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Abstract—The ability to calculate backlog bounds is of key
importance for buffer sizing in packet-switched networks. In
particular, it is critical to capture the statistical multiplexing gains
which, in turn, calls for stochastic backlog bounds. The stochastic
network calculus (SNC) is a promising methodology to compute
such stochastic backlog bounds. So far in the literature SNC-
based backlog bounds apply only to an arbitrary, but fixed single
point in time. Yet, from the network engineering perspective, one
would rather like to have a sample path backlog bound, i.e., a
bound that applies (with a certain fixed violation probability) all
of the time. While, in general, such bounds are hard to obtain we
investigate in this paper how sample path backlog bounds can be
computed over finite time horizons. In particular, we show how
a simple extension of the known SNC results can lead to sub-
optimal bounds by deriving an alternative methodology (based
on extreme value theory) for bounding the backlog over finite
time horizons. Interestingly, none of the two methods completely
dominates the other. For the new method we also discuss how it
can be evolved into a corresponding calculus for network analysis
analogous to the existing SNC.

Index Terms—C.4 Modeling techniques

I. INTRODUCTION

Buffer sizing is a very important task in planning and
controlling a packet-switched network. Since the early days
of packet-switched networks it has seen much treatment [15],
continues to be investigated intensively these days (see, e.g.
[1], [13] and very likely will remain an important topic in
the future. Thus, it is important to characterize the backlog
process q(n) in a queueing system (here, we assume discrete-
time). The difficulty in doing this lies in the stochastic nature
of arrivals and being able to capture the resulting statistical
multiplexing effect, which can be seen as the raison d’être of
packet-switched networks. In particular, one is interested in
probabilistically bounding the backlog. Ideally, the following
sample path bound could be calculated

P(∀ n : q(n) > Bε) ≤ ε⇔ P(max
n≥1

q(n) > Bε) ≤ ε.

Yet, such a sample path bound on the backlog process is under
most practical circumstances quasi-deterministic, i.e., ε only
takes values 0 or 1. Stochastic network calculus (SNC) is a
recent theory which among other performance measures allows
to compute bounds on the backlog in a queueing system. In
short, it allows to compute the following pointwise backlog

bound:
P(q(n) > Bε) ≤ ε ∀ n ≥ 1

This, however, is often not quite what a network engineer
desires as, in the course of time (or, more technically, on the
actual sample path of the system), this bound does not give
direct information on how often the backlog bound Bε will be
violated. Therefore, in this paper, we in a certain sense aim
at the middleground between these two extremes by finding
ways to calculate sample path backlog bounds over finite time
horizons of the form

P(∀ n ≤ N : q(n) > Bε) ≤ ε⇔ P( max
1≤n≤N

q(n) > Bε) < ε.

The power of such a finite sample path backlog bound lies
in its ability to answer relevant network engineering questions
like: What is the probability that my system exceeds a certain
backlog of Bε in the next N time steps? In fact, it may even
be a way to work out the (infinite) sample path bound from
above if a deterministic bound on the duration of a backlogged
period is available (this is the case for example when multiple
independendent regulated flows are multiplexed as e.g. in [6],
[22], [16], [21]).

As we will see in the course of the paper, it is possible
to directly transform the SNC-based pointwise backlog bound
into a finite sample path backlog bound (simply using Boole’s
inequality). Yet, this already ”feels” sub-optimal as the vio-
lation probability ε grows linearly with the time horizon N ,
although it is of course bounded by 1. We substantiate this
uneasiness of directly applying the SNC results in this way
by developing an alternative method to bound backlogs on
finite sample paths. The new method naturally lends itself
to the calculation of finite sample path backlog bounds and
always results in violation probabilities of less than 1. It is
based on a simple observation of the system dynamics as
well as on extreme value theory (EVT), a tool mainly used in
financial and actuarial mathematics to calculate the probability
of rare events involving some extremal expression. The new
method delivers better bounds than the direct application of
existing SNC results, thus exemplifying the problem with
simply using Boole’s inequality to arrive at finite sample
path backlog bounds which was its main purpose in this
work. However, motivated by these results we also see the
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potential for developing an alternative SNC, thus enabling
to analyse more complex network scenarios. To that end,
we also demonstrate how the corresponding operations, like
multiplexing of flows, computation of output bounds, and
leftover service computation can be performed.

The rest of the paper is organized as follows: In Section
2 we discuss related work. In Section 3 we briefly review
the basics for this work, including our network model and a
short introduction into SNC (concretely, we focus on Chang’s
version of the SNC [5], which is based on moment generating
functions (MGF), which is why it is also often simply called
MGF-Calculus). In Section 4, we show how to achieve finite
sample path backlog bounds using our alternative method and
compare it in numerical examples with the direct application of
the SNC-based bounds in Section 5. In Section 6, we illustrate
how the new method can be applied to more complicated
network scenarios using an example. Section 7 concludes the
paper and provides an outlook to future work.

