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Abstract—With energy-efficient resource allocation, mobile
users and base station have different objectives. While the base
station strives for an energy-efficient operation of the complete
cell, each user aims to maximize its own data rate. To obtain this
individual benefit, users may selfishly adjust their Channel State
Information (CSI) reports, reducing the cell’s energy efficiency.
To analyze this conflict of interest, we formalize energy-efficient
power allocation as a utility maximization problem and present
a simple algorithm that performs close to the optimum. By
formulating selfish CSI reporting as a game, we prove the
existence of an unique equilibrium and characterize energy
efficiency with true and selfish CSI in closed form. Our numerical
results show that, surprisingly, energy-efficient power allocation
in small cells is more robust against selfish CSI than cells with
large transmit powers. This and further design rules show that
our paper provides valuable theoretical insight to energy-efficient
networks when CSI reports cannot be trusted.

Index Terms—Energy Efficiency, Power Allocation, Feedback,
Game Theory

I. INTRODUCTION

Reducing the energy consumption of cellular networks is a
challenging task for network operators and telecommunication
equipment vendors. One relevant approach is the energy-
efficient allocation of wireless resources such as bandwidth,
time and transmit power. By carefully allocating these re-
sources to the mobile users, a base station can reduce the
energy consumption of the complete cell [12], [9].

However, such centralized form of energy-efficient resource
allocation raises two problems. The first problem results from
the time-variant nature of the wireless fading channel. To
adapting to the users’ varying channels, the base station
has to update the resource allocation frequently, e.g., once
per millisecond in most LTE systems [2, Fig. 5.1-1]. This
renders computational complex approaches infeasible. The
second problem results from fading and interference, causing
most wireless channels to be non-reciprocal. Consequently, the
channel state is only known at the mobile user and needs to
be transferred to the base station. The accuracy of this CSI
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feedback is crucial for the quality of the resource allocation
decision. If users report inaccurate CSI, the resource allocation
does not reflect the actual channel states and the performance
of the overall network may degrade.

In this paper, we analyze energy-efficient resource allocation
when users and base station have different interests. While
the base station strives for energy efficiency of the whole
cell, each users aims to maximize its individual Signal-to-
Noise Ratio (SNR). Note that in a perfect cellular network
the base station would simply overrule the users’ interest. In
practice, however, the base station controls the CSI format
[1, Sec. 7.2] but not how mobile users generate the reported
CSI values. Thus, mobile users can selfishly report CSI that
provides them an individual benefit while the performance of
the overall network suffers.

This makes it necessary to analyze the effect of selfishly
chosen CSI on the performance of the wireless cell. To do
so, we apply a game theoretical approach. Here, the mobile
users are reflected as players who selfishly choose their CSI
to maximize their individual performance. For all users, the
base station computes the resource allocation by maximizing
a utility function. This function expresses the energy efficiency
of the complete cell. Limiting our analysis to power allocation
allows us to formally compare centralized power allocation
with true CSI to the allocation with selfishly chosen CSI.
Consequently, our results provide significant insight to energy-
efficient cellular networks in which the CSI accuracy cannot
be trusted.

A. Contributions

In particular, we make the following contributions:
1) We analyze the optimization problem, where the base

station maximizes the cell’s energy efficiency under
power constraints. We obtain an optimality condition
and propose a simple power allocation algorithm whose
energy efficiency is close to the optimum in general.

2) We prove that there exists a unique equilibrium for the
users’ selfish choice of the CSI reports. This allows
studying the network in a stable state, where no user
has an unilateral interest to report a different CSI.

VALUETOOLS 2012, October 09-12, Cargèse, France
Copyright © 2012 ICST
DOI 10.4108/valuetools.2012.250288



3) We compare the performance with true and selfish CSI
reporting. For both types of reports, we provide a closed-
form result for the cell’s energy efficiency. Numerical
results surprisingly show that small cells are more robust
to selfish CSI than cells with large transmit power
constraints.

All in all, our paper provides the theoretical insight to cope
with selfish CSI reports in cellular networks with energy-
efficient power allocation.

