dPP 2 Jo Jo
« K™ as the exercise price or strike Note that Q is indeed a probability measure, since
« S;as th*e Enderlylng a;s?t Ep[L7] = 1, asé, verifies Novikov's condition (see previous
« (S; — K*)" as the option's payoff, denoted Hy/(?): paragraph). Note also th@* is the restriction ofQ to 7
(see [15], Theorem 9.1.2.), so that (11) still holds wighif
t < t*. Then the premium of the option at any time [0, t*]
is given by [19]:

Z(t) = max{S; — K*,0} @)

C. Pricing of the American option

The resolution of this problem appeals to classical std@has II; = Eq [G_C(T(t)_t)Z(T(t))‘ft} : (13)
theory and the risk-neutralization approach ([19][15]).

1) Preliminaries: to detail this approach, let us introducé/here7(t) is the solution of the maximization in (11y(t)
two progressively measurable procesgesand ,, respec- is interpreted as the optimal exercise strategy of the optio

tively the expected total return on the asset and its viatil Calculated at date".

S,/ S, = g dt + ks AW, @) IV. THE DYNAMIC PROGRAMMING SOLUTION

As stated above, the problem is to find the stopping time

along with the market price of risk: maximizing the option’s payoff under risk neutrality (Eqgn.
. (11)). However, it is impossible to compuft) analytically,
Or = k(e =€) so we make use of a dynamic programming approach, as in

[20]. We recall that it consists in dividing the problem into
two binary decisions at the final daté: the "immediate”
one and its generated value, and the "delaying” one and its
(6, Wy) — (¢, Wy) continuation value. Then moving backward, and repeatieg th

- v ) same binary decision, we obtain the expected optimal time

ai(tth) . . : . . . .

z which lies in an expected interval in which the investment
with: should be undertaken [8]. We must then, at each moment, find
two different values: the option’s payoff in case of investin

o(t,) = /TE {e_g(s—t) (' (s, W) — m(s, W))Wy = x} ds. and the continuation value in case of waiting.
t

(9) A. Monte-Carlo simulations to generate the underlying asse
Note that applying the risk-neutralization approach wiaia
require Novikov’s condition (see [16], page 65), statingtth

LT,
exp 5/0 0; dt

In the appendix VII-D, we show that Novikov's condition

is verified in our SpeCIfIC case. (see [15] page 65). But here, our option is an American opsonwe have
to generalize this result and to use the Snell envelope.

We obtain expressions @f, «; andé, in the appendices VII-A
to VII-C, where we show that:

0, =

CalculatingS; involves a complex integration (Eqn. (6)) that
cannot be performed analytically. We then use Monte-Carlo
simulations as follows:

E < +00. 10
( ) INote that if the option were a European option, the price & tlavould

be:

M, = Eq [e= <" 0 2(¢*)

7



« first we computev(t, ) with Eqgn. (9) fort € [0,¢*] and
HS [wm,ina wnLa.?;] 2 ) )

« we then make time discrete=t¢;...ty Withtg =0and | 2.forj=1...J, put F}, = Z%,
ty = t* = N ot. After that we simulateJ trajectories
of S; underQ: thej-th trajectory is denoted byS’) and
has the valueS at timet, = n dt. More precisely, | 31. forj=1...J, calculateZy:
we simulate (underQ) J trajectories of the historical | -if Z] =0, j € O,
Brownian (W7)3, and then we computg) = v(t,, W) | -if 24 >0,j €I,
by interpolatingv(t, z). This is far more efficient than
computing directly the integral, especially if we want to

1. simulate J trajectorie§S7) underQ

3.forn=(N-1)...1,0:

3.2. proces®,, and I,, separately:

simulate a large number of trajectories, since we do noVj € On: Vj € In:
have to compute each time again. . . . .
put F, = e%'F) | | - regressCy, = e C%'F) , on1,
B. Continuation value and decision tree algorithm S ?”d52c}o Osbtai” a 2-degree
At time t*, the operator invests if ;y > 0. More generally, p‘;ﬂ?;? :715133({2%7071(5)}
at a timet¢,, < t*, the operator has two alternative choices: -if Z > Cn(9), thenn is the
either invest now and gef,,, or wait and get the expected new investment date, so put
continuation value, denoted hy,. The generated cash-flow! Fin =0 Ym>n
is then given by: TABLE |

DECISION TREE ALGORITHM
F, = max{Z,,C,}.

