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Abstract—When a customer makes an appointment at the
doctor, call the plumber or reserve flight tickets, he joins a queue.
By making the reservation, the customer can learn his position
in the service provider’s queue. If the customer is unsatisfied
with his position, he might consider calling an alternative service
provider, hoping to get a better position. In our model, the service
is provided by n parallel servers. Upon arrival to the system, each
customer randomly chooses one server and inspects it. Then, he
either joins it or inspects another queue. If he inspects another
queue, he can join the shorter queue, or continue his search
and inspect another queue. We assume that each inspection
is associated with a fixed cost. The solution of this model is
not straightforward even when n = 2, and is characterized by
cascades. In equilibrium, there exist isolated queue lengths (holes)
at which customers inspect the other queue. In other queue
lengths customers join the first queue. In some cases, there exist
queue lengths at which customers adopt a mixed strategy.

I. INTRODUCTION

In many services, customers make an appointment in ad-
vance. For example, medical service providers as physicians,
surgeons, psychologists and psychiatrists, require that the
patient will make an appointment. Reservations are also neces-
sary in other fields: for example, if someone needs the service
of a plumber or an electrician, he would have to schedule the
visit. Booking is also required in many travel services: flights,
hotels, restaurants, shows etc.

When a customer makes an appointment at the doctor, calls
the plumber or reserves flight tickets, he joins a queue. By
making the reservation, the customer can learn where he is
positioned in the service provider’s queue. If the customer
is unsatisfied with his position, he might consider calling
an alternative service provider, to get a better position. The
customer can continue inspecting other queues, until he is
satisfied. But calls are not costless: apart from the cost of the
call itself, there is effort that is associated with it (for example,
if the customer needs to provide details as contact information
in order to make the appointment).

In our model, we assume that customers have to consume a
service (for example, visit the doctor). The service is provided
by n servers. Upon arrival to the system, each customer
randomly chooses one server and inspects it. Then, he decides
whether to join it, or inspects another queue. If he inspects

another queue, he can join the shorter queue, or continue his
search. We assume that each inspection is associated with a
constant non-negative cost.

We focus on the case of two servers. The solution is not
straightforward even in this case. In this system, the more
customers inspect the other queue, the more is an individual
inclined to avoid them and join the first queue he observed
without inspecting the other queue. If a customer assumes with
a high probability that the customer in front of him has already
inspected the other queue and nevertheless chose to stay in that
queue, then this serves as an indication that the present queue
is shorter, or at least not much longer than the other queue.
Thus, the actions of other customers also serve as signals,
rendering the search associated with positive externalities.

A threshold strategy x = n+p, n ∈ N, p ∈ [0, 1), prescribes
one action, say A1, for every state 0 ≤ i ≤ n − 1; another
action, say A2, for every state i > n; and when i = n, selects
randomly between A1 and A2, assigning probability p to A1

and (1−p) to A2. Equilibrium solution of threshold strategies
is common in queueing systems (Hassin and Haviv [7], p.7-9).
But in many queueing systems, a customer’s choice between
alternative servers is based on partial information about these
queues. Since customers’ decisions interact, a customer may
infer about the state of a particular queue from the information
available about the other queue. For example, a long queue at
a given time may indicate that other queues are probably also
long at that time. In other cases, it may be an indicator that
the server provides high quality service, or that it is a slower
server. This information externality makes the analysis of such
systems very interesting, and the solution might not be of the
threshold type.

Several works had shown results of a similar nature. Whitt,
[12], proved that joining the shortest line is not always optimal
in a system of two parallel queues in front of two identical
servers, and depend on the difference between the length of
two queues. A symmetric Nash equilibrium which is not a
threshold was also found in several works (Altman and Hassin
[3], Haviv and Kerner [9], Hassin and Roet-Green [8]).
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Positive externalities exist also in models where servers are
different in their service quality, and it results in an involved
structure of the equilibrium. A pioneering work is Banerjee’s
[1], who considered a sequential decision model in which each
decision maker choose between several options, that only one
of them is the correct option. He showed that the decision rule
is characterized by herd behavior, meaning that people follow
the crowd even if it is against their own information.

Some works showed equilibrium strategies that are charac-
terized by cascades: Bikhchandani, Hirshleifer and Welch [2]
considered models in which individuals start with some private
information, obtain some information from predecessors, and
then decide on a particular action. They found that there exists
informational cascade, in which an individual takes an action
that does not depend on his private information, and as a result
of that no further information accumulates, and the following
individuals adopt herd behavior.