B. Paper Structure

Our paper is structured as follows. After discussing the
novelty of our study with respect to related work in Sec. II,
we describe the studied cellular system in Sec. III-A. Energy
efficiency is formalized in terms of a constrained utility
maximization problem in Sec. III-B. Using this function, we
formulate the non-convex optimization problem in Sec. IV.
Having discussed further properties of this problem, we pro-
vide an optimality condition and derive a power allocation
algorithm. Sec. V is devoted to the game theoretical study
of selfish CSI reports. Therein, we prove the existence of an
unique equilibrium for the proposed energy-efficient power
allocation. Finally, the numerical results in Sec. VI point out
by how much a selfish choice of CSI reduces the energy
efficiency of the system and by how much it increases the
users’ individual SNRs.

II. RELATED WORK AND NOVELTY

Our paper joins two fields of research. The first field is
energy-efficient power control, where often transmit power
is minimized under Quality of Service (QoS) constraints
[5], [13]. We do not follow this common approach in our
work. Instead, we maximize of the ratio between throughput
and transmit power. This utility function was introduced in
[6] and was used in [10], [4] for Code-Division-Multiple-
Access (CDMA) systems. With CDMA, employed such utility
function for power allocation results in a game where the
players interact via the interference term. Our work differs, as
the players interact via the power allocation algorithm of the
base station. Such centralized resource allocation is common
with cellular systems such as LTE and has not been studied
with the utility functions from [6] so far.

The second related field is scheduling with non-cooperative
mobile users. Typically, a centralized scheduler at the base
station allocates wireless channel resources to maximize the
instantaneous sum throughput of its cell. As such allocation is
based on CSI reports, some users may not report their actual
channel gains to obtain more resource from the base station.
In [7], Kavitha et al. model this selfish choice of CSI as a
signaling game [11]. Here, even the base station is considered
as a player that knows which mobile users cooperate and
which not. The same authors take a similar approach in [8]
for α-fair scheduling. Here, a signaling game cannot be used
since each resource allocation is affected by the scheduling
history.

Although we focus on selfish CSI reporting, our work
differs significantly. Unlike the above papers, we do not
include the base station in the set of players. Instead, the base
station performs centralized power allocation under its own
general objective – energy efficiency per cell. This objective
differs from the users’ aim, which strive for maximizing their
individual SNR. This conflict of interest between the user’s
individual objective and the base station’s objective per cell
has not been studied so far.

III. SYSTEM MODEL

A. Wireless Scenario

We study a single wireless cell where one base station allo-
cates transmit power to K mobile users during the downlink.
An arbitrary user is denoted by k ∈ K = {1, . . . ,K} and
the downlink transmit power is pk ∈ [0, P ] Watts for each
user. Time is divided into slots and power allocation is done
once per slot. To focus on the effect of power allocation and
to provide tractable results we ignore subband and time slot
allocation. Consequently, each user has its own, fixed subband
of bandwidth W and inter-cell interference is ignored.

For each subband, the wireless channel from the base station
to the user is assumed to experience quasi-static, time-selective
fading with channel coefficient hk. The fading process is
assumed to be i.i.d. Rayleigh, which leads to exponentially
distributed channel gains |hk|2. For each mobile user k ∈ K,
we can write the instantaneous SNR as

γ
(
pk, |hk|2

)
=
pk|hk|2

σ2
, (1)

with σ2 the variance of the noise for user k. To perform power
allocation, the base station requires a CSI report from every
mobile user per time slot. In this work, we require that this
feedback is equivalent to the channel gain |hk|2, ∀k ∈ K.

B. Energy-Efficient Utility of the Cell

The base station performs power allocation, taking into
account the energy efficiency associated with each of the
mobile users. There are many common uses of the term energy
efficiency. Here, we precisely refer to the notion introduced
by Goodman and Mandayam in [6], i.e., the energy efficiency
is the ratio between the effective throughput of the mobile
user and the transmit power spent to attain this throughput.
Contrary to [6] in which power control is considered for the
uplink, we perform power allocation in the downlink. Hence,
the transmit power considered in the energy efficiency is not
the power from the mobile user but the power allocated to the
mobile user by the base station. We denote u(k)BS the energy-
efficient utility associated with the kth mobile user. It writes

u
(k)
BS(pk) =

Rf
(
γk
(
pk, |hk|2

))
pk

, (2)

with R being a fixed transmission rate of the base station in
bit/s, and f is an S-shaped function taking its values in [0, 1]
which represents the packet success rate during transmission.
This function depends on the expected SNR of each mobile



user k ∈ K. The power pk is expressed in Watt, the unit
of the utility is hence bit/Joule. Similarly to Belmega and
Lasaulce work in [3], for the particular case of SISO channel,
the efficiency function f is defined as

f
(
γk
(
pk, |hk|2

))
= 1− Pout

(
γk
(
pk, |hk|2

)
, a
)
,

= exp

Å
− a

γk(pk, |hk|2)

