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Abstract—This paper proposes an analytic model for dimen-
sioning OFDMA based networks like WiMAX and LTE systems.
In such a system, users require a number of subchannels which
depends on their SNR, hence of their position and the shadowing
they experience. The system is overloaded when the number of
required subchannels is greater than the number of available
subchannels. We give an exact though not closed expression
of the loss probability and then give an algorithmic method
to derive the number of subchannels which guarantees a loss
probability less than a given threshold. We show that Gaussian
approximation lead to optimistic values and are thus unusable.
We then introduce Edgeworth expansions with error bounds and
show that by choosing the right order of the expansion, one
can have an approximate dimensioning value easy to compute
but with guaranteed performance. As the values obtained are
highly dependent from the parameters of the system, which
turned to be rather undetermined, we provide a procedure
based on concentration inequality for Poisson functionals, which
yields to conservative dimensioning. This paper relies on recent
results on concentration inequalities and establish new results on
Edgeworth expansions.

Index Terms—Concentration inequality, Edgeworth expansion,
LTE, OFDMA

I. INTRODUCTION

Future wireless systems will widely rely on OFDMA (Or-
thogonal Frequency Division Multiple Access) multiple access
technique. OFDMA can satisfy end user’s demands in terms of
throughput. It also fulfills operator’s requirements in terms of
capacity for high data rate services. Systems such as 802.16e
and 3G-LTE (Third Generation Long Term Evolution) already
use OFDMA on the downlink. Dimensioning of OFDMA
systems is then of the utmost importance for wireless telecom-
munications industry.

OFDM (Orthogonal Frequency Division Multiplex) is a
multi carrier technique especially designed for high data rate
services. It divides the spectrum in a large number of fre-
quency bands called (orthogonal) subcarriers that overlap par-
tially in order to reduce spectrum occupation. Each subcarrier
has a small bandwidth compared to the coherence bandwidth
of the channel in order to mitigate frequency selective fading.
User data is then transmitted in parallel on each sub carrier. In
OFDM systems, all available subcarriers are affected to one
user at a given time for transmission. OFDMA extends OFDM
by making it possible to share dynamically the available
subcarriers between different users. In that sense, it can then be
seen as multiple access technique that both combines FDMA
and TDMA features. OFDMA can also be possibly combined
with multiple antenna (MIMO) technology to improve either
quality or capacity of systems.

Fig. 1. OFDMA principle : subcarriers are allocated according to the required
transmission rate

In practical systems, such as WiMAX or 3G-LTE, subcarri-
ers are not allocated individually for implementation reasons
mainly inherent to the scheduler design and physical layer
signaling. Several subcarriers are then grouped in subchannels
according to different strategies specific to each system. In
OFDMA systems, the unit of resource allocation is mainly the
subchannels. The number of subchannels required by a user
depends on his channel’s quality and the required bit rate. If
the number of demanded subchannels by all users in the cell is
greater than the available number of subchannel, the system is
overloaded and suffer packet losses. The questions addressed
here can then be stated as follows: how many subchannels
must be assigned to a BS to ensure a small overloading
probability ? Given the number of available subchannels, what
is the maximum load, in terms of mean number of customers
per unit of surface, that can be tolerated ? Both questions rely
on accurate estimations of the loss probability.

The objectives of this paper are twofold: First, construct
and analyze a general performance model for an isolated cell
equipped with an OFDMA system as described above. We
allows several classes of customers distinguished by their
transmission rate and we take into account path-loss with
shadowing. We then show that for a Poissonian configuration
of users in the cell, the required number subchannels follows
a compound Poisson distribution. The second objective is to
compare different numerical methods to solve the dimension-
ing problem. In fact, there exists an algorithmic approach
which gives the exact result potentially with huge memory
consumption. On the other hand, we use and even extend
some recent results on functional inequalities for Poisson
processes to derive some approximations formulas which turn
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to be rather effective at a very low cost. When it comes to
evaluate the performance of a network, the quality of such a
work may be judged according to several criteria. First and
foremost, the exactness is the most used criterion: it means
that given the exact values of the parameters, the real system,
the performances of which may be estimated by simulation,
behaves as close as possible to the computed behavior. The
sources of errors are of three kinds: The mathematical model
may be too rough to take into account important phenomena
which alter the performances of the system, this is known as
the epistemic risk. Another source may be in the mathematical
resolution of the model where we may be forced to use
approximate algorithms to find some numerical values. The
third source lies in the lack of precision in the determination
of the parameters characterizing the system: They may be hard,
if not impossible, to measure with the desired accuracy. It is
thus our point of view that exactness of performance analysis
is not all the matter of the problem, we must also be able to
provide confidence intervals and robust analysis. That is why,
we insist on error bounds in our approximations.