Another solution that is characterized by cascades was
found by Debo, Parlour and Rajan [4]. In their model, cus-
tomers arrive to a single observable queue, and decide whether
or not to join it. The decision relies on a private signal that
indicates the quality of the service, while the queue length
provides (positive) information externality. They showed that
for customers with private signal that indicates bad service,
there may exist equilibrium strategies with “holes”: for exam-
ple, such a customer will join the queue if its length is 3, 5 or
6 but not when the queue length is 4. Other works on positive
externalities due to service quality differences between parallel
servers were written by Veeraraghavan and Debo [10],[11].

In our model, when customers arrive to the system, the
queues in front of the servers are unobservable to them. When
a queue is inspected, it becomes observable to the customer.
The question of acquiring information about queue lengths
also receives significant attention in the literature. Hassin
and Haviv [6] considered a model where customers arrive
to a system with two identical parallel servers. An arriving
customer can acquire the information about which queue is
shorter by paying a fixed amount, and then join the shorter
queue. A customer who does not purchase the information
chooses one of the queues randomly. After joining, customers
jockey without additional cost from one queue to another,
when the difference between them reaches a given threshold of
N . Hassin and Haviv computed the value of information and
the equilibrium threshold strategies. As opposed to intuition,
that the value of information is a decreasing function of the
proportion of informed customers p (Avoid the crowd), they
showed that under certain parameters this value increases with
p (Follow the crowd).

In another paper, Hassin [5] considered a model of two
queues, where all arriving customers observe the first queue,
and decide upon arrival whether to join it or to jockey to the

other queue which is unobservable to them. This decision is
irrevocable, and balking is not an option. A motivation for this
model is the example of two gas stations that are located one
after the other on a main road. Drivers make their decision by
comparing their expected waiting cost at the first station, to
the conditional expected cost at the second one. Hassin found
that the average arrival rate into the first queue is greater than
the rate into the second one, and that customers’ equilibrium
strategy is of the threshold type: they join the first queue if
it is shorter than a threshold which is the expected length of
the other queue, but they join the other queue if its expected
length is shorter, and adopt a mixed strategy if these values
are equal.

Our model relates to these works in several aspects. The
main difference between these models and the one that we
present here is that in our model, customers’ decision problem
has to take into account the cost of inspecting the other
unobserved queue, which was costless in the previous models.

It is not trivial to determine whether there exists an equilib-
rium of the threshold type in this case. Consider a threshold
strategy where a customer decides to inspect the other queue if
he observes at least i customers in his own first queue. Suppose
that the customer observes i+5 customers. With a reasonably
high probability, he knows that the last customer in the queue
has recently inspected the other queue and concluded that it
was not worth joining it. Hence, the current customer may
use this information and avoid expending the amount required
to verify it. This contradicts the assumption of a threshold
equilibrium. Indeed, our investigation into this model reveals
that there exists a unique equilibrium solution, and according
to this solution a customers strategy has an involved structure
that is characterized by cascades.

II. THE GENERAL MODEL

Consider a system of n parallel queues. The service time
at the k-th server is exponentially distributed with parameter
µk, k = 1, . . . , n.

Customers’ arrival process to the system is Poisson with
parameter λ. When a customer arrives, he inspects the queue
in front of server k with probability αk, k = 1, 2, . . . , n,
and observes its length. We assume that

∑n
k=1 αk = 1.

Then, arrival to queue k is Poisson with parameter αkλ. The
utilization factor is:

ρ =
λ∑n

k=1 µk
. (1)

For stability, we will require that ρ will be strictly less than
1, since it is impossible to balk from the system.

After inspecting the first queue, each customer chooses
between joining it, or inspecting another queue. If he decides
to inspect another queue, he inspects queue k′ ̸= k with prob-
ability αk′

1−αk
. After inspecting the length of k′, the customer



chooses whether to join one of the queues that he already
inspected, or inspect another queue, and so on. We assume that
the customers are rational agents in this game, and therefore,
among the queues that they already inspected, they decide to
join the queue that minimizes their expected waiting cost.

III. TWO QUEUES

Consider a system of two parallel queues in front of two
servers. We refer to them as Q1 and Q2. Inspecting a queue
is associated with a cost: C1 ≥ 0 for Q1 and C2 ≥ 0 for Q2.
A customer who arrives to the system inspects at first one of
the queues: Q1 with probability α, and Q2 with probability
1 − α. Then, he decides whether to join it, or to inspect the
other queue. We assume that waiting has a cost of CW ≥ 0
per unit of time.