II. RELATED WORK

From the domain of classical queuing theory, it is known
that exact calculations of the buffer occupancy distribution
(in our terms the steady-state backlog distribution) are only
possible for some simple source models [17]. However, what
has been demonstrated in the literature is that powerful tech-
niques such as large deviations [20], local limit theorems [18],
or extreme value theory [10] can provide approximations that
work well in the asymptotic domain. As we are, however,
interested in non-asymptotic bounds rather than asymptotic
approximations for the backlog process, these results, while
being interesting and inspiring, do not quite fit our needs.
Furthermore, these methods are typically very specifically
tailored e.g. to certain assumptions on the arrival processes.
In contrast, we follow the framework-oriented approach of
SNC where we try to keep the analysis as generic as (far
as) possible.

There have been several approaches to develop an SNC: The
most prominent branches are the MGF calculus by Chang [4],
later refined by Fidler in [11]; the statistical network calculus
by Liebeherr et al. [3], extensively and nicely developed in
[8]; and the work of Jiang which is well collected in [14]. We
do not want to discuss their different merits and drawbacks
here (an excellent survey can be found in [12]), but will
focus on the MGF calculus in the rest of the paper as it
is probably the most popular among those three (admittedly
superficially judging based on citation counts from Google
Scholar). Anyway, we found none of them or any derivative
work to deal with sample-path backlog bounds over finite time
horizons as discussed in Section 1. In fact, most SNC papers
are very much focussed on delay as performance measure with
a few exceptions (e.g. [7]), yet all of these calculate pointwise
backlog bounds.

III. PREPARATIONS

Throughout the paper, we assume time to be discrete,
whereas data can be either discrete or continuous.

A. Arrival and Service Processes

We describe the arrival and departure processes at some
node as sequences of non-negative real numbers, which can
be random. For this denote by J the space of sequences of
non-negative random variables. We denote such a sequence by
e.g. (an)n∈N and the cumulative distribution function (cdf) of
one element of the sequence by Fa. Further we define I as
the space of sequences of non-negative i.i.d. random variables.
Clearly I ⊂ J . For the rest of this work capital letters
denote the cumulatives of such sequences, for example if
(an)n∈N ∈ J we have

A(n) :=

n∑
m=0

am

where - as usual - the empty sum is zero, i.e. A(0) = 0. For
the case, that an = c for some c and all n ∈ N almost surely,
we just write (an)n∈N = c. Sometimes it will be convenient to
use the zero as index expanding the set (an)n∈N to (an)n∈N0

.
In this case we always set a0 = 0.

A service process at some node is instead given by a doubly
indexed stochastic process e.g. S(m,n) with:

0 ≤S(m,n) ∀ m,n ∈ N
S(m,n) ≤S(m,n′) ∀ m ∈ N and n ≤ n′

In the special case of S(m,n) = S(n) − S(m) for some S
non-decreasing, we can consider the increments (sn)n∈N ∈ J
with sn := S(n− 1, n). We will then just speak of a service
(sn)n∈N. We say a node offers service S if for every arrival
(an)n∈N ∈ J and its corresponding departures (dn)n∈N ∈ J
holds:

D(n) ≥ min
0≤k≤n

{A(k) + S(k, n)}

with equality if Lindley’s equation is fulfilled:

q(n+ 1) = max{0, q(n) + a(n+ 1)− s(n+ 1)}

B. Stochastic Network Calculus

In this work, we follow the framework of (σ(θ), ρ(θ))-
calculus or simply MGF-Calculus, as presented in [5]. The
basic idea is to bound the MGF of the arrivals and service
by some exponential. This of course only works, if the
corresponding MGF exists. Next, we define how exactly these
bounds are calculated and display some results, which allow us
to analyse networks and achieve backlog bounds. The proofs
for the lemmata in this subsection are omitted and can be
found either in [2] or in [5].

Definition 1 (Arrivals and Services): An arrival
(an)n∈N ∈ J is (σ(θ), ρ(θ))-bounded iff for some θ > 0:

sup
k≥0
{E(eθ(A(n+k)−A(k)))} ≤ enθρ(θ)+θσ(θ) ∀ n ∈ N

If this is fulfilled we write (an)n∈N � (σ(θ), ρ(θ)).
A service S is (σ(θ), ρ(θ))-bounded iff for some θ > 0:

sup
k≥0
{E(e−θS(k,n+k))} ≤ enθρ(θ)+θσ(θ) ∀ n ∈ N



If this is fulfilled we write S � (σ(θ), ρ(θ)).
Note that if S � (σ(θ), ρ(θ)) then ρ(θ) is usually negative.