ã
,

(3)

with a = 2R/W − 1 as the threshold under which the SNR
causes an outage. It is important to notice that there is an
approximation here, as Pout should depend on the expectation
of the channel gain, and not on the instantaneous value of the
channel gain. The justification of this approximation is that
power allocation is performed every time slot. Consequently,
instantaneous channel gains are required to take into account
the variations of the characteristics of the channels from one
time slot to another.

Fig. 1 illustrates the typical shapes of this energy-efficient
utility per user, for three different values of the channel gain.
It represents the energy-efficient utility associated with one
mobile user (in bit/Joule) with respect to the power allocated
to that user. Energy-efficient utility maximization does not
necessarily correspond to rate maximization. Indeed, contrary
to a rate maximization, it occurs that it is not always optimal
to use all the power available to maximize energy efficiency.
It is also interesting to note that for the same transmit power,
the energy-efficient utility per user increases with the channel
gain. Regarding individual optimal power, we can check that
the energy-efficient utility per user can be maximized with a
lower power when the channel gain is higher. For a cellular
energy-efficient power allocation perspective, it means that it
is more interesting to allocate power to mobile users with a
good channel gain, as these mobile users require less power
and offer a better energy-efficient utility.

The energy-efficient utility per cell is the sum of all the
energy-efficient utilities per user, i.e.,

uBS(p) =
∑
k∈K

u
(k)
BS(pk), (4)

where the vector p contains all power values allocated by the
base station.

Applying these utility functions for optimal power allocation
requires to understand their properties. For each user, energy
efficiency is expressed by (2). This function u

(k)
BS(pk) is

continuous with respect to pk. Consequently, the sum (4) is
continuous with respect to p. Nonetheless, such similarity
cannot be found for another property of the functions: although
each of the individual functions u(k)BS(pk) is quasiconcave, their
sum is neither concave nor quasiconcave.

IV. ENERGY-EFFICIENT POWER ALLOCATION

A. Optimization Problem

The objective of the base station is to allocate at most P
Watts among the different mobile users in order to maximize
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Fig. 1. Energy-efficient utility per user with respect to the allocated power
for three different channel gains. Parameters are a = 1, and σ2 = 5×10−14

W.

the energy-efficient utility per cell (4). The optimization prob-
lem is

maximize
p∈RK

∑
k∈K

u
(k)
BS(pk),

subject to
∑
k∈K

pk ≤ P,

pk ≥ 0, ∀k ∈ K.

(5)

The problem is solved by choosing the optimization variables
p1, . . . , pk such that the K + 1 constraints hold. These con-
straints ensure that the optimization set is compact convex.
The energy-efficient utility per cell uBS being continuous with
respect to p, we know that uBS has at least one maximum in
the set delimited by the power constraints. Hence, there exists
at least one optimal solution to this problem. But due to the
utility uBS being not quasiconcave, this optimization problem
is hard to solve.

B. Optimality Conditions

Optimality conditions can be obtained by the study of the
Lagrangian associated with (5). It writes

L(p, λ, µ) =
∑
k∈K

u
(k)
BS(pk)−λ

Å∑
k∈K

pk−P
ã

+
∑
k∈K

µkpk. (6)

The optimality conditions write ∀k ∈ K

du(k)BS(p̄k)

dpk
= λ− µk, (7)

with p̄ an optimal power allocation. These optimality condi-
tions lead to a partition of the set K in K′ and K′′. The set K′
is the subset of users for which power is allocated, leading to

µk = 0 and du(k)

BS
(pk)

dpk
= λ. The set K′′ is the subset of users

with no power allocated (p̄k = 0), for which µk = λ. In other
words, in an optimal energy-efficient power allocation, there
is a slope equality condition for a subset of the users, and the
remaining users are given no power.