We use i for the state of Q1, and j for the state of Q2. By
state we refer to the number of customers both in service and
in queue.

To describe the birth and death process in this model, define
the indicator function δi,j as:

δi,j =

{
1 i+1

µ1
≤ j+1

µ2

0 i+1
µ1

> j+1
µ2

(2)

Consider a customer who inspected both queues, and ob-
served the state (i, j). Then, if δi,j = 1 he will choose Q1,
and if δi,j = 0 he will choose Q2.

A strategy consists of two vectors P 1
I and P 2

I , and a constant
0 ≤ α ≤ 1, where P k

I = [P k
I (0), P

k
I (1), . . . ], k = 1, 2,

∀i : P k
I (i) ∈ [0, 1], where P k

I (i) is the probability that
the customer inspects the other queue if he observes i ≥ 1
customers in Qk, and 1 − P 1

I (i) is the probability of joining
Qk without inspecting the other queue.

Consider a given α. A customer arrives to the system, and
inspects first Q1 with probability α. For any queue length of i
customers in that queue, i = 0, 1, 2, . . . , the customer joins Q1
with probability (1−P 1

I (i))α, or inspect Q2 with probability
P 1
I (i)α and joins it if δi,j = 0. Otherwise, he joins Q1. The

customer inspects Q2 first with probability 1 − α. For any
queue length of j customers in that queue, j = 0, 1, 2, . . . ,
the customer joins Q2 with probability (1 − P 2

I (j))(1 − α),
or inspects Q1 with probability P 2

I (j)(1 − α) and joins it if
δi,j = 1. Otherwise, he joins Q2.

Denote:

M1
i,j =

(
α+ P 2

I (j)(1− α)
)
δi,j

+ (1− P 1
I (i))α(1− δi,j) (3)

and:

M2
i,j =

(
P 1
I (i)α+ (1− α)

)
(1− δi,j)

+ (1− P 2
I (j))(1− α)δi,j (4)

Then, given the state (i, j), M1
i,j is the probability that the

system proceeds to state (i+1, j), while M2
i,j is the probability

that the system proceeds to state (i, j + 1).

A. Equilibrium

A customer observes the length of one of the queues and
compares the expected cost from joining this queue with the
conditional expected cost from inspecting the other queue and
joining the shorter one. If the customer observes Q1 first, let
U1
J be the expected cost from joining Q1 without inspecting

Q2, given state i in Q1. Then:

U1
J(i) =

CW · (i+ 1)

µ1
(5)

Notice, that the expected cost from joining Q1 does not
include the cost of inspecting Q1, C1, since it has been spent
already.

Let πij be the steady-state probability of state (i, j). Let
U1
I (i) be the expected cost of inspecting Q2. Define auxiliary

variable X1 as:

X1(i) =

⌊
(i+ 1)µ2

µ1

⌋
− 1 (6)

When j < X1(i), then δi,j = 0 and the informed customers
join Q2. When j ≥ X1(i), the informed customers join Q1.
Therefore:

U1
I (i) = C2 +

CW

µ2
·
∑X1(i)−1

j=0 πij · (j + 1)

πi

+
CW

µ1
·
∑∞

j=X1(i)
πij · (i+ 1)

πi
(7)

where:

πi =

∞∑
j=0

πij . (8)

The expected cost of a customer who observes i customers
in Q1, is:

U1(i) = min{U1
J(i), U

1
I (i)}. (9)

Similarly, if the customer inspects Q2 first, define U2
J(j) as

the expected cost from joining Q2 without inspecting Q1, and
U2
I (j) as the expected cost from joining Q2 without inspecting

Q1, given state j in Q2. Then:

U2
J (j) =

CW · (j + 1)

µ2
(10)

Define auxiliary variable X2(j) as:

X2(j) =

⌊
(j + 1)µ1

µ2

⌋
− 1 (11)

When i < X2(j), then δi,j = 1 and informed customers join
Q1. When i ≥ X2(j), informed customers join Q2. Therefore:



U2
I (j) = C1 +

CW

µ1
·
∑X2(j)−1

i=0 πij · (i+ 1)

πj

+
CW

µ2
·
∑∞

i=X2(j)
πij · (j + 1)

πj
(12)

where:

πj =
∞∑
i=0

πij . (13)

The expected cost of a customer who observes j customers
in Q2, is:

U2(j) = min{U2
J (j), U

2
I (j)}. (14)

Customers wish to minimize their cost, and therefore choose
best response strategies. Since in this model the customers are
homogeneous, we are interested in a symmetric equilibrium.
A strategy profile is a symmetric equilibrium profile if it is a
best response against itself.