Now assume a node with service (sn)n∈N ∈ J serves two
arrival processes (ān)n∈N ∈ J and (an)n∈N ∈ J , where
(ān)n∈N has a higher priority than (an)n∈N. Then the low-
priority flow receives only the service, which is left over by the
high-priority flow. In expression, if we denote by (sn)n∈N ∈ J
the leftover service, we have:

sn = max{0, sn − ān − q(n)}

where q(n) denotes the queue of the prioritized flow at time
n, i.e. q(n) = Ā(n − 1) − D(n − 1). This scenario can
be generalized to doubly indexed services S and we get the
following for the leftover service:

Lemma 2 (Leftover Service): In the above situation we
have

(Sn)n∈N � (σa(θ) + σS(θ), ρa(θ) + ρS(θ))

if S and (an)n∈N ∈ J are stochastically independent.
If they are not stochastically independent we still have (using
Hölder’s inequality)

(Sn)n∈N � (σa(qθ) + σS(pθ), ρa(qθ) + ρS(pθ))

where 1
p + 1

q = 1.
Lemma 3 (Multiplexing): If we have two stochastically in-

dependent arrivals (a
(1)
n )n∈N ∈ J and (a

(2)
n )n∈N ∈ J , which

are (σa(i)(θ), ρa(i)(θ))-bounded (i = 1, 2), then it holds for
the multiplexed flow that

(a(1)
n + a(2)

n )n∈N � (σa(1)(θ) + σa(2)(θ), ρa(1)(θ) + ρa(2)(θ))

For the case that the arrivals are not stochastically independent,
we still have

(a(1)
n +a(2)

n )n∈N � (σa(1)(qθ)+σa(2)(pθ), ρa(1)(qθ)+ρa(2)(pθ)).

Lemma 4 (Output bound): Let

(an)n∈N � (σa(θ), ρa(θ))

and
S � (σS(θ), ρS(θ)).

Denote the output of the node by (dn)n∈N ∈ J , in the case
of independence between arrivals and service we get:

E(eθ(D(n)−D(m)))

≤eθ(σa(θ)+σS(θ))e(n−m)θρa(θ)
m∑
k=0

ekθ(ρa(θ)+ρS(θ))

for all m,n ∈ N with m ≤ n. Also

(dn)n∈N � (σa(θ) + σS(θ) + σ̃(θ), ρa(θ))

with:
σ̃(θ) =

1

θ
log(1− eθ(ρa(θ)+ρS(θ)))−1

For the dependent case we similarly get

(dn)n∈N � (σa(qθ) + σS(pθ) + σ̃(qθ, pθ), ρa(qθ))

with

σ̃(qθ, pθ) = (1− eθ(ρa(qθ)+ρS(pθ)))−1

and 1
p + 1

q = 1.
Lemma 5 (Backlog Bound): In the same situation as in the

previous lemma it holds for all n ∈ N:

P(q(n) ≤ x) ≤ e−θxeθ(σa(θ)+σS(θ))
n∑

m=0

emθ(ρa(θ)+ρS(θ))

if (an)n∈N is stochastically independent of S. If this is not the
case we have

P(q(n) ≤ x) ≤ e−θxeθ(σa(qθ)+σS(pθ))
n∑

m=0

emθ(ρa(qθ)+ρS(pθ))

for all n ∈ N and p, q such that 1
p + 1

q = 1.
Here we see, that the violation probability of exceeding a
certain backlog is only valid for a single point in time n. To
achieve a finite sample path bound we might use the following
simple inequality:

P( max
1≤n≤N

q(n) < B) = P

(
N⋂
n=1

q(n) < B

)

≤
N∑
n=1

P(q(n) < B)

However by just adding the violation probabilities, we see
them (nearly) linearly increasing for growing N . Hence, the
violation probabilities grow until they reach the value 1 and are
useless henceforth. To achieve a finite sample path bound with
violation probability ε, we have to choose the parameter B in
such a way that for large intervals of length N the violation
probability for the pointwise backlog bound is of order ε

N .
Two questions arise at this point. First: how large do we need
to choose B, i.e., what is the quality of our bound, for a
given violation probability ε and interval length N? Second:
Can we do something smarter than just adding the violation
probabilities? The next chapter deals with the second question,
while the numerical evaluations in chapter V give us some
insights on the first question.

IV. ALTERNATIVE BOUND

First, we take a look at a bound, which is valid for finite
sample paths “by nature”. For this denote by EµN the number
of arrivals an up to time N exceeding some value µ:

EµN :=

N∑
n=1

1{an>µ} ∈ {0, . . . , N}

The arrivals exceeding µ form a subsequence of (an)n∈N,
which will be denoted by (ani)i∈{0,...,EµN}.