Resources allocation on OFDMA systems have been exten-
sively studied over the last decade, often with joint power and
subcarriers allocation, see for instance [1], [8], [14], [15]. The
problem of OFDMA planning and dimensioning have been
more recently under investigation. In [7], the authors propose
a dimensioning of OFDMA systems focusing on link outage
but not on the other parameters of the systems. In [11], the
authors give a general methodology for the dimensioning of
OFDMA systems, which mixes a simulation based determi-
nation of the distribution of the signal-to-interference-plus-
noise ratio (SINR) and a Markov chain analysis of the traffic.
In [3], [9], the authors propose a dimensioning method for
OFDMA systems using Erlang’s loss model and Kaufman-
Roberts recursion algorithm. In [4], the authors study the effect
of Rayleigh fading on the performance of OFDMA networks.

The article is organized as follows. In Section II, we
describe the system model and set up the problem. In Section
III, we examine four methods to derive an exact, approximate
or robust value of the number of subchannels necessary to
ensure a given loss probability. In Section IV, we apply these
formulas to the particular situation of OFDMA systems. A
new bound for the Edgeworth expansion is in Section A and
Section A contains a new proof of the concentration inequality
established for instance in [16].

II. SYSTEM MODEL

In practical systems, such as WiMAX or 3G-LTE, resource
allocation algorithms work at subchannel level. The subcarriers
are grouped into subchannels that the system allocates to
different users according to their throughput demand and
mobility pattern. For example, in WiMAX, there are three
modes available for building subchannels: FUSC (Fully Partial
Usage of Subchannels), PUSC (Partial Usage of SubChannels)
and AMC (Adaptive modulation and coding). In FUSC, sub-
channels are made of subcarriers spread over all the frequency
band. This mode is generally more adapted to mobile users. In

AMC, the subcarriers of a subchannel are adjacent instead of
being uniformly distributed over the spectrum. AMC is more
adapted to nomadic or stationary users and generally provides
higher capacity.

The grouping of subcarriers into subchannels raises the
problem of the estimation of the quality of a subchannel.
Theoretically channel quality should be evaluated on each
subcarrier of the corresponding subchannel to compute the
associated capacity. This work assumes that it is possible to
consider a single channel gain for all the subcarriers making
part of a subchannel (for example via channel gains evaluated
on pilot subcarriers).

We consider a circular cell C of radius R with a base station
(BS for short) at its center. The transmission power dedicated
to each subchannel by the base station is denoted by P . Each
subchannel has a total bandwidth W (in kHz). The received
signal power for a mobile station at distance d from the BS
can be expressed as

P (d) =
PKγ

dγ
GF := PγGd

−γ , (1)

where Kγ is a constant equal to the attenuation at a reference
distance, denoted by dref, that separates far field from near
field propagation. Namely,

Kγ =

(
c

4πfdref

)2

dγref,

where f is the radio-wave frequency. The variable γ is the
path-loss exponent which indicates the power at which the
path loss increases with distance. Its depends on the specific
propagation environment, in urban area, it is in the range
from 3 to 5. It must be noted that this propagation model
is an approximate model, difficult to calibrate for real life
situations. In particular, it might be reasonable to envision
models where γ depends on the distance so that the attenuation
would be proportional to dγ(d). Because of the complexity of
such a model, γ is often considered as constant but the path-
loss is multiplied by two random variables G and F which
represent respectively the shadowing, i.e. the attenuation due
to obstacles, and the Rayleigh fading, i.e. the attenuation due
to local movements of the mobile. Usually, G is taken as a log-
normal distribution: G = 10S/10, where S ∼ N (κ, v2). As to
F , it is customary to choose an exponential distribution with
parameter 1. Both, the shadowing and the fading experienced
by each user are supposed to be independent from other users’
shadowing and fading. For the sake of simplicity, we will here
treat the situation where only shadowing is taken into account,
the computations would be pretty much like the forthcoming
ones and the results rather similar should we consider Rayleigh
fading.

All active users in the cell compete to have access to some of
the Navail available subchannels. There are K classes of users
distinguished by the transmission rate they require: Ck is the
rate of class k customers and τk denotes the probability that a
customer belongs to class k. A user, at distance d from the BS,
is able to receive the signal only if the signal-to-interference-
plus-noise ratio SNR = P (d)

I is above some constant βmin



where I is the noise plus interference power and P (d) is the
received signal power at distance d, see (1). If the SNR is
below the critical threshold, then the user is said to be in
outage and cannot proceed with his communication.