Define as E1 customers’ expected cost from inspecting Q1
first. Then:

E1 = C1 +

∞∑
i=0

πiU
1(i) (15)

Define as E2 customers’ expected cost from inspecting Q2
first. Then:

E2 = C2 +
∞∑
j=0

πjU
2(j) (16)

In equilibrium:

α =


0 E1 > E2

1 E1 < E2

α ∈ [0, 1] E1 = E2

(17)

For a given α, denote by (P 1
I
∗
, P 2

I
∗
) the best response

strategy for a customer given that all others adopt strategy
(P 1

I , P
2
I ). Denote by Uk

J (r), U
k
I (r) the expected costs from

joining with and without inspecting the other queue when the
length of the first inspected queue Qk is r. Then:

PI
k∗(r) =


PI

k(r) = 0 UJ (k) < UI(k)

PI
k(r) = 1 UJ (k) > UI(k)

PI
k(r) = p ∈ [0, 1] UJ (k) = UI(k)

(18)

The symmetric equilibrium strategy, (PI
k)e is a best re-

sponse against itself. In order to find equilibrium strategy, we
find (PI

k)e for a given α in general. Then, we substitute PI
e

into E1, E2, and find the appropriate α.

To avoid trivial solutions, we assume that CW > 0 and
C1 > 0 or C2 > 0.

B. Numerical Method

In our numerical study, we assumed that each server has a
limited waiting room of N (including the customer in service).
Therefore, each server has N + 1 states: i, j = 0, 1, . . . , N .
We assume that a customer who observes queue length of N
customers inspects the other queue, and join it unless it is also
full. If both queues are full, an arriving customer balks and
never return to the system. We choose N big enough such as
the probability that the queues fill up is negligible.

For a given α, we use the following algorithm to compute
the equilibrium strategy:

1) Choose arbitrary strategy vectors P k
I , k = 1, 2, and

define a tolerance parameter ϵ.
2) Compute the steady states probabilities matrix πi,j using

P k
I .

3) Compute Uk
I , U

k
J using the πi,j matrix.

4) If Uk
I (i) > Uk

J (i) + ϵ, set P k
I

∗
(i) = 0.

5) If Uk
I (i) < Uk

J (i) + ϵ, set P k
I

∗
(i) = 1.

6) If |Uk
I (i)− Uk

J (i)| < ϵ, set P k
I

∗
(i) = P k

I (i).
7) If |P k

I

∗ − P k
I | < ϵ, stop, and declare the equilibrium

strategy as P ∗
I .

8) If |P k
I

∗ − P k
I | ≥ ϵ, define a “new” strategy (P k

I )
new as

a convex combination of the “old” strategy P k
I and its

best response P k
I

∗, using a random number γ ∈ (0, 1)
as a weight. Continue from the second step and repeat
the process, until you reach the stopping criteria.

We applied this algorithm with ϵ = 0.001 in our numerical
examples.

C. Numerical results

Numerical results of this model show that customers’ behav-
ior in equilibrium has a complex structure that characterized
by cascades. To illustrate that, we look at the special case
where the servers are identical in their rate of service µ1 = µ2,
and also in their inspection cost C1 = C2 > 0. As a result,
customers are indifferent between the servers, and therefore
they choose which queue to inspect first randomly (meaning
α = 0.5).

Once a customer arrives to this system, he inspects one of
the queues. Given its length, the customer decides whether to
inspect the other queue or not. Since the servers are identical,
P 1
I = P 2

I , and therefore we use PI for customers’ strategy
vector. If the customer observe i customers in the first queue he
inspected, he inspects the other queue with probability PI(i),
or join the first queue without inspecting the other one with
probability 1−PI(i). Customers’ equilibrium strategy consists
of the vector PI , and is computed using UJ (i) = U1

J(i) (see
Equation 5) and UI(i) = U1

I (i) (see Equation 7). Figure 1
shows an example of customers’ equilibrium strategy when
µ1 = µ2 = 3, λ = 7, C1 = C2 = 1, CW = 2.5. In the x-axis



there are the different feasible queue lengths, while in the y-
axis there is the probability to inspect the other queue length,
PI .

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q1 length

P
I1
 i
n
 e

q
u
ili

b
ri
u
m

µ
1
=5, µ

2
=5, λ=7, α=0.5, C

W
=2.5, C

I
1=1, C

I
2=1

Fig. 1. “Holes” in the equilibrium strategy

From figure 1 one can learn that the equilibrium strategy is
characterized by cascades: for i ≤ 1 customers join Q1, for
i = 2 they inspect Q2, for 3 ≤ i ≤ 5 they join Q1. For i = 6
they adopt a mixed strategy: they join Q1 with probability
PI ≈ 0.7, and inspect Q2 otherwise. For i ≥ 7 they join Q1.