Theorem 6: Assume a node with service S and an incoming
flow described by (an)n∈N ∈ J . Then the following finite



sample-path backlog bound holds for all µ ∈ [0,∞):

P( max
1≤n≤N

q(n) > B)

≤ 1−
N∑
m=0

P(EµN = m)

· P
({ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ
}

∩
{

max
1≤i≤m

ani ≤ µ+
B

m

}∣∣∣EµN = m
)

And if S is stochastically independent of (an)n∈NJ we have:

P( max
1≤n≤N

q(n) > B)

≤ 1− P
( ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ
)

·
N∑
m=0

P(EµN = m)P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)
Proof: Assume for a while that EµN = m and

max
1≤i≤m

ani ≤ µ+
B

m

and
S(k, n) ≥ (n− k)µ ∀ 0 ≤ k ≤ n ≤ N

holds. Then we can imply for every n ∈ {1, . . . , N}:

q(n) = A(n)−D(n) ≤ max
0≤k≤n

{A(n)−A(k)− S(k, n)}

= max
0≤k′≤n

{A(n)−A(n− k′)− S(n− k′, n)}

= max
0≤k′≤m

{A(n)−A(n− k′)− S(n− k′, n)}

∨ max
m+1≤k′≤n

{A(n)−A(n− k′)− S(n− k′, n)}

≤ max
0≤k′≤m

{
k′
(
µ+

B

m

)
− k′µ

}
∨ max
m+1≤k′≤n

{
m

(
µ+

B

m

)
+ (k′ −m)µ− k′µ

}
= B

Hence we get by the law of total probability:

P( max
1≤n≤N

q(n) > B)

= 1− P( max
1≤n≤N

q(n) ≤ B)

= 1−
N∑
m=0

P(EµN = m)P( max
1≤n≤N

q(n) ≤ B|EµN = m)

≤ 1−
N∑
m=0

P(EµN = m)

· P
({ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ
}

∩
{

max
1≤i≤m

ani ≤ µ+
B

m

}∣∣∣EµN = m
)

For the case of independence we continue by applying
P(A ∩B|C) = P(B|C)P(A|B ∩ C)

=1−
N∑
m=0

P(EµN = m)

P(
⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ|EµN = m)

· P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)
= 1− P(

⋂
1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ)

·
N∑
m=0

P(EµN = m)P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)

In this bound the parameter µ is left open as subject to
optimization. Note that there are no assumptions about the
service or the arrivals having corresponding MGFs or being
i.i.d. sequences. Further, we see that the above bound is always
smaller 1, as we expect it of a violation probability. For
the special case of S(k, n) = S(n) − S(k) the probabilities
simplify to:

P( max
1≤n≤N

q(n) > B)

≤ 1− P( min
1≤n≤N

sn ≥ µ)

·
N∑
m=0

P(EµN = m)P
(

max
1≤i≤m

ani ≤ µ+
B

m

∣∣∣∣EµN = m

)
The above bound relies only on the analysis of an expression

of the form:
P( max

1≤n≤N
~xn ≤ ~y)

where (~xn)n∈N ∈ J d is a sequence of d-dimensional random
vectors and y ∈ Rd. Describing this probability is one of the
main goals of Extreme Value Theory. The above probability is
well studied under different assumptions on (~xn)n∈N (see for
example [19], [10], [9]). The following very small selection
of results from EVT assumes d = 1 and (xn)n∈N ∈ I.

If we denote by Fx the distribution of xn we have:

P( max
1≤n≤N

xn ≤ y) = FNx (y)

For simple distributions Fx we can directly use the result in
the previous theorem to compute finite sample-path backlog
bounds. However taking the N -th power of F might be
computationally very unstable and the question arises if this
expression cannot be approximated by some other expression
which is easier to calculate. It is clear that in this case, without
some kind of scaling, the above probability just converges to
either zero or one. Hence we ask for sequences αN , βN such
that:

P( max
1≤n≤N

xn ≤ αNy + βN )
N→∞−−−−→ G (1)



for some non-degenerate distribution G. We present here some
results, as they can be found in [19], to address this question.

A. A Brief Introduction to EVT

Denote the right endpoint of some distribution F by
x0 := sup{y : F (y) < 1}.

Definition 7 (von Mises Function): We call a distribution
F a von Mises function if there exists a z0 < x0 such that for
all z0 < x < x0 and some c > 0 holds

1− F (x) = c exp

(
−
∫ x

z0

1

f(u)
du

)
where f(u) > 0 for all z0 < u < x0 and absolutely continuous
on (z0, x0) and limu↑x0

f ′(u) = 0. We call f an auxiliary
function.
The notion of von Mises functions is very important, since one
can show that every von Mises function, as defined above,
converges to the Gumbel distribution in the sense of (1).
Another important equivalent definition (under the assumption
that F is twice differentiable) is the von Mises condition. For
this define the function φ by

φ := − log(− log(F )).

Definition 8 (von Mises Condition): We say a distribution
F fulfills the von Mises condition if:

h(x) : =

(
1

φ′(x)

)′
= − logF (x) +

F (x)F ′′(x) logF (x)

(F ′(x))2

x→x0−−−−→ 1

If some distribution F fulfills the von Mises Condition define
g(x) := supy≥x |h(x)| and f(x) := 1

φ′(x) .
One can show that the von Mises condition is fulfilled iff F

is a twice differentiable von Mises function. We use the above
condition, since it is not only sufficient for the convergence
of F to the Gumbel distribution in the sense of (1), but also
allows us to derive the speed of convergence.