We already knowZz, by (7). As for C,, we use the Least

Squares Monte-Carlo (LSM) approach defined by Longstaff Let us denote by),, the set of thej such thatZ] = 0, and
and Schwartz [20]. This approach consists in writing thigy 7,, the set of thej such thatZ’ > 0. A summary of the
expected continuation valu€,, as a general function of,, whole algorithm is presented in Table I.

(in our case we took a 2-degree polynom), taking information ) .

from the J cash-flows at,,.; and using the fact that: C. Option premium

Averaging theF, and using (13) and the law of large

_ o Cot _
Cn(S) = € E[Fnia]S = 5, numbers, we obtain the premiufh, of the option:

whereF;, . is the (random) cash-flow of the optiontat, ;. To A
obtain recursivelyC',,, we can write the following algorithm: Iy =~ i ZFg
« atty, for each trajectory = 1...J, calculate the cash- , o j=1
flow IV — 77 D. Expected investing time
N — “N-
« move one period back toy_;. For each(S7), check if Investigating our decision tree, it can happen that for some

the option is "in the money”, i.e. i{’Z]{[_1 > 0. Ifitis Jj we do not decide to invest befot&. Then we will be lead

the case, calculate the continuation Va@f@_l using the 10 invest betweer* and7T*. For such trajectories, we do not
cash-flow if investment is delayed:’, , = e S*Fy. know when the inv_estment_ t_akes _place. F_urthermore, even for
Estimate then the general expressiorCaf_;(S) by the the other trajectories, qddltlonal information _betwetémnd
LSM algorithm. This consists in regressing the found Can be useful to adjust the _value of the mvestment.date.
valuesC,_, on a constantS and S2, as in [20] (see For these two reasons, we decide to simulgtdurther until .
appendix VII-E). Let us denote the estimated expressidn- Thus we perform one more time a backward dynamic
by Civ_1(S). The estimated cash-flow af — 1 is then @lgorithm, that time betwee andT’, using:

given by: Z(t)= (S — K@)* if t >t*
FJ]\‘[_l _ maX{Z]];,_l,CA'N_ﬂSgV_l)}- (14) Z(t) = (St _ K*)+ otherwise

If it is optimal to exercise aty_;, then by convention ~ Finally, we obtain for each of the/ trajectories a best
F}, becomes) (because the option can only be exercisg@vestment datel;),. If 7, > t*, it means that we have
once). invested without exercising the original option, wherebs i
. for each timet,,, repeat the same process untik= 0. T}, < t*, it means that we have exercised the option.
Averaging theT? , we obtain the expected investing time

(15)

2to bind efficiently the Brownian motion, see Appendix VII-D. “Note that in theory, it could happen that we never decide test even
3to perform that, assuming that the probability of our randenegator is after 7. However, given the deterministic trend of the demand, thisildo
Q, we simulate a standard Brownian moti(ert@), and then using Girsanov's mean thal¥; remains extremely low. Considerations on the Brownian motion
theorem (see [15], Theorem 9.4.5.), we build by recursiorew Brownian (see appendix VII-D) ensure that in practice it will not happ
motion (W) underP, such thatW; = WP — Jo<s<r 0(s, Ws) ds. 5That is the reason why we chogeinstead ofQ*.
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under the risk-neutral probabilitfg[Ziw]. But for us, it is
more relevant to calculat@p|Tjn]. Using (12), we obtain:

T o
T; 1 T/

Ep[Tinv] = Eq {LI;V} ~N E ﬁ (16)
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V. NUMERICAL RESULTS

In order to illustrate our algorithm, we applied it using the
free simulator Scilab (see [18]). We considered a HSDPA pur
data network with a random growing demand, as describe
in section II-A. We used the following parameters for our
computation: Fig. 4. Investment date.