To avoid excess demands, the operator may impose a
maximum number Nmax of allocated subchannels to each user
at each time slot. According to the Shannon formula, for a
user demanding a service of bit rate Ck, located at distance d
from the BS and experiencing a shadowing g, the number of
requires subchannels is thus the minimum of Nmax and of

Nuser =


⌈

Ck
W log2 (1 + Pγgd−γ/I)

⌉
if Pγgd−γ/I ≥ βmin,

0 otherwise,

where dxe means the minimum integer number not smaller
than x.

We make the simplifying assumption that the allocation is
made at every time slot and that there is no buffering neither in
the access point nor in each mobile station. All the users have
independently from others a probability p to have a packet to
transmit at each slot. This means, that each user has a traffic
pattern which follows a geometric process of intensity p. We
also assume that users are dispatched in the cell according to
a Poisson process of intensity λ0. According to the thinning
theorem for Poisson processes, this induces that active users
form a Poisson process of intensity λ = λ0p. This intensity is
kept fixed over the time. That may result from two hypothesis:
Either we consider that for a small time scale, users do not
move significantly and thus the configuration does not evolve.
Alternatively, we may consider that statistically, the whole
configuration of active users has reached its equilibrium so
that the distribution of active users does not vary through time
though each user may move.

From the previous considerations, a user is characterized by
three independent parameters: his position, his class and the
intensity of the shadowing he is experiencing. We model this
as a Poisson process on E = B(0, R) × {1, · · · , K} ×R+

of intensity measure

λ dν(x) := λ( dx⊗ dτ(k)⊗ dρ(g))

where B(0, R) = {x ∈ R2, ‖x‖ ≤ R}, τ is the probability
distribution of classes given by τ({k}) = τk and ρ is the
distribution of the random variable G defined above. We set

f(x, k, g) = min (Nmax,

1{Pγg‖x‖−γ≥Iβmin}

⌈
Ck

W log2 (1 + Pγg‖x‖−γ/I)

⌉)
.

With the notations of Section A,

Ntot =

∫
cell
f(x, k, g) dω(x, k, g).

We are interested in the loss probability which is given by

P(Ntot ≥ Navail).

We first need to compute the different moment of f with
respect to ν in order to apply Theorem 2 and Theorem 3.
For, we set

lk = Nmax ∧
⌈

Ck
W log2(1 + βmin)

⌉
,

where a ∧ b = min(a, b). Furthermore, we introduce βk, 0 =
∞,

βk, l =
I

P

(
2Ck/Wl − 1

)
, 1 ≤ k ≤ K, 1 ≤ l ≤ lk − 1,

and βk, lk = Iβmin/P.
By the very definition of the ceiling function, we have∫
E

fp dν

=

K∑
k=1

τk

lk∑
l=1

lp
∫

cell

∫
R

1[βk, l; βk, l−1)(g‖x‖
−γ) dρ(g) dx.

According to the change of variable formula, we have∫
cell

1[βk, l; βk, l−1)(g‖x‖
−γ) dx

= π(β
−2/γ
k, l ∧R2 − β−2/γk, l−1 ∧R

2)g2/γ .

Thus, we have∫
cell

∫
R

1[βk, l; βk, l−1)(g‖x‖
−γ) dρ(g) dx

= π(β
−2/γ
k, l ∧R2 − β−2/γk, l−1 ∧R

2)E
[
10S/5γ

]
= π(β

−2/γ
k, l ∧R2 − β−2/γk, l−1 ∧R

2) 10(κ+
v2

10γ ln 10)/5γ := ζk, l.

We thus have proved the following theorem.
Theorem 1: For any p ≥ 0, with the same notations as

above, we have:∫
fp dν =

K∑
k=1

τk

lk∑
l=1

lp ζk, l. (2)

III. LOSS PROBABILITY

A. Exact method

Since f is deterministic, Ntot follows a compound Poisson
distribution: it is distributed as

K∑
k=1

lk∑
l=1

l Nk, l

where (Nk, l, 1 ≤ k ≤ K, 1 ≤ l ≤ lk) are independent Pois-
son random variables, the parameter of Nk, l is λτkζk, l. Using
the properties of Poisson random variables, we can reduce the
complexity of this expression. Let L = max(lk, 1 ≤ k ≤ K)
and for l ∈ {1, · · · , L}, let Kl = {k, lk ≥ l}. Then, Ntot is
distributed as

L∑
l=1

lMl

where (Ml, 1 ≤ l ≤ lk) are independent Poisson random
variables, the parameter of Ml being ml :=

∑
k∈Kl λτkζk, l.