Lemma 9: Let (an)n∈N ∈ I and the corresponding distri-
bution Fa fulfills the von Mises Condition. Then holds for all
N ∈ N and x ≥ 0:

P( max
1≤n≤N

an ≤ xβN + αN ) ≤ Λ(x)− e−1g(αN )

Here Λ(x) = exp(−e−(x)) is the Gumbel distribution,
φ(αn) := log n and βn := F (αn)

nF ′(αn) .
There exist similar conditions and results for the convergence
to the Fréchet or the Weibull distribution (again in the sense
of (1)). As example we give here the parallel results for a
convergence against the Fréchet distribution.

Definition 10 (von Mises Condition II): We say a differen-
tiable distribution F fulfills the von Mises condition for some
α > 0 if:

h(x) := xφ′(x)− α =
xF ′(x)

F (x)(− logF (x))
− α→ 0

Under the assumption that F is differentiable one can show
that this condition is equivalent to

lim
x→∞

xF ′(x)

1− F (x))
= α

for some α > 0. These conditions imply, that the distribution
F converges to the Fréchet distribution in the sense of (1).

Lemma 11: Keeping the notations of Definition 10 let
(an)n∈N ∈ I and Fa be its corresponding distribution fulfilling
the second von Mises condition. Then holds for all N ∈ N
and x ≥ 0:

P( max
1≤n≤N

an ≤ xβN ) ≤ Φα(x)+0.2701·(α−g(βn))−1g(βn))

where Φα(x) = exp(−x−α) is the Fréchet distribution,
g(x) = supy≥x |h(y)| and βn is given by − logF (βn) = n−1.
In the following we only need the case of convergence to the
Gumbel distribution. However, we wanted to point out that
for some distributions one needs to check another von Mises
condition and gets a different convergence speed.

The von Mises condition takes a similar role, as the exis-
tence of the moment generating function for the MGF-calculus
in the previous section. Yet, there exist a lot of distributions,
which fulfill the von Mises conditition without having a MGF.
Some heavy-tailed examples are the Cauchy distribution, the
Fréchet distribution itself and the Pareto distribution which
all converge to the Fréchet distribution in the sense of (1).
Another difference is that achieving backlog bounds in the
way of theorem 6 is not tied to the von Mises condition, but
instead to the analysis of:

P
({ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)µ

}

∩
{

max
1≤i≤m

ani ≤ µ+
B

m

}∣∣∣∣EµN = m

)
When analysing whole networks the above service and arrivals
can be the result of network operations, as for example when
arrivals (an)n∈N at some node are actually the output of
another node, with its own service and other arrivals. So, in
general it is hard to use theorem 6 directly. To solve this
we compare the service or the arrival distribution to other
distributions, which we know more about. If, for example,
the arrivals (an)n∈N are the output of another node, we
reformulate them in terms of the service and the arrivals of this
preceding node. This allows us to investigate more complex
network scenarios.

B. Network Operations

We prove now a series of results which follow this idea and
are in their structure similar to the results in subsection III-B.

Lemma 12 (Output Bound): Let S be the service of some
node, serving the arrivals (an)n∈N ∈ J and denote by
(dn)n∈N ∈ J the departures of that node. Then for all



x ∈ [0,∞) and µ ∈ [0, x] holds:

P( max
1≤n≤N

dn ≤ x)

≥ P
({

max
1≤n≤N

an ≤
x

N
+
N + 1

N
µ

}
∩
{ ⋂

1≤n≤N
0≤k≤n−1

S(k, n− 1) ≥ (n− 1− k)µ

})

Proof: By the definition of service we know:

dn = D(n)−D(n− 1)

≤ D(n)− min
0≤k≤n−1

{A(k) + S(k, n− 1)}

≤ max
0≤k≤n−1

{A(n)−A(k)− S(k, n− 1)}

= max
0≤k≤n−1

{
n∑

l=k+1

al − S(k, n− 1)

}

= max
0≤k≤n−1

{
an − S(k, n− 1) +

n−1∑
l=k+1

al

}

Assume now for a while that

ak ≤
x

N
+
N − 1

N
µ ∀ k = 1, . . . , N

and

S(k, n− 1) ≥ (n− 1− k)µ ∀ 0 ≤ k < n ≤ N

holds, for some µ ∈ [0, x]. Then we would have:

max
1≤n≤N

0≤k≤n−1

{
an − S(k, n− 1) +

n−1∑
l=k+1

al

}

≤ max
1≤n≤N

0≤k≤n−1

{ x
N

+
N − 1

N
µ− (n− 1− k)µ

+ (n− 1− k)
( x
N

+
N − 1

N
µ
)}

= max
1≤n≤N

0≤k≤n−1

{ x
N

+
N − 1

N
µ

+ (n− k − 1)
( x
N

+
N − 1

N
µ− µ

)}
=
x

N
+
N − 1

N
µ+ (N − 1)

