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Abstract—In this paper, we consider the revenue maximization
problem in auctions for dynamic spectrum access. We assume a
frequency division method of spectrum sharing with a primary
spectrum owner that can divide the available spectrum into
sub-bands and sell them to secondary users. We assume that a
secondary user’s utility function is linear in the rate it can achieve
by using the spectrum. We present an incentive compatible,
individual rational and revenue-maximizing mechanism that the
spectrum owner can use to divide the spectrum among the
strategic (selfish) secondary buyers.

I. INTRODUCTION

Traditional spectrum allocations are done in a static manner
where long-term spectrum licenses covering large geographi-
cal areas are sold. Under this type of static allocation, there
is increasing evidence that spectrum resources are not being
efficiently utilized [1]. At the same time, wireless devices are
enjoying ever greater capability to detect spectrum availability
and flexibility to adjust operating frequencies [2]. These obser-
vations have led to a push for dynamic spectrum sharing where
the primary spectrum owner may lease spectrum to secondary
buyers.

Frequency division multiplexing is one method of spectrum
sharing. The primary buyer partitions its available spectrum
into sub-bands. Each sub-band is then sold to at most one
secondary buyer. Various kinds of auctions have been proposed
for the spectrum division problem. In the simplest auction, the
available spectrum may be partitioned into n sub-bands (for
some finite number n) and a multiple-product auction can be
employed. The authors in [3] use a sequential second price
auction mechanism where each unit is sequentially allocated
using a second-price auction. They study the equilibrium of
such an auction and characterizes the accompanying efficiency
loss. In [4], the authors consider buyers with strict spec-
trum demands across multiple channels and find revenue-
maximizing auctions.

In contrast to the frequency division method of spectrum
sharing, power allocation methods allow different secondary
buyers to use the same spectrum. The buyers can distribute
power over the available frequency so as to minimize the
interference or maximize their rates. Such methods were
studied in [5], [6], [7], [8] in a game-theoretic/mechanism
design context.

In this paper, we focus on the frequency division method
of spectrum sharing. We model the spectrum as a perfectly
divisible commodity. The spectrum owner has to find a way
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

VALUETOOLS 2011, May 16-20, Paris, France

Copyright © 2011 ICST 978-1-936968-09-1
DOI 10.4108/icst.valuetools.2011.247346

of dividing the spectrum among the secondary buyers and
charging payments to the secondary buyers that maximizes its
revenue. Since the spectrum owner does not have complete in-
formation about the secondary buyers’ utilities, it has to solicit
information from them. Based on the information it receives,
the spectrum owner decides the distribution of spectrum and
payments among the buyers. The spectrum allocation and the
payment rule are collectively referred to as the mechanism
chosen by the spectrum owner.

We assume that the buyers’ utilities are linear in the ex-
pected rate they can achieve from a given amount of spectrum.
We further assume that a buyer’s private information is entirely
captured by the slope of this linear relation. We interpret
this slope as a buyers’ “willingness to pay” for the expected
rate it may get. We model the secondary buyers as strategic
agents. Thus, once the spectrum owner fixes its allocation and
payment rule, a Bayesian game is played among the buyers.
The spectrum owner has to find allocation and payment rules
that maximize its revenue while ensuring that truth-telling
is an equilibrium of the induced Bayesian game among the
buyers. The spectrum owner’s problem belongs to the class of
Bayesian mechanism design. Bayesian mechanism design is a
branch of mathematical economics (see [9], [10], [11], [12]
and references therein). Our work is philosophically similar
to Myerson’s optimal auction ([13]) of an indivisible good.
However, since we assume perfect divisibility of spectrum,
our mechanism differs from the mechanism in [13].

Organization of the Paper: The rest of the paper is organized
as follows. We formulate the spectrum owner’s optimization
problem in Section II. We introduce incentive compatibility
and individual rationality as constraints in the primary spec-
trum owner’s optimization problem. In Section III, we char-
acterize necessary and sufficient conditions for a mechanism
to satisfy these constraints. We further provide a candidate
solution of the spectrum owner’s problem.

Notation: Set of buyers is denoted by N' = {1,2,--- /N}.
For a vector = (01,0s,...,0y), we use 6_; to refer to
(01,02,...,0;—1,0;11,...,0N). We use the symbol E for
expectation operator. The subscript used with I denotes the
random variables with respect to which the expectation is
taken.