C. Algorithm Design Principle

Here we do not provide an optimal power allocation scheme
to solve (5). Instead, we propose a simple suboptimal algo-
rithm with a performance that is very close to the optimum.
If the sum power constraint is not saturated, λ = 0, K′ = K.
Then, the proposed algorithm even provides the optimal allo-
cation per cell.

The idea behind the proposed algorithm is that, without
the sum power constraint, (5) can be divided into K simple
quasiconcave optimization problems. For each of these K
problems, the individual optimal power is known. As given in
[3], ∀k ∈ K, the power p∗k(|hk|2) that maximizes the energy-
efficient utility of mobile user k is

p∗k(|hk|2) = arg max
pk

f
(
γk
(
pk, |hk|2

))
pk

,

= min

ß
σ2a

|hk|2
, P

™
.

(8)

This power is called individual optimal power. If the sum
of all these individual optimal powers is less than the sum
power constraint P , expression (8) provides the solution of
the optimization problem . If the sum exceeds P , the base
station cannot allocate the individual optimal power p∗k for
each mobile user. Then it has to choose which mobile users
to serve and which users to exclude in order to maximize the
energy-efficient utility per cell while satisfying the sum power
constraint. How to make this choice is justified by Lemma 1.

Lemma 1: ∀i, j ∈ K, i 6= j, |hi|2 ≥ |hj |2 is equivalent to

p∗i (|hi|2) ≤ p∗j (|hj |2), (9)

and

u
(i)
BS

(
p∗i (|hi|2), |hi|2

)
≥ u(j)BS

(
p∗j (|hj |2), |hj |2

)
. (10)

This means that a high individual optimal power offers a poor
outcome in terms of energy-efficient utility, whereas a low
individual optimal power offers a good outcome. Hence, from
the base station perspective, it is more interesting to allocate
the power budget for the users with the lower individual
optimal power values. Note that contrary to water-filling, the
individual optimal power associated with a mobile user with
a good channel gain is less than the individual optimal power
associated with a mobile user with a low channel gain. This
is due to the fact that energy efficiency is maximized instead
of sum capacity.

D. Algorithm

Based on the observations of Sec. IV-C, we propose the
following algorithm to allocate power in the cell, assuming that
the coefficients provided by (8)

(
p∗1(|h1|2), . . . , p∗K(|hK |2)

)
are in increasing order (to simplify the notation, we only write
(p∗1, . . . , p

∗
K) in what follows). The power allocated to mobile

user k by the base station with that particular algorithm is
denoted by p̃k.

The algorithm is designed the following way. First, allocated
power values are initialized to 0 (line 1). While allocated

Algorithm 1
Require: (p∗1, . . . , p

∗
K), P .

1: (p̃1, . . . , p̃K) = (0, . . . , 0)
2: i← 1
3: while

∑K
k=1 p̃k < P do

4: if p∗i < p∗i+1 then
5: if

∑i
k=1 p

∗
k < P then

6: p̃i ← p∗i
7: else
8: p̃i ← P −

∑i−1
k=1 p̃k

9: end if
10: i← i+ 1
11: else
12: j ← i
13: while p∗i == p∗i+1 do
14: i← i+ 1
15: end while
16: if

∑j−1
k=1 p̃k +

∑i
k=j p

∗
k < P then

17: ∀k ∈ {j, . . . , i}, p̃k ← p∗k
18: else
19: ∀k ∈ {j, . . . , i}, p̃k ←

P−
∑j−1

k=1
p∗k

i−j+1
20: end if
21: i← i+ 1
22: end if
23: end while
24: return (p̃1, . . . , p̃K)

power does not exceed P , the allocation of power continues
(line 3). If the individual optimal power of mobile user i is
strictly less than the individual optimal power of the next
mobile user (line 4),
• if the sum of the individual optimal power of mobile user
i to the power values already allocated does not exceed
P , this individual optimal power is allocated (line 6),

• if the sum of the individual optimal power of mobile user
i to the power values already allocated exceeds P , only
the remaining power is allocated (line 8).