( x
N

+
N − 1

N
µ− µ

)
= x

Hence, we get for all µ ∈ [0, x]:

P( max
1≤n≤N

dn ≤ x)

≥ P

(
N⋂
n=1

max
0≤m≤n−1

{
an − S(k, n− 1) +

n−1∑
l=k+1

al

}
≤ x

)

≥ P
({

max
1≤n≤N

an ≤
x

N
+
N − 1

N
µ

}
∩
{ ⋂

1≤n≤N
0≤k≤n−1

S(k, n− 1) ≥ (n− 1− k)µ

})
.

The parameter µ ∈ [0, x] is subject to optimization and it is
easy to check, that there is no gain in letting µ being larger
than x. Note that in the special case (sn)n∈N = c we can
choose µ optimally by µ = x and get the (somewhat trivial)
bound:

P( max
1≤n≤N

dn ≤ x) ≥ P( max
1≤n≤N

an ≤ x)

Lemma 13 (Leftover Service): Assume again the scenario
as presented before lemma 2. It holds for all x ∈ [0,∞) and
µ ∈ [0,∞):

P
( ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (n− k)x
)

≥ P
({

max
1≤n≤N

ān ≤ µ
}

∩
{ ⋂

1≤n≤N
0≤k≤n

S(k, n) ≥ (x+ µ)(n− k)
})

Proof: Let x ∈ [0,∞). Assume for a while that

max
1≤n≤N

ān ≤ µ

and

S(k, n) ≥ (x+ µ)(n− k) ∀ 0 ≤ k ≤ n ≤ N

holds. Then we have for all 0 ≤ k ≤ n ≤ N :

S(k, n) = max{0, S(k, n)−A(n) +A(k)}

= max{0, S(k, n)−
n∑

l=k+1

al}

≥max{0, (x+ µ)(n− k)− (n− k)µ} = x(n− k)

Hence: The assertion follows then, as in the previous proof.

Again we can consider the special case (sn)n∈N = c. Then
the optimal µ is given by c− x if x ∈ [0, c], resulting in:

P( min
1≤n≤N

sn ≥ x) ≥ P( max
1≤n≤N

an ≤ c− x)

Lemma 14 (Multiplexing): Let (a
(i)
n )n∈N ∈ J be two ar-

rivals (i = 1, 2). Define an := a
(1)
n + a

(2)
n for all n ∈ N. Then

for all x ∈ [0,∞) and µ ∈ [0, x] holds:

P( max
1≤n≤N

a(n) ≤ x) ≥ P({ max
1≤n≤N

a(1)
n ≤ x− µ)}

∩ { max
1≤n≤N

a(2)
n ≤ µ})

The proof is very similar to the arguments in the previous
proofs and hence omitted.

We can use these operations to compute backlog bounds
at nodes which lie in the middle or at the end of a network
path. In the next section, we show how the presented results
of EVT and network operations work together, to achieve a
finite sample-path backlog bound, which is competitive to the
corresponding MGF-calculus bound.



V. NUMERICAL EVALUATION

To compare the two methods we investigate the follow-
ing scenario: We have a constant rate node, which serves
a high and a low priority flow, denoted by (ān)n∈N and
(an)n∈N, respectively. We are interested in the finite sample-
path backlog bound for the low priority flow. For the sake of
simplicity, we consider the high and low priority flows to be
i.i.d. exponentially distributed with parameter λ, i.e.

Fā(x) = Fa(x) = 1− e−λx ∀ x ∈ [0,∞)

and equal to zero for all x ∈ (−∞, 0). The service rate of the
node is given by c.

A. MGF-Calculus Bound

Denote the leftover service at the node by (sn)n∈N ∈ J .
First we derive the (σ(θ), ρ(θ))-bound for the arrivals:

sup
k≥0

E(eθ(Ā(n+k)−Ā(k))) =

n∏
m=1

E(eθām)

=

(
λ

λ− θ

)n
= eθnρ(θ)

with ρ(θ) := 1
θ log( λ

λ−θ ) and θ ∈ (0, λ). Hence the high and
low priority flows are (0, ρ(θ))-bounded. Using Lemma 2 and
the fact that a constant rate node is (0, c)-bounded we have
for the leftover service

(sn)n∈N � (0, ρ(θ) + c).

Hence we can use lemma 5 to calculate the following finite
sample path backlog bound:

P( max
1≤n≤N

q(n) ≥ B) ≤ min
0≤θ<λ

N∑
n=0

e−θB
1− eθ(n+1)(2ρ(θ)+c)

1− eθ(2ρ(θ)+c)

= min
0≤θ<λ

N∑
n=0

e−θB
1−

(
λ
λ−θ

)2(n+1)

e−θ(n+1)c

1−
(

λ
λ−θ

)2

e−θc

To compute a competitive backlog bound we optimize the
parameter θ numerically.