For each l, it is easy to construct an array which represents
the distribution of lMl by the following rule:

pl(w) =

{
0 if w mod l 6= 0,

exp(−ml)m
q
l /q! if w = ql.

By discrete convolution, the distribution of Ntot and then its
cumulative distribution function, are easily calculable. The
value of Navail which ensures a loss probability below the de-
sired threshold is found by inspection. The only difficulty with
this approach is to determine where to truncate the Poisson
distribution functions for machine representation. According
to large deviation theory [6],

P(Poisson(θ) ≥ aθ) ≤ exp(−θ(a ln a+ 1− a)).

When θ is known, it is straightforward to choose a(θ) so that
the right-hand-side of the previous equation is smaller than the
desired threshold. The total memory size is thus proportional
to max(mla(ml)l, 1 ≤ l ≤ lk). This may be memory (and
time) consuming if the parameters of some Poisson random
variables or the threshold are small. This method is well
suited to estimate loss probability since it gives exact results
within a reasonable amount of time but it is less useful for
dimensioning purpose. Given Navail, if we seek for the value
of λ which guarantees a loss probability less than the desired
threshold, there is no better way than trial and error. At least,
the subsequent methods even imprecise may help to evaluate
the order of magnitude of λ for the first trial.

B. Approximations

We begin by the classical Gaussian approximation. It is clear
that

P(

∫
E

f dω ≥ Navail) = P(

∫
E

fσ( dω − λ dν) ≥ Nσ)

= Eλν

[
1[Nσ,+∞)(

∫
E

fσ( dω − λ dν))

]
where Nσ = (Navail−

∫
fλ dν)/σ. Since the indicator function

1[Nσ,+∞) is not Lipschitz, we can not apply the bound given
by Theorem 2. However, we can upper-bound the indicator
by a continuous function whose Lipschitz norm is not greater
than 1. For instance, taking

φ(x) = min(x+, 1) and φN (x) = φ(x−N),

we have

1[Nσ+1,+∞) ≤ φNσ+1 ≤ 1[Nσ,+∞) ≤ φNσ−1 ≤ 1[Nσ−1,+∞).

Hence,

1−Q(Nσ + 1)− 1

2

√
2

π

m(3, 1)√
λ

≤ P(

∫
E

f dω ≥ Navail) ≤

1−Q(Nσ − 1) +
1

2

√
2

π

m(3, 1)√
λ

, (3)

where Q is the cumulative distribution function of a standard
Gaussian random variable.

According to Theorem 3, one can proceed with a more
accurate approximation. Via polynomial interpolation, it is
easy to construct a C3 function ψlN such that

‖(ψlN )(3)‖∞ ≤ 1 and 1[Nσ+3.5,+∞) ≤ ψlNσ ≤ 1[Nσ,+∞)

and a function ψrN such that

‖(ψrN )(3)‖∞ ≤ 1 and 1[Nσ,+∞) ≤ ψrNσ ≤ 1[Nσ−3.5,+∞)

From (10), it follows that

1−Q(Nσ + 3.5)− m(3, 1)

6
√
λ

Q(3)(Nσ + 3.5)− Eλ

≤ P(

∫
E

f dω ≥ Navail) ≤

1−Q(Nσ − 3.5) +
m(3, 1)

6
√
λ

Q(3)(Nσ − 3.5) + Eλ (4)

where Eλ is the right-hand-side of (13) with ‖F (3)‖∞ = 1.
Going again one step further, following the same lines,

according to (15), one can show that

P(

∫
E

f dω ≥ Navail) ≤ 1−Q(Nσ − 6.5)

+
m(3, 1)

6
√
λ

Q(3)(Nσ − 6.5) +
m(3, 1)2

72λ
Q(5)(Nσ − 6.5)

+
m(4, 1)

24λ
Q(3)(Nσ − 6.5) + Fλ (5)

where Fλ is bounded above in (16).
For all the approximations given above, for a fixed value of

Navail, an approximate value of λ can be obtained by solving
numerically an equation in

√
λ.