If the individual optimal power of mobile user i is equal to the
individual optimal power of the next mobile user (line 11), the
number of successive equal individual optimal power values
is counted (line 13),
• if the sum of these optimal power values to the previously

allocated power values does not exceed the constraint,
these optimal power values are allocated (line 17),

• if the sum of these optimal power values to the previ-
ously allocated power values exceeds the constraint, the
remaining power is fairly shared (line 19).

Note that the algorithm takes into account the case in
which several individual optimal power values are equal.
Such an event occurs with almost null probability when the
channel gains are considered to be continuous and follow an
exponential distribution law.

For the same sum power constraint, Fig. 2 illustrates
the performance gap between the outcome of the proposed
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Fig. 2. Energy-efficient performance comparison of the optimal power
allocation and the proposed allocation.

algorithm and the optimal power allocation. The figure on
top compares the optimal power allocation and the proposed
allocation in a cell with three mobile users. For each user, the
associated energy-efficient utility is represented, and the power
allocations are given for the optimal and suboptimal cases.
While both allocations saturate the sum power constraint, the
optimal allocation verifies the slopes equality, in accordance
with Sec. IV-B, whereas the proposed allocation gives the
individual optimal power values to the two mobile users with
the best channel gains, and only the remaining power for
the third mobile user. The figure below represents the energy
efficiency in the cellular cell for the two allocations, for various
amount of mobile users in the cell. For each number of
mobile users, the channel gains and the sum power constraint
are chosen such that the two allocations differ the most. It
can be considered as a worst-case scenario for the proposed
algorithm.

V. SELFISH CHANNEL STATE REPORTING

A. Definition of a game

This section focuses on the behavior of the mobile users.
The main difference with the base station behavior is that
mobile users are not concerned with energy efficiency in
downlink as they do not provide transmit power themselves.
Instead, they are only concerned about their individual SNR.
From an operator perspective, the energy consumed at the
base station dominates the one needed by the mobile users.
Therefore, it makes sense to consider that only the base station
is concerned by energy efficiency while the mobile users are
only concerned about their SNR. For each mobile user, this
SNR is proportional to the power allocated by the base station.
Sec. IV shows that this power depends on the channel gain
the considered user reports to the base station, but also on the
channel gains reported by of all the other users. Considering
that each mobile user prefers to have a high allocated power, it
can try to twist the channel gain it reports to the base station in
order to get higher allocated power. Hence, we assume that the
mobile users have the freedom of sending whatever channel

gain feedback they want to the base station, and we use game
theory to study what are the outcomes of such a scenario. For
each mobile user k ∈ K, two values of the channel gain are
important:
• its actual channel gain |hk|2, as the actual performance

of the mobile user depends on this gain;
• the value it reports to the base station that is denoted by
gk ∈ [0, G], with G the maximum gain a mobile user can
report. Power is allocated to the mobile user based on
this value.

Both terms appear in the utility of each mobile user, which
is the SNR after power allocation by the base station. ∀k ∈ K,

uk(gk, g−k) =
p̃k(gk, g−k)|hk|2

σ2
. (11)

With a slight abuse of notation (gk, g−k) emphasizes the
feedback of mobile user k compared to the CSI reports of
all the other mobile users. We can now properly define the
game under study.

Definition 1: The channel feedback game is defined by the
triplet G = (K,R, {uk}k∈K) in which
• K is the set of players of the game, which represents the

mobile users.
• Ak = [0, G] is the set of actions for player k. In this

game, an action gk ∈ Ak is the report to the base station.
The set of actions profiles is denoted by A = ×Kk=1Ak,
and the cardinal product of the actions sets of all players
except player k is denoted by A−k = ×i 6=kAi.

• The utility of player k is

uk(gk, g−k) =
p̃k(gk, g−k)|hk|2

σ2
.

It is its SNR given the power allocated by the base station
knowing all the reported channel gains.

B. Characterization of the Nash Equilibrium

Generally, an important concept to study the outcome of a
game is the Nash equilibrium.

Definition 2: In the game G, a Nash equilibrium is an action
profile (g∗1 , . . . , g

∗
K) such that ∀k ∈ K

∀gk 6= g∗k, uk(gk, g
∗
−k) ≤ uk(g∗k, g

∗
−k). (12)

In other words, it is an action profile from which no player
has interest to deviate unilaterally. It is a selfish equilibrium.
Interestingly, in the game G, we can prove that there exists at
least a pure Nash equilibrium.