B. Alternative Bound

We keep the previous notations and begin as in the proof
of theorem 6. Now denote by EµN the number of low priority
arrivals, which exceed the value µ and denote these arrivals
by the subsequence (ani)i∈{0,...,EµN}. We then have:

P( max
1≤n≤N

q(n) > B)

≤1− P( min
1≤n≤N

sn ≥ µ)

N∑
m=0

P(EµN = m)

· P
(

max
1≤n≤m

aj ≤ µ+
B

m

∣∣∣∣EµN = m

)

and with Lemma 13

≤1− P( max
1≤n≤N

ān ≤ c− µ)

N∑
m=0

P(EµN = m)

· P
(

max
1≤n≤m

aj ≤ µ+
B

m

∣∣∣∣EµN = m

)
≤1− P( max

1≤n≤N
ān ≤ c− µ)

N∑
m=0

P(EµN = m)

· P
(

max
1≤n≤m

aj ≤
B

m

)
In the last step we have used the memoryless-property of the
exponential distribution and that the arrivals are i.i.d.

Due to the simple nature of the arrivals we have the
choice to use the EVT-approximation or directly compute the
above expression by using P(max1≤n≤N an ≤ x) = FNa (x).
We perform both in order to test the quality of the EVT
approximation. To use the von Mises condition one can easily
verify that the exponential distribution with parameter λ fulfills
the conditions of Lemma 9 with the norming sequences

αn = − log(1− e−1/n)

λ

and
βn =

1

nλ(e1/n − 1)

and g given by:

g(x) = − log(1− e−λx)

e−λx
− 1

Inserting this into our backlog bound yields:

P( max
1≤n≤N

q(n) > B)

≤ 1−
(

exp(−e−γN (λ(c−µ)+log(1−e−1/N )))− g̃(N)
)

·
N∑
m=0

P(EµN = m)
(

exp(−e−γm(λ Bm+log(1−e−1/m)))− g̃(m)
)

where
g̃(n) :=

1

e · n(1− e−1/n)

and
γn := n(e

1/n − 1).

Similar to the MGF-bound we optimize a parameter - in this
case µ ∈ [0, c] - numerically to achieve a competitive backlog
bound.

1) Results: To present the results we choose c = 1 and
investigate different utilizations of the node. The utilization of
the node is given by u = 2

λ . In our experiments we ask for
the smallest B we can choose, such that we do not exceed a
certain violation probability. This violation probability is set
to 10−6 and 10−9 in the experiments. Of course the results are
dependent on the considered sample path length N . To find
reasonable values of N we simulated the queuing system and
observed the duration of the backlogged periods. The startpoint
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Fig. 1. From top N = 10, N = 20, N = 40. ε = 10−6.
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Fig. 2. From top N = 10, N = 20, N = 40. ε = 10−9.



of a backlogged period is defined as the timestep, in which the
node starts to accumulate backlog and the endpoint is defined
as the next timestep thereafter, in which no backlog occurs
any more at the node. In the simulations, we observed 100,000
backlogged periods under different utilizations. For example,
for a utilization of 80%. we obtained an average period-length
of 3.2 and 99.9% of the periods had a length smaller than 37.
For this reason we considered for our scenario sample path
lengths of N = 10, N = 20 and N = 40.

The results for B under different utilizations are displayed
in Figures 1 and 2. We can make different observations from
the graphs. First we can compare the alternative bound with
and without EVT-approximation, which are shown in the graph
by the blue dashed line and the solid black line, respectively.
We see that the approximation is very close and we do not
loose much by it. This gives us hope that the approximation
is also a good choice for more complex arrivals, in which
we cannot use a direct computation. We also see that the
alternative method outperforms the MGF-method, given by the
dotted red line, in the region of lower utilizations. However
the alternative method has for large N some tipping point
after which, only by an immense increment of B the wished
violation probabilities can be achieved. Comparing the three
methods under increasing N the MGF-method loses the least.
All three methods are quite robust against the transition from
a violation probability of 10−6 to 10−9, however the MGF-
method seems to loose a bit more here.

VI. TWO NODE SCENARIO

In this example we show how the results of chapter III-B
and chapter IV work together to achieve a backlog bound in
more complex networks. The considered example is similar to
the just analysed one, but instead of traversing a single node,
we now have to cross two nodes. Both nodes are constant
rate servers and the priorities of the flows are preserved in
the transition from the first to the second node. For this
scenario we denote the intermediate flows by (̄in)n∈N ∈ J
and (in)n∈N ∈ J .