C. Robust upper-bound

If we seek for robustness and not precision, it may be
interesting to consider the so-called concentration inequality.
We remark that in the present context, f is non-negative and
bounded by L = maxk lk so that we are in position to apply
Theorem 4. We obtain that

P(

∫
E

f dω ≥
∫
E

f dν + a)

≤ exp

(
−
∫
E
f2λ dν
L2

g(
aL∫

E
f2λ dν

)

)
, (6)

where g is defined in Section A.

IV. APPLICATIONS TO OFDMA AND LTE

In such systems, there is a huge number of physical param-
eters with a wide range of variations, it is thus rather hard to
explore the while variety of sensible scenarios. For illustration
purposes, we chose a circular cell of radius R = 300 meters
equipped with an isotropic antenna such that the transmitted
power is 1 W and the reference distance is 10 meters.
The mean number of active customers per unit of surface,
denoted by λ, was chosen to vary between 0, 001 and 0.000 1,



Fig. 2. Impact of γ and τ on the loss probability (Navail = 92, λ = 0.0001)

this corresponds to an average number of active customers
varying from 3 to 30, a realistic value for the systems under
consideration. The minimum SINR is 0.3 dB and the random
variable S defined above is a centered Gaussian with variance
equal to 10. There are two classes of customers, C1 = 1, 000
kb/s and C2 = 400 kb/s. It must be noted that our set of
parameters is not universal but for the different scenarios we
tested, the numerical facts we want to point out were always
apparent. Since the time scale is of the order of a packet
transmission time, the traffic is defined as the mean number of
required subchannels at each slot provided that the time unit
is the slot duration, that is to say that the load is defined as
ρ = λ

∫
cell f dν.

Figure 2 shows, the loss probability may vary up to two
orders of magnitude when the rate and the probability of
each class change even if the mean rate

∑
k τkCk remains

constant. Thus mean rate is not a sufficient parameter to predict
the performances of such a system. The load ρ is neither a
pertinent indicator as the computations show that the loads of
the various scenarios differs from less than 3%.

Comparatively, Figure 2 shows that variations of γ have
tremendous effects on the loss probability: a change of a
few percents of the value of γ induces a variation of several
order of magnitude for the loss probability. It is not surprising
that the loss probability increases as a function of γ: as γ
increases, the radio propagation conditions worsen and for a
given transmission rate, the number of necessary subchannels
increases, generating overloading. Beyond a certain value of
γ (apparently around 3.95 on Figure 2), the radio conditions
are so harsh that a major part of the customers are in outage
since they do not satisfy the SNR criterion any longer. We
remark here that the critical value of γ is almost the same for
all configurations of classes. Indeed, the critical value γc of
γ can be found by a simple reasoning: When γ < γc, a class
k customer uses less than the allowed lk subchannels because
the radio conditions are good enough for β1/γ

k, j ≥ R for some

j < lk so that the load increases with γ. For γ > γc, all
the β−1/γk, l are lower than R and the larger γ, the wider the
gap. Hence the number of customers in outage increases as γ
increases and the load decreases. Thus,

γc ' inf{γ, β−1/γs, ls−1 ≤ R} for s = arg maxklk.

If we proceed this way for the data of Figure 2, we retrieve
γc = 3.95. This means that for a conservative dimensioning,
in the absence of estimate of γ, computations may be done
with this value of γ.

For a threshold given by ε = 10−4, we want to find Navail
such that P(Ntot ≥ Navail) ≤ ε. As said earlier, the exact
method gives the result at the price of a sometimes lengthy
process. In view of 3, one could also search for α such that

1−Q(α) +
1

2

√
2

π
m(3, λ) = ε (7)

and then consider d1 +
∫
E
f dν + ασe as an approximate

value of Navail. Unfortunately and as was expected since the
Gaussian approximation is likely to be valid for large values
of λ, the corrective term in (7) is far too large (between 30
and 500 depending on γ) for (7) to have a meaning. Hence,
we must proceed as usual and find α such that 1−Q(α) = ε,
i.e. α ' 3.71. The approximate value of Navail is thus given by
d
∫
E
f dν + 3.71σe. The consequence is that we do not have

any longer any guarantee on the quality of this approximation,
how close it is to the true value and even more basic, whether
it is greater or lower than the correct value. In fact, it is
absolutely impossible to choose a dimensioning value lower
than the true value since there is no longer a guarantee that the
loss probability is lower than ε. As shows Figure 3, it turns out
that the values returned by the Gaussian method are always
under the true value. Thus this annihilates any possibility to
use the Gaussian approximation for dimensioning purposes.