« the investment can take place urifil= 150 days.

« the equipment can be purchased at the initial price
K, = 300000 $, and its price decreases with a rate€arly. As K* decreases slowly toward O, the investment date
of 50% per year. decreases accordingly until reaching 0 for= oo.

« the actualization rat€ is fixed to 5% per year. However, the lower the option’s maturity is, the later the

« the traffic demand starts at, = 1.2 Mbit/sec/cell, and investment takes place. The investment date may even be
increases with a drift fixed tev = 0.54% per day. Its later thant*, and the option is never exercised. This can be
volatility is fixed to 0.01 day'/2. Its maximal value is explained as follows: whemn* is low, K*, the equipment’s
fixed to X, = 3 Mbit/sec/cell before the investmentexercise price, is quite high. Thus, the option is not really
and toX’ . = 8 Mbit/sec/cell after the investment.  interesting. Rapidly the equipment’s real price will sinkder

« the data transfer price is fixed to= 0.1 $/Mbit. K™, and within that short period it is better to take the risk of

« we take a satisfaction parameter/& 0.7 Mbit/sec/cell. waiting.

« we simulate 10000 different trajectories of the asset.

0 10 20 30 40 50 60 70 80 90
t* (days)

A. Option's price VI. CONCLUSION
On Figure (3), we represent the price of the option vetSus  In this work, we proposed a model for risk hedging when
Recall that the price is obtained with equation (13), where dealing with investment under uncertainty in telecommanic
implicitly appears in functior? (see equation (7)). It appearstion networks. In such a case, the risk comes from the random
that the price increases withi. This was expected, since theevolution of the demand, possibly resulting in unexpected
longer the option’s maturity is, the higher the risk for ttenk explosions of the traffic leading to network saturation. To
is, and then the more expensive the option is. hedge against this risk, the operator would buy an option
from some financial parts that gives him the right but not
the obligation of buying equipments at a given price, until
a maturity date. We calculate, using backward dynamic pro-
gramming and a least square approach, the premium of the
1000 | option and the expected investment date. Our results show
that the option price increases with the exercise date, egser
the mean investment date sinks. As a future work, we aim at

120.0 o

Premium (k$)
]
o

o0 | considering the case where multiple investments are pessib
(in a telecommunication context, the multiple options may b
400y adding more than one band, or implementing a more efficient

technology, e.g. forthcoming 3G LTE systems).

20.0 T T T T T T T
0 20 40 60 80 100 120 140
t* (days)

VII. A PPENDIX
Fig. 3. Price of the option.
The purpose of this technical appendix is to prove that

the mathematical conditions for applying a risk neutrdicra
approach to price the American option are fulfilled. Prdgjse
On Figure (4), we represent the investment date versus there will be three main steps: 1- study the regularity of the
Recall that the date is obtained with equation (16), whére function v(t,z) from which the underlying asset is derived,
appears in generalized functigh(see equation (15)), and mayand give a differential equation checked by its derivatigs
be prior to the investment’s date. It appears that the invest deduce from Ib’s lemma applied ta the expression of the
date is very low for higher values of. This happens becausemarket price of risld;, and 3- verify Novikov condition o
K™ is very low, thus it is all the more interesting to investhanks to numerical simulations.

B. Investment date



A. An explicit expression for(t, )

Expression (6) of the underlying asset can be re-stated :
follows:
Sy = v(t, Wy),

where we have introduced the function:

v(t,z) =E [/t o(t,s, W) ds

Wt:$‘|

with:

P(t, s,w) = e (' (s,w) — n(s,w)).
In this section, we aim at giving a fully explicit expression
for the functionu(¢, x), in order to study its properties in the

following of the annexe. For this purpose, let us first swap
sum and expectation in the expressionvdf. We obtain:

T
tsr) = [ Bl W, = WW, = o] ds,
t
and, since the increments @, are independent:

T
v(t, x) /t E¢p(t,s,x + Ws — Wy)] ds

T—t
/ E[¢(t,t+$,]}+Wt+s —Wt)] ds.
0
Let us introduce another two functions:

ft,s,w) = ¢(t,t + s,w)
and:

u(t,s,ac):/f(ts,w)g(gc,s,w)dw7 (a7)
R

where g(z, s,.) is the Gaussian density with meanand
variances. We finally get:

T—t
v(t,x) = / u(t, s, ) ds.
0

B. Regularity and differential equation far
Let us first recall that:
flt,s,w) = e S (a'(t + s,w) — 7(t + s,w))

1 (w—=)?

2
V2rs °

(18)

g(x7 S7w) =

Lemma 1: ©(s,w) and «'(s,w) are C*°(]0,+oo[xR),
bounded, with bounded derivatives
Proof: let us prove the property with! for example.
« First we prove thatr is C°°(]0,+oco[xR). For all
o €]0, +o00], let us introducew, = h(sg), the number
such thatX (sg, wo) = Ximax:

owg = 10g(Xmaz/x0) — (@ — 02/2)30

The points(sg, wy) define a lineA (see Fig. 5). Let us
also introduce the two subsets |6f +oo[xR:

{91 = {(s,w)/w < h(s)}

Qo = {(s,w)/w = h(s)}
This is possible becausg is positive, since) < 7 < 7’ is

w

— .
\

1

A

Fig. 5. Partition of the plane into two subsé®s and Q.

These two subsets are situated respectively under and
aboveA. On Qq, X (s,w) < X4 and we have:

2
2 a—Z—)stow
(5,10 = roelo— )5+ ower B/ (Xma—aue™= T 7H)

)

and onQs, X (s,w) > X4, andw = 0.
On Q4, since:

one can show by recursion over = p + ¢ that the
derivatives ofr can be written:

" BuX)
0sPOw? (Xmaz — X

where P, , is a polynom. Hence the denominator is
counterbalanced by the second exponential term in the
expression of the derivative of, so that the derivatives
all tend to 0 in the neighborhood df and the transition
between(2; and ), is C*°.

ZX =(a—"h)X

ZX=0X ’

e_B/(Xn'Lar_X)

(19)

)Qn

« Secondly we prove that each derivativerofs bounded.
Expression (19) is a continuous function of on
[0, X;naz[, @nd is also continuous & ... Hence, it is
bounded forX € [0, X,q.]. Since:

X(Ql) :]07Xma:1:] C [OaXmaa:]y

this achieves the proof.
Lemma 2: for any two compact set§' C]0, +oo[, C’ C R,

we have the following upper bounds:

Vs € C, g;{ < gpi}c(w)
ai .
Ve e O, |53 < .o (w)

wherey! . andv! ., are summable oveR.

Proof: we only prove the first upper bound, the second one
exactly similar. One can show by recursion t@éﬁ can be



written: which is integrable oveR. Hence,u is C* w.r.t. s.

d'g — g(z, 5,w Zaz i 7 (20) By deriving under the integral sign, we have:
dsi
where eachu; ;. varies contmuously witls. We want to bound Uz (t8,7) = Jo £t 5, w)ga (x, 5, w) dw
(20) whens varies within a compact sét = [a, b] C]0, +oo. ul(t,s,z) = Jo f(t,8,0)gL(z, s, w) dw
Since:
dig d; . +  Jp fit,s,w)g(x, s, w) dw,
F EFCRRT) SO
k=0 (splitting into two sums is allowed sincg g is summable).
we deduce: Thanks to the heat equation verified by the Gaussian kernel:
g 1 _ (w—x)? & k 1y
‘651’ = \/ﬂe " ;} <31§[3?§J |al’k(s)|> el s = 39ae
from which the first upper bound is immediate. we finally get third assertion of Lemma 4:
Lemma 3: f is C> w.r.t. each of its variables € [0, 77,
s €]0,T —t[, w € R, and its derivatives are bounded. " ,
Proof: this comes directly from Lemma 1. In particular, Yoo = Z/Rf(t’s’w)gs(x’s’w) dw
there exist constant&”; and K so that:
, , = 2~ [ ttswgteswdv).
a'f < K. ‘8’Lf <K JR
oti| — ’ dst| — "