II. PROBLEM FORMULATION

We consider a spectrum market with a seller that owns
W Hz of bandwidth and N potential buyers (buyers). We
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assume a frequency division multiplexing model for spectrum
sharing, that is, the seller can divide the available spectrum
into different sub-bands and allocate them to different buyers.
We assume the spectrum is a perfectly divisible commodity
and the size of sub-band for each buyer is decided by the
seller. We now explain various components of our model in
detail:

1) The buyers: We assume each buyer is a distinct
transmitter-receiver pair that can communicate over a
channel with Gaussian noise. If buyer ¢ receives = Hz
of bandwidth and its channel gain is h;;, then it gets a
rate given as:

h“'P) (1)

R(z) = xlog(l + Noz

We assume that at the time of spectrum transaction,
buyers and the seller only have probabilistic information
about the channel gains. That is, for each buyer ¢, the
channel gain h;; is a random variable with density (or
PMF) g;. The density g; is common knowledge among
the buyers and the seller. Thus, if buyer ¢ receives x Hz
of bandwidth, its expected rate is given as
hi; P
uile) = [ atog (145 Vgihadhis - @)

We assume that the integral in (2) is well-defined for all
0<z<W.

Further, we assume that a buyer’s utility is characterized
by a single real number ;. We call ; buyer i’s fype.
If buyer i has type 6;, its utility from getting = Hz of
bandwidth and paying ¢ amount of money is given as:

ui(‘rat70i) :911/%(33) —t (3)

In other words, a buyer’s utility is linear in the expected
rate and the monetary payment. We can interpret 6; as
buyer i’s “willingness to pay” - it is the maximum price
per unit of expected rate that the buyer is willing to pay.
We assume that 6;, i € N are independent random
variables; We assume that for each buyer 4, 6; is private
information, that is, only buyer ¢ knows the true value
of its type; We assume that §; € ©; := [ §maz]
and the sets ©; are common knowledge. All buyers
other than buyer ¢ and the seller have a prior probabil-
ity density function f;(-) (with the corresponding CDF
being F;(-)) on 6;; we assume that these densities are
common knowledge. We define 0 := (61,65,...,0x) and
© 1= x;L, [0, ).

2) The Seller: We assume that seller knows the distributions
g; of each buyers channel gain and the distributions f;
of each buyer’s type. We assume that the seller’s utility
is the total money he gets from the buyers.

3) The Mechanism: The seller asks each buyer to report his
type. On receiving the reports from all buyers, the seller
uses an allocation rule ¢ = (¢1, g2, -+ ,qn) and payment

function t = (t1,ta, -+ ,tN),
4:0—[0,W] fori=1,2,--- N, )
tl®—>R+ fOrZ:17277N’ (5)

with Zf\; qi(0) < W, where ¢;(0) is the amount of
spectrum given to buyer ¢ and ¢;(6) is the payment
charged to buyer ¢ when the type vector reported is 6.
Once the mechanism (g,¢) has been announced, it in-
duces a Bayesian game among the buyers. Each buyer
observes his own type but has only a probability distri-
bution on other players’ types. A buyer can report any
type (not necessarily its true type) if it expects a higher
utility by mis-reporting.

A. Incentive Compatibility and Individual Rationality

We define the following properties for a mechanism.

1) Incentive Compatibility: A mechanism (g, t) is said to be
incentive compatible if for each 7 € N and 6; € ©;, we
have

Eq_, [0:%:(qi(0)) — t:(0)]
> By, [0ithi(qi(rs,0-4)) — ts(rs,0_5)] ¥V r; €O,

(6)
Incentive compatibility guarantees that truthful reporting
is a Bayesian Nash equilibrium for the game induced
by the mechanism. That is, each buyer prefers truthful
reporting to any other strategy given that all other buyers
are truthful.
2) Individual Rationality: A mechanism (g, t) is said to be
individually rational if for each ¢ € N and 6; € ©;, we
have

Eq_, [0i1i(qi(0)) — ti(8)] > 0. (7

Individual rationality guarantees that at the truthful
Bayesian Nash equilibrium, each buyer has a utility
no less than that obtained by not participating in the
spectrum allocation process at all.