Proposition 1: There is a unique Nash equilibrium in the
game G. It is g∗ = (g∗, g∗, . . . , g∗) with g∗ = Kaσ2

P such that

arg max
p

f(γ(p, g∗))

p
=
P

K
. (13)

At this equilibrium, power is uniformly allocated among the
mobile users and the SNR of player k ∈ K is

uk(g∗) =
P |hk|2

Kσ2
. (14)
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It is interesting to note that this equilibrium depends only
on the number of mobile users in the cell, and the sum
power constraint. The actual channels gains are absolutely not
involved in the expression of this equilibrium.

Proof: First, we show that the action profile
(g∗, g∗, . . . , g∗) is a Nash equilibrium. Assume that player k
deviates from the action g∗, it chooses an action gk 6= g∗.
The action profile is then (gk, g

∗
−k).

• If gk < g∗ then p∗k >
P
K , and∑

i∈K
p∗i = (K − 1)

P

K
+ p∗k > P. (15)

Hence, according to the allocation algorithm, p̃k is set to
P − (K − 1) PK = P

K , i.e., the SNR of player k remains
unchanged.

• If gk > g∗ then p∗k <
P
K , then∑

i∈K
p∗i = (K − 1)

P

K
+ p∗k < P. (16)

In this case, all the players are given the individual
optimal power. Hence player k gets p̃k = p∗k <

P
K , and

its SNR decreases.
We have proven that ∀k ∈ K, player k has no interest in
deviating from the power profile (g∗, g∗, . . . , g∗), hence it is
a Nash equilibrium. We now prove that this equilibrium is
unique.
• If the sum of individual optimal power values is below

the sum power constraint, i.e.,∑
k∈K

p∗k < P, (17)

then if one player k decreases gk, it gets a higher p̃k.
Hence there can be no equilibrium when the maximum
total power constraint is not active.

• If the sum of individual optimal power values is higher
than the sum power constraint, and ∃k ∈ K such that
p̃k = 0. Then player k can increase its report gk in order

to have some power allocated. Hence player k has interest
in deviating.

• If the sum of individual optimal power values is higher
than the sum power constraint, if no player gets zero
power allocated, and ∃(i, j) ∈ K2 such that p̃i < p̃j ,
then player i can slightly decrease gi in order to get more
power from the base station.

• If the sum of individual optimal power value is higher
than the sum power constraint, and ∀(i, j) ∈ K2, p̃i = p̃j ,
then ∀i ∈ K, p̃i = P

K . If ∃i ∈ K such that p∗i >
P
K , then

any other player j 6= i can report gj such that p∗j ∈
] PK , p

∗
i [. In that case, player j receives more power from

the base station.
We have proven that there cannot be any other equilibrium than
the case for which the sum of individual optimal power values
saturates the sum power constraint, and ∀i ∈ K, p̃i = p∗i = P

K .

Given that at this equilibrium, mobile users do not report
their actual channel gains, there are two energy-efficient util-
ities per cell of interest. First, the energy-efficient utility per
cell the base station is convinced to have, given the equilibrium
reports of the mobile users. This is not the actual value of the
energy-efficient utility per cell. It writes

uBS(
P

K
, g∗) =

∑
k inK

K

P
exp(−aKσ

2

Pg∗
),

=
K2

P
exp(−1).

(18)

Once again, we can check that this utility depends only
on the total number of mobile users in the cell and the
power constraint. The second energy-efficient utility per cell
of interest is of course the actual energy efficiency of the cell,
which takes into account the true channel gains. This utility
writes

uBS(
P

K
, |hk|2) =

K

P

∑
k∈K

exp(− g∗

|hk|2
). (19)

Hence, the ratio between the actual energy-efficient perfor-
mance of the cell and the believed performance is

uBS( PK , |hk|
2)

uBS( PK , g
∗)

=
1

K

∑
k∈K

exp(1− g∗

|hk|2
). (20)