Going one step further, according to (4), one may find α
such that

1−Q(α)− m(3, λ)

6
Q(3)(α) + Eλ = ε

and then use

d3.5 +

∫
E

f dν + ασe

as an approximate guaranteed value of Navail. By guaranteed,
we mean that according to (4), it holds for sure that the loss
probability with this value of Navail is smaller than ε even
if there is an approximation process during its computation.
Since the error in the Edgeworth approximation is of the order
of 1/λ, instead of 1/

√
λ for the Gaussian approximation, one

may hope that this method will be efficient for smaller values
of λ. It turns out that for the data sets we examined, Eλ is
of the order of 10−7/λ, thus this method can be used as long
as 10−7/λ � ε. Otherwise, as for the Gaussian case, we are
reduced to find α such that

1−Q(α)− m(3, λ)

6
Q(3)(α) = ε



and consider d3.5 +
∫
E
f dν + ασe but we no longer have

any guarantee on the validity of the value. As Figure 3 shows,
for the considered data set, Edgeworth methods leads to an
optimistic value which is once again absolutely not acceptable.
One can pursue the development as in (15) and use (5), thus
we have to solve

1−Q(α)− m(3, λ)

6
Q(3)(α)

− m(3, 1)2

72λ
Q(6)(α) +

m(4, 1)

24λ
Q(4)(α)− Fλ = ε.

For the analog of 4 to hold, we have to find Ψ a C5b
function greater than 1[x,∞) but smaller than 1[x−lag,∞) with
a fifth derivative smaller than 1. Looking for Ψ in the set
of polynomial functions, we can find such a function only if
lag is greater than 6.5 (for smaller value of the lag, the fifth
derivative is not bounded by 1) thus the dimensioning value
has to be chosen as:

d6.5 +

∫
E

f dν + ασe.

For the values we have, it turns out that Fλ is of the order
of 10−9λ−3/2 which is negligible compared to ε = 10−4, so
that we can effectively use this method for λ ≥ 10−4. As it is
shown in Figure 3, the values obtained with this development
are very close to the true values but always greater as it is
necessary for the guarantee. The procedure should thus be the
following: compute the error bounds given by (3), (13) and (5)
and find the one which gives a value negligible with respect
to the threshold ε, then use the corresponding dimensioning
formula. If none is suitable, use a finer Edgeworth expansion
or resort to the concentration inequality approach.

Note that the Edgeworth method requires the computations
of the first three (or five) moments, whose lengthiest part is
to compute the ζk, l which is also a step required by the exact
method. Thus Edgeworth methods are dramatically simpler
than the exact method and may be as precise. However, both
the exact and Edgeworth methods suffer from the same flaw:
There are precise as long as the parameters, mainly λ and
γ, are perfectly well estimated. The value of γ is often set
empirically (to say the least) so that it seems important to
have dimensioning values robust to some estimate errors. This
is the goal of the last method we propose.

According to (6), if we find α such that

g(
αL∫

E
f2λ dν

) = − log(ε)L2∫
E
f2λ dν

and
Navail =

∫
E

f dν +
α

L2

∫
E

f2λ dν, (8)

we are sure that the loss probability will fall under ε. However,
we do not know a priori how larger this value of Navail than
the true value. It turns out that the relative oversizing increases
with γ from a few percents to 40% for the large value of γ
and hence small values of Navail. For instance, for γ = 4.2, the
value of Navail given by (8) is 40 whereas the exact value is

32 hence an oversizing of 25%. However, for γ = 4.12, which
is 2% away from 4.2, the required number of subchannels is
also 40. The oversizing is thus not as bad as it may seem
since it may be viewed as a protection against traffic increase,
epistemic risk (model error) and estimate error.

Fig. 3. Estimates of Navail as a function of γ by the different methods
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APPENDIX

Let Φ be the Gaussian probability density function: Φ(x) =
exp(−x2/2)/

√
2π and µ the Gaussian measure on R. Her-

mite polynomials (Hk, k ≥ 0) are defined by the recursion
formula:

Hk(x)Φ(x) = (−1)k
dk

dxk
Φ(x).

For the sake of completness, we recall that

H0(x) = 1, H1(x) = x, H2(x) = x2−1, H3(x) = x3−3x

H4(x) = x4 − 6x2 + 3, H5(x) = x5 − 10x3 + 15x.

Thus, for F ∈ Ckb , using integration by parts, we have∫
R

F (k)(x) dµ(x) =

∫
R

F (x)Hk(x) dµ(x). (9)

Let Q(x) =
∫ x
−∞Φ(u) du =

∫
R
1(−∞; x](u)Φ(u) du. Then,

Q′ = Φ and∫
R

1(−∞; x](u)Hk(u) dµ(u)

= (−1)k
∫ x

−∞
Φ(k)(u) du = (−1)kQ(k)(x) = −Hk−1(x)Φ(x).