Lemma 5: v is C*° w.r.t. each of its variables, € [0, +-o00[

Lemma 4: u is C> w.rt. each of its variables € [0,T[, and, c R andv] + Lo = —é(t,t,z) + Cv
’ . ' 2 zxx Yy .

s €]0,T —t[, = € R. For any compact sef’ C R: Proof: the regularity ofv is a direct consequence of
dul [ equation (18) and Lemma 4. The differential equation chécke
ot ’ by v is obtained as follows:
ful < KignVzed
O ' T—t

and the following differential equation is verified ty vy = /0 uyds —u(t, T —t,x)

=20, [ 1
R

Proof: using Lemma 3, we obtain:

T—t
/ /ft’gdwds—u(t,T—t,x)
0 R

T—t
/0 /R<f;g+<fg>dwds—u(t,T—t,m

('%i(fg)’:’&{g < Kig Tt 1
= / (u; — 2u;’1> ds+ Cv —u(t,T —t,x)
Then, the derivability ofu w.r.t. ¢ and the first upper bound 0 1
immediately come from expression (17) and the differeiatiat = wu(t,T—tx)— limu— ivgz +Cv—u(t, T —t, ).
s—0

under the integral sign theorem.
Using Lemmas 2 and 3, we obtain (for anye C’):

ft, ., w) being continuous at points = 0, we have
ot d'g lim, o u(t,s,z) = [; #(t,t,w)g(x,0,w)dw where the term
Ozt (fg)’ - ‘f ot KW& o (w) g(x,0,w) has to be understood as the Dirac distribution.at
) o ~__ Therefore:
Sincey; o, is summable oveR, we deduce the derivability
of u w.r.t. z, along with the second upper bound, taking: vy = —o¢(t, t,x) — 5 Vza + (.

Kic =K L or(w) dw. .
ad 0 / Vs (w) dw Lemma 6: 22(t,x) is null only on a curver = z(t).

Proof: this lemma will not be rigorously proved, but
mstead inferred from numerical simulation of the surface
orf oig 9u(t,x), t € [0,T], = € R. Fig. 6 shows this surface. Clearly,
5P Osd (p+qg=1) one can observe that on the left side of the red Igie;goes
to zero only on a curve(t). What can be proved analytically
is that 22(¢,2) < 0 on the right side of the line, where

! q paradoxically the surface is very close to zero. Let us write
< Kyl o, (W), 2% in a new way:

Each derivative2
written:

poe (fg) is a sum of terms which can be

From Lemma 2 (taking” = [0, 7]) and Lemma 3, we get:
orf dlg

dsP Ds1




dv/dx

dvidx(tw)

Fig. 6. The surfacév/0z (we kept the previous parameters). On the righ
of the red line, we show in Lemma 6 that it is non null. On the lef, see

that it is null only on the green line.

~
8

N—
Il

/Tf/ftsw (x,8,w)dwds
[ o

/ E [¢(t,t+s,x+Ws)W
0 S

(x s,w) dwds

ds,

whereWV, is a standard Brownian motiop(t, t + s, 2+ W)
is always positive, and nuiff ¢+ s > a(x + W) + b, where
we have introduced two coefficients:

o b log(Xmas/z0)

a=——-7"
a—a*/2 a—a*/2

2o (t,x) = fOTftIE [¢(t,t+s,m+W5)% ds

1{t+s<a(z+Ws)+b}]
= (TR [(b(t,t—&—s,m—l—Ws)% ‘WS < % —x]

P(t+s<a(x+Ws)+b) ds

If t—b
line t=t
have the result.