VI. NUMERICAL RESULTS

In Fig. 4, a scenario with two mobile users is considered.
For both of them, the channel gains are set to −112 dB, and
we study how the energy-efficient utility per cell varies for all
the possible combinations of allocated power values. Hence,
the energy-efficient utility per cell is represented with respect
to SNR of each of the mobile users. The constraint on the
total transmit power is P = 1W . On the one hand, we can
check that the energy efficiency of the cell is maximized when
mobile users report their actual channel gain. But at this point,
the sum power constraint is not saturated. Hence, it is not
Pareto-optimal for the mobile users. On the other hand, when
the mobile users report the equilibrium channel gains, a Pareto
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Fig. 4. Energy-efficient utility of the cell with respect to the SNR of users
1 and 2. The color bar represents the cell energy-efficient utility in bit/Joule.
Parameters are a = 10, |h1|2 = |h2|2 = −112 dB, P = 1 W, and σ2 =
5× 10−14 W.

optimal point is reached. But in this configuration, the energy
efficiency of the cell is not a maximum.

In Fig. 5, the energy-efficient utility of the cell is represented
as a function of the number of mobile users in the cell. The
variance of the noise, σ2 is set to 5×10−14 W. The parameter
a is set to 6. Channel gains are assumed to be exponentially
distributed. For each number of mobile users, 104 realizations
are computed, and the presented results are the mean over
these realizations. Similarly to Fig. 4, we compare the case
in which mobile users actually report their channel gains, and
the case in which they twist their reports in order to maximize
their own utilities. In addition, two power constraints are
considered P = 0.1 W, and P = 1 W. With no surprise,
for both power constraints, the energy-efficient utility of the
cell is higher when mobile users report their actual channel
gains. This utility increases with the number of mobile users
simply because it is a sum over the mobile users. Interestingly,
when mobile users report their actual channel gains, there is
no significant gap between the two power constraints. There
are two explanations for this phenomenon. First, when the
sum power constraint is not saturated, the power allocation
is exactly the same whatever the power constraint. Second,
we recall that mobile users with bad channel gains are not
interesting in terms of energy efficiency as their individual
optimal power is high and the associated energy efficiency is
low. Hence, allocating power or not to these mobile users does
not make a significant difference in terms of energy efficiency.
Another interesting phenomenon is when mobile users report
equilibrium channel gains, the energy-efficient utility of the
cell is worse for P = 1 W than for P = 0.1 W. We recall
that at the equilibrium, the sum power constraint is saturated.
Hence, there is more power allocated to the mobile users in the
case with P = 1 W. But after a certain threshold, increasing
power decreases the energy efficiency of the overall system.

In Fig. 6, the mean SNR of a mobile user is represented with
regard to the number of mobile users for the same scenario
as Fig. 5. The SNR of the mobile user is given in dB, and
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Fig. 5. Energy-efficient utility of the cell with respect to the number of
mobile users.
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Fig. 6. Mean SNR of one mobile user with respect to the number of mobile
users.

for both power constraints, this SNR is higher when mobile
users report equilibrium channel gains. As the SNR of the
mobile user at the equilibrium is proportional to the sum
power constraint, we can check there is a gain between the
two sum power constraints. When mobile users report their
actual channel gains, their SNR is lower. But a higher sum
power constraint allows the base station to serve more users.
Thus the mean SNR of the mobile users with actual channel
gains increases with the sum power constraint.

VII. CONCLUSION

In this paper we studied the conflict of interest between (i)
mobile users that selfishly choose their CSI reports to increase
their SNR and (ii) a base station that aims to maximize the
cell’s energy efficiency by power allocation. We formulated
power allocation as a non-convex optimization problem, stated
its optimality conditions, and derived a low complexity algo-
rithm. Formulating selfish CSI reporting as a game allowed
us to prove the existence of a unique equilibrium from which
no user has interest to deviate. Consequently, we obtained a
stable system for which we derived energy efficiency with and



without true CSI in closed form.
We illustrate this powerful theoretical framework by numeri-

cal results. Naturally, these results show that selfish CSI reports
allow mobile users to increase their own SNR while the cell’s
energy efficiency decreases. Interestingly, this degradation
diminishes for smaller sum power constraints and for a larger
number of users. Consequently, small cells are more robust to
selfish CSI reports than cells with large power constraints and
few users.

As future work, we aim to extend this framework by an
optimal power allocation algorithm, energy-efficient utilities
not only for the base station but for the mobile users, as well
as by a practical, discrete set of CSI values.
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