(10)

For details on Poisson processes, we refer to [2], [5]. For E
a Polish space equipped with a Radon measure ν, ΓE denotes
the set of locally finite discrete measures on E. The generic
element ω of ΓE may be identified with a set ω = {xn, n ≥ 1}
such that ω∩K has finite cardinal for any K compact in E. We
denote by

∫
E
f dω the sum

∑
x∈ω f(x) provided that it exists

as an element of R∪{+∞}. A Poisson process of intensity ν
is a probability Pν on ΓE , such that for any f ∈ CK(E, R),

Eν

[
exp(−

∫
E

f dω)

]
= exp(−

∫
E

1− e−f(x) dν(x)).

For f ∈ L1(ν), the Campbell formula states that

Eν

[∫
f dω

]
=

∫
f dν.

We introduce the discrete gradient D defined by

DxF (ω) = F (ω ∪ {x})− F (ω), for all x ∈ E.

In particular, for f ∈ L1(ν), we have

Dx

∫
E

f dω = f(x).

The domain of D, denoted by Dom D is the set of functionals
F : ΓE → R such that

Eν

[∫
E

|DxF (ω)|2 dν(x)

]
<∞.

The integration by parts then says that, for any F ∈ Dom D,
any u ∈ L2(ν),

Eν

[
F

∫
E

u(x)( dω(x)− dν(x))

]
= Eν

[∫
E

DxF u(x) dν(x)

]
. (11)

We denote by σ = ‖f‖L2(ν)

√
λ and fσ = f/σ. Note that

‖fσ‖L2(ν) = 1/λ and that

m(p, λ) :=

∫
E

|fσ(x)|pλ dν(x) = ‖f‖−pL2(ν)‖f‖
p
Lp(ν)λ

1−p/2.

The proof of the following theorem may be found in [5], [12],
[13].

Theorem 2: Let f ∈ L2(ν). For λ > 0, let

Nλ =

∫
E

fσ(x)( dω(x)− λ dν(x)).

Then, for any Lipschitz function F from R to R, we have∣∣∣∣Eλν [F (Nλ)
]
−
∫
R

F dµ
∣∣∣∣ ≤ 1

2

√
π

2
m(3, λ) ‖F‖Lip.

To prove the Edgeworth expansion and its error bound,
we introduce some notions of Gaussian calculus. For F ∈
C2b (R; R), we consider

AF (x) = xF ′(x)− F ′′(x), for any x ∈ R.

The Ornstein-Uhlenbeck semi-group is defined by

PtF (x) =

∫
R

F (e−tx+
√

1− e−2ty) dµ(y) for any t ≥ 0.

The infinitesimal generator A and Pt are linked by the
following identity

F (x)−
∫
R

F (y) dµ(y) = −
∫ ∞
0

APtF (x) dt. (12)

Theorem 3: For F ∈ C3b (R, R),∣∣∣∣Eλν [F (Nλ)
]
−
∫
R

F (y) dµ(y)

−1

6
m(3, λ)

∫
R

F (y)H3(y) dµ(y)

∣∣∣∣
≤

(
m(3, 1)2

6
+
m(4, 1)

9

√
2

π

)
‖F (3)‖∞

λ
· (13)

Proof: According to the Taylor formula,

DxG(Nλ) = G(Nλ + fσ(x))−G(Nλ)

= G′(Nλ)fσ(x) +
1

2
f2σ(x)G′′(Nλ)

+
1

2
fσ(x)3

∫ 1

0

r2G(3)(rNλ + (1− r)fσ(x)) dr. (14)



Hence, according to (11) and (14),

Eλν
[
Nλ(PtF )′(Nλ)

]
= Eλν

[∫
E

fσ(x)Dx(PtF )′(Nλ)λ dν(x)

]
= Eλν

[
(PtF )′′(Nλ)

]
+

1

2

∫
E

f3σ(x)λ dν(x)Eλν

[
(PtF )(3)(Nλ)

]
+

1

2

∫
E

f4σ(x)λ dν(x)

×Eλν

[∫ 1

0

(PtF )(4)(rNλ + (1− r)fσ(x))r2 dr
]

= A1 +A2 +A3.