— 2 <0, it is immediate to obtairf% (¢,z) < 0. The

C. Expression of the risk premiufy

In this section, we justify the existence of the market pri
of risk 6, and deduce its expression frono’tt lemma and the

differential equation checked hy I1to’s lemma holds since
is regular. It gives:

ov

1 0%
at(

282( dt +

dSt = t Wt) t Wt) g (t Wt)de

— x = 0 being precisely the red line of Fig. 6, we

log(|thetal)

ig. 7. Repartition of the peaks @f(¢,w). They all lie on the green line
epresented on Fig. 6. Normally, they should form a contisumest, but due
to discretization they show an uneven behavior.

Provided X, . > Xmaz, We haveuv(t,z) > 0 for any (¢, z).
HenceS; > 0 and we can write:
10v

dS; 1 /0v 106%
— = — 4+ -——= | dt+-—d
S5 (8t+25)x2> vaz M
By identifying this equation with the dynamics of the under-

lying asset (8), we get the expression of the expected total
return on the asset; and the volatilityx;:

_ 1 (ov 1 0%v
He =5 (mJFiW)
KRt =

10v
v Ox

Lemma 6 ensures that; # 0 a.s, therefore the market

price of riskd; is well defined, and:

— CU) .

"7\ oz ot
The final expression fof; is a consequence of Lemma 5:

¢(t7 ta Wt) _ _ 7T2

1%
2 Oz

(t, Wf) — Wl(t, Wf)

" mewy 2 (1, 7)
D. Novikov’s condition
Now we have to prove that:
1 T
E exp<2/0 07 dt) < +oc.

Actually, is fO 67 dt even finite ? The question is relevant,

Ckéecause Lemma 6 shows that on a certain Igiife;s null, and

so 6(t,w) is infinite (see Fig. 7).
Now, could a trajectory#W;) come close to this line during
a time long enough so that:

1 T
E |exp 5/ 02 dt
0

=400 ?




Here we use a result of El Karoui and Gobet (see [15],
Proposition 1.3.8.):

P (sup Wl = ) <2 B(Wr| 2 o)
t<T
which tends to 0 extremely rapidly when— oo. Hence,
if we choose correctly our parameters so that the critic line
lies far enough from the line = 0, the probability to reach it [
during the experiment will be extremely low. Then, in preeti [
we will consider thaty, remains almost surely bounded by a
constan®); anda fortiori, Novikov’s condition will be verified,
since we will have:

1 /T 5
E |exp 5/ 02t || < e /2,
0

E. Regressing a set of points on a 2-degree polynom

Given a set of point§z;,y;)1<i<» in R?, the aim of the 6]

section is to find three real numbetsb, ¢, such that -
.

> lyi = Pape(a)? 8]
=1

is minimal, where: [9

—

Pope(x) = azx® + bx + c.

After deriving w.r.t.a, b andc, we obtain respectively: [10]
oY a} byl +eYal =Y aty -
ad w3 +bY 22+ X =Dz (21)
ad x?+bY xi+c =>"y;. [12]
Has (21) a solution? Let us consider the 4 vectorof [13]
1‘% T 1 Y1
1;2 = : xTr = : 1= : Yy = . 5 (14]
JI% Tn 1 Yn [15]
then we can re-write the system as: [16]
(17]
(@?a?)  (2%[z) (a?[1) (#°]y)

(2|22)  (zz) (1) | 0] = (zly) |. [18]
?) @) 1)) \e/  \@y) 5]

It is equivalent to say that the vectgr— ax® — bx — c is  [20]
orthogonal tol, = andx2. In other wordsaz? + bz + ¢ is the
orthogonal projection of; on Vect(,r,z2), and thus we are
sure that (21) has a solution.

Is this solution unique ? It, z andz? were not independent,
there would be three real numbersv andw such that:

Vi, u+ vz +wz? = 0.

« as soon as there are more than two different values,of
this is impossible, and so there is a unique solution.

« if x; takes only two different values, then the solution
is not unique any more, butl{r,z?) has rank 2. So
we choose to regresg on 1 and = for example (and

we find a line which intersects the centroids of the two
corresponding subsets).

if ; takes only one value, thern ,z2) has rank 1. So
we choose to regresg on 1 (and we find the mean of
the yiS).
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