A. MGF Bound

We start by computing bounds for the intermediate flows.
Using our previous results we obtain

(̄in)n∈N � (σ̄(θ), ρ(θ))

with σ̄(θ) = 1
θ log(1− eθ(ρ(θ)+c1))−1 and

(in)n∈N � (σ(θ), ρ(θ))

with σ(θ) = 1
θ log(1−eθ(2ρ(θ)+c1))−1. This leads to a leftover

service at the second node (sn)n∈N ∈ J with

(sn)n∈N � (σ̄(θ), ρ(θ) + c2)

We can now compute the backlog bound at the second node,
but have to watch out for a stochastic dependency between
the leftover service at the second node and the intermediate
low priority arrivals. This dependency results from the fact that
after the first node the two intermediate arrivals are dependent,

which in turn makes the leftover service (which is a function
of the high priority intermediate arrivals) stochastically depen-
dent:

P( max
1≤n≤N

q(n) > B)

≤
N∑
n=1

e−θBeθ(σ(qθ)+σ̄(pθ))
n∑

m=0

emθ(ρ(qθ)+ρ(pθ))

By the dependence of the two intermediate flows, we now have
a second parameter p, next to θ, which we need to optimize.
In more complex scenarios a large set of these parameters can
occur. In practice this means that often the parameters need to
be set to certain values, to keep the formulas tractable (in our
example a convenient choice of p would be 2). This leads to
looser bounds.

B. Alternative Bound

For the EVT-bound we also have to consider the dependen-
cies, but there is a way to get rid of them. However, we have to
pay this way by a much worse bound. Denote by (tn)n∈N ∈ J
the service at the second node and by (tn)n∈N ∈ J the leftover
service at the second node. We start similar as in the case of
one node, but we cannot use the law of total probability.

P( max
1≤n≤N

q(n) > B)

≤ 1− P
({

min
1≤n≤N

tn ≥ µ
}
∩
{

max
1≤n≤N

in ≤ µ+
B

N

})
≤ 1− P

({
max

1≤n≤N
īn ≥ c2 − µ

}
∩
{

max
1≤n≤N

in ≤ µ+
B

N

})
≤ 1− P

({
max

1≤n≤N
ān ≤

c2 − µ
N

+
N − 1

N
µ′
}

∩
{

max
1≤n≤N

an ≤
µ+ B

N

N
+
N − 1

N
µ′′
}

∩
{

min
1≤n≤N

sn ≥ µ′
}
∩
{

min
1≤n≤N

sn ≥ µ′′
})

≤ 1− P
({

max
1≤n≤N

ān ≥
c2 − µ
N

+
N − 1

N
c1

}
∩
{

max
1≤n≤N

an ≤
µ+ B

N

N
+
N − 1

N
µ′′
}

∩
{

max
1≤n≤N

an ≥ c1 − µ′′
})

≤ 1− P
({

max
1≤n≤N

ān ≥
c2 − µ
N

+
N − 1

N
c1

}
∩
{

max
1≤n≤N

an ≤
µ+ B

N

N
+
N − 1

N
µ′′ ∧ c1 − µ′′

})
with µ ∈ [0, c2] and µ′′ ∈ [0, BN + µ]. The optimal µ′′ can be
found by setting

B
N + µ

N
+
N − 1

N
µ′′ = c1 − µ′′



Using the independence of (an)n∈N and (ān)n∈N, we eventu-
ally get the backlog bound:

P( max
1≤n≤N

q(n) > B)

≤ P
(

max
1≤n≤N

ān ≤
c2 − µ
N

+
N − 1

N
c1

)
· P

(
max

1≤n≤N
an ≤

(N − 1)c1 + µ+ B
N

2N − 1

)
VII. CONCLUSION AND OUTLOOK

In this paper, we have dealt with the practically important
issue of sample path backlog bounds and have compared
two methods to achieve such backlog bounds. The first is
derived directly from the MGF-calculus, which cannot be
optimal, since the violation probabilities are simply added,
leading to a linear growth, which eventually exceeds 1. The
second is a new method, which asks directly for finite sample
path backlog bounds and is based on extreme value theory
results. We have shown how to extend this new bound to
an alternative SNC, which can be applied to more complex
networks. Comparing the two methods in a simple example
shows no clear winner: while the EVT-bound has trouble with
high utilizatione it outperforms the MGF-bound for smaller
utilizations. Nevertheless, we see by this that the new method
provides an alternative, which needs to be considered, to
achieve low sample path backlog bounds. Besides this the new
bound has same interesting conceptual properties. First it does
not rely on the existence of an MGF. Hence by this method
we can tackle also heavy-tailed distributions and to some
extent solve dependent cases. Fully exploring and exploiting
these conceptual strengths will be subject to future work. In
general, we also believe that our new method is supported by a
versatile tool: EVT. With its help computationally problemtic
expressions can be approximated. For future work the results
of EVT can be mined to include a broader class of sequences,
such as non-i.i.d. arrivals or stochastically dependent arrival
flows. Further directions to which this theory can be extended
include concatenation results and sample-path delay bounds.
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