It is well known that for F ∈ Ck, (x 7→ PtF (x)) is k + 1-
times differentiable and that we have two expressions of the
derivatives (see [10]):

(PtF )(k+1)(x)

=
e−(k+1)t

√
1− e−2t

∫
R

F (k)(e−tx+
√

1− e−2ty)y dµ(y).

and (PtF )(k+1)(x) = e−(k+1)tPtF
(k)(x). The former equa-

tion induces that

‖(PtF )(k+1)‖∞ ≤
e−(k+1)t

√
1− e−2t

‖F (k)‖∞
∫
R

|y| dµ(y)

=
e−(k+1)t

√
1− e−2t

√
2

π
‖F (k)‖∞.

Hence,

|A3| ≤
e−4t

6
√

1− e−2t

√
2

π
m(4, λ) ‖F (3)‖∞.

Moreover, according to Theorem 2,∣∣∣∣Eλν [(PtF )(3)(Nλ)
]
−
∫
R

(PtF )(3)(x) dµ(x)

∣∣∣∣
≤ 1

2

√
π

2
m(3, λ)‖(PtF )(4)‖∞

≤ 1

2
m(3, λ)

e−4t√
1− e−2t

‖F (3)‖∞.

Then, we have,

|A2 −
1

2
m(3, λ)

∫
R

(PtF )(3)(x) dµ(x)|

≤ 1

4
m(3, λ)2

e−4t√
1− e−2t

‖F (3)‖∞.

Hence,

Eλν
[
Nλ(PtF )′(Nλ)− (PtF )′′(Nλ)

]
=

1

2
m(3, λ)

∫
R

(PtF )(3)(x) dµ(x) +R(t),

where

R(t) ≤

(
m(3, λ)2

4
+
m(4, λ)

6

√
2

π

)
‖F (3)‖∞

e−4t√
1− e−2t

·

Now then,∫
R

(PtF )(3)(x) dµ(x)

= e−3t
∫
R

∫
R

F (3)(e−tx+
√

1− e−2ty) dµ(y)

= e−3t
∫
R

F (3)(y) dµ(y)

= e−3t
∫
R

F (y)H3(y) dµ(y),

since the Gaussian measure on R2 is rotation invariant and
according to (9). Remarking that∫ ∞

0

e−4t(1− e−2t)−1/2 dt = 2/3

and applying (12) to x = Nλ, the result follows.
This development is not new in itself but to the best of our
knowledge, it is the first time that there is an estimate of
the error bound. Following the same lines, we can pursue
the expansion up to any order provided that F be sufficiently
differentiable. Namely, for F ∈ C5b , we have

Eλν
[
F (Nλ)

]
=

∫
R

F (y) dµ(y)

+
m(3, 1)

6
√
λ

∫
R

F (3)(y) dµ(y) +
m(3, 1)2

72λ

∫
R

F (6)(y) dµ(y)

+
m(4, 1)

24λ

∫
R

F (4)(y) dµ(y) + Fλ‖F (5)‖∞. (15)

where

Fλ ≤
m(3, 1)

λ3/2

(
2

45
m(3, 1)2

+(
4

135
+

π2

128
)

√
2

π
m(4, 1)

)
. (16)

We are now interested in an upper bound, which is called
concentration inequality.

Theorem 4: Let M,a > 0. Assume that |f(z)| ≤M ν−a.s
and f ∈ L2(E, ν), then

P(F > E [F ] + a) ≤ exp

{
− M2

V [F ]
g

(
a.M

V [F ]

)}
(17)

where g(u) = (1 + u) ln(1 + u)− u.
The above theorem can be directly derived from [16]. However
let us take this opportunity to prove this theorem in a very
nice, simple and elementary fashion, exactly the same way as
Bennett built his concentration inequality for the sum of n i.i.d
random variables.

Proof: Using Chernoff’s bound we have:

P(F > E [F ] + a) ≤ E
[
eθF
]
/eθ(E[F ]+a)

= e
∫
E(eθf(z)−1−θf(z)) dν(z)−θa



Now assume that |f(z)| ≤ M ν−a.s . Observe that the
function (ex − 1− x)/x2 is increasing on R (the value at 0
is 1/2), we have that

eθf(z) − θf(z)− 1 ≤ eθM − 1− θM
M2

f2(z) ν a.s.

Thus,

P(F > E [F ] + a)

≤ exp

{∫
E

(
eθM − θM − 1

M2
f2(z)

)
dν(z)− θa

}
= exp

{
eθM − 1− θM

M2
V [F ]− θa

}
·

We find that θ = ln (1 + aM/V [F ]) /M minimizes the right-
hand-side and thus we obtain (17).