These cascades coincide with the following behavior: if a
customer assumes with a high probability that the customer
in front of him has already inspected the second queue and
still chose to stay in the first queue (or joined from the other
queue), then this serves as an indication that the present queue
is shorter, or at least not much longer than the other queue. But
if he assumes with a high probability that the customer in front
of him did not inspect the second queue, he intends to check
the other queue length. Thus, the actions of other customers
influence the customer’s behavior as positive externalities.

We compared different levels of queue congestion, in order
to find out how it influence customers’ behavior. We found
that cascades appear as ρ increases, since the queue state is
more unstable for larger ρ than for smaller ρ, and therefore it
is more informative. As a result, a customer that inspects the
queue can assume with high probability that the customer in
front of him inspected the same queue length when he joined
it, and therefore in equilibrium the queue length will indicate
the action of the last customer who joined it. For small ρ,
the queue is less informative, and customers choose to inspect
the other queue if the cost of inspection is low. Figure III-C
demonstrates this phenomenon.
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Fig. 2. Cascades multiplies as ρ increases



Notice, that the dashed line in all the figures in this paper
is for graphical help - the strategy in all cases is discrete.

In Figure III-C, we fixed the following parameters: µ1 =
µ2 = 4, C1 = C2 = 1, CW = 2. We changed the customers’
arrival rate, λ. In 2(a), λ = 1 and therefore ρ = 1

8 , and
customers’ strategy in equilibrium is to join Q1 without
inspecting Q2, due to relatively high cost of inspection. As
ρ increases to 3

8 in Figure 2(b) due to increase in λ, cascades
appear. As ρ continues to grow, cascades appear for earlier
(see Figure 2(d) where ρ = 5

8 ), and multiply (see Figure 2(c)
where ρ = 7

8 ).

We also looked into the changes in the equilibrium when
the cost of waiting is changing with respect to the cost of
inspection. The numerical results show, that when the ratio
CW

CI
→ 0, customers’ dominant strategy is to join the first

queue that they observed, no matter what is its current length.
As the ratio CW

CI
increases, cascades appear, and customers

inspect the other queue for isolated observable queue lengths.
Cascades increase with CW

CI
, and inspecting the other queue

becomes a dominant strategy in equilibrium. Figure III-C is
an example for that.

In Figure III-C, we fixed the following parameters: µ1 =
µ2 = 4, λ = 7.5, C1 = C2 = 1. We changed the cost of
waiting, CW . In Figure 3(a), CW = 1, and customers’ strategy
in equilibrium has one cascade when i = 2. As CW increases,
cascades increase (see Figure 3(b) for CW = 3). In Figure
3(d), CW = 9, and we get more cascades and a mixed strategy
when i = 8. In Figure 3(c), CW = 25, and it shows that
in equilibrium, customers tend to inspect the other queue for
many observable queue lengths.

IV. CONCLUSION

Our main conclusion is that when customers search for a
server in a multiple servers system, their equilibrium behavior
is not easily described by a simple strategy. In particular, it is
not a threshold strategy. We focused on the case of two servers,
and found that the equilibrium strategy is characterized by
cascades. There exist queue lengths, for which customers join
the first queue they inspect, for a longer queue they inspect
the other queue, and for even longer queues they again join
the first queue.

This behavior is a result of the positive externalities in this
model: when a customer assumes with high probability that
the customer in front of him inspected the other queue and yet
decided to join this queue, it serves as a signal and influences
his decision whether or not to inspect the other queue.

In the numerical analysis, we assumed that the servers are
identical in their service rate and in their cost of inspection.
We found that:

1) Cascades appear when ρ is small, and tend to multiply
as ρ increases.
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Fig. 3. Cascades multiplies as the ratio CW
CI

increases



2) When the cost of waiting is low comparing to the cost of
inspection, customers’ strategy in equilibrium is to join
the first queue they inspect. As the ratio CW

CI
increases,

cascades appear. For higher values of CW

CI
, customers’

strategy is to inspect the other queue.
How can a planner of future queueing systems take this

behavior into account? Should competing servers control their
cost of inspection in order to affect customers inspection
policy? How does advertising affect customers’ decision of
which queue to inspect first? These questions and others arise
from this model, and can be used as a basis for future research.
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