In our search for finding the revenue-maximizing mech-
anism, we will restrict to the class of mechanisms that are
incentive compatible and individual rational. Revelation prin-
ciple for Bayesian mechanism design ([14]) ensures that any
spectrum allocation and payments achieved at an equilibrium
of a Bayesian game of any mechanism can be achieve by an
incentive compatible mechanism. Thus, restricting to incentive
compatible mechanism incurs no loss of revenue. We impose
individual rationality as a natural requirement for a mechanism
that induces players to participate in the mechanism.

B. Revenue Maximization

We have the following problem for the seller

Problem 1: The sellers’s optimization problem is to choose
a feasible mechanism (g, t) that satisfies equations (6) and (7)
and maximizes his expected revenue given as:

Ee{z ti(0)}
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III. ANALYSIS

We start with the following lemma for the function
defined in (2).

Lemma 1: The function (z) is non-decreasing and con-
cave in x.

Proof: See Appendix A ]

A. Characterizing Incentive Compatibility and Individual Ra-
tionality

In this Section, we derive necessary and sufficient conditions
for a mechanism to be incentive compatible and individually
rational. Let (q,t) be any mechanism selected by the seller.
In order to characterize incentive compatibility and individual
rationality for buyer ¢, we will adopt buyer i’s perspective.
Let 6; be the type of buyer i. Buyer ¢ knows his own type.
However, when the seller asks the buyer to report his type, he
may report any type r; between 07" and §%*]. We define
the following functions:

Definition 1: 1) Given a mechanism (g, t), we define for

each r; € 9;,

Qi(r:) :== Eo_, [¢i(qi(ri, 0-:))] ®)

Q;(r;) is the expected rate under the given mechanism
that user ¢ will get if he reports r; while all other users
report truthfully. Note that the expectation is over the type
of all other users 6_;. Similarly, the expected payment
that user ¢ will pay is given as

Tl(rl) = Eg_i [ti (Tia o—i)]a &)

2) Given a mechanism (g, t), we define for each 0;,r; € ©,,
we define

Ui(0i,73) = 0;Qi(r4) (10)

U;(0;,7;) is the expected utility for user ¢ if its type is
0; and it reports ;. Once again, the expectation is over
the type of all other users 6_;.
We can re-write the incentive compatibility and individual
rationality constraints for user 7 in terms of the functions
defined above.
Incentive Compatibility for buyer :

— Tz (Tz)

UZ(GZ,&) > Ui(ﬂi,ri), 91',7’1' S @7',
= 0,Qi(6;) —Ti(0;) > 0;Qi(r;) — Ti(ri), bi,75 € O;
Individual Rationality for buyer ¢:
= 0;Qi(0;) —Ti(0;) > 0, 0; €6;

We can now characterize incentive compatibility and individ-
ual rationality by the following theorem.

Theorem 1: A mechanism (g, t) is incentive compatible and
individually rational if and only if @Q;(r;) is non-decreasing in
r; and

Ti(ri) = K; +riQi(ri) — Qi(s)ds,

min
0 i

(1)

where K; = (T;(0") — 0 Q; (0)) < 0.
Proof: See Appendix B u

B. Seller’s Optimization Problem

The seller’s objective can be written as:

N N
Z E(){tl(o)} = Z Eei [Ee_it(eiv 972)]
i=1 N =1

Further, because of Theorem 1, we can write each term in the
summation in (12) as

Eo, [T3(0:)] = K;

max
0;

+ /
Gznin

The integral in (13) can be written as:

0;

[92'@@'(91') - Qi(S)ds] fi(0:)do;  (13)

min
0 i

gmax mex g,
/9_ oiQi(Qi)fi(ei)in*/ - Qi(s)ds fi(6;)d0;

max
911

A:‘n,iﬂ,

max
6;

/nLin
ei

Using the definition of @;(-) from (8) in (14), we get
= [ outa@n s

[ s 61~ B (o)

:/0 |:¢i(qi(9)) (9—7;()9)” f(6)d6
1-F;(0;)

In the economics literature the term <9¢ = 7160
in the integral in (15) is called virtual type.

Using (12), (13) and (15), we can write the total expected
revenue as:

N
SR
=1

+i [ pton (6= 555 ) | 0 a0

A mechanism (g,t) for which K; = 0, i € N and which
maximizes

i/e {%‘(qvi(@)) (9i - 1]2{912()91)” F(6)d0

= XN:W(%W)) 9i—ii_(ei) f(O)do a7
3 oo (o= 55

max
gi

eiQi(ei)fi(ei)dei_/mm Qi(s)/ fi(0;)d0;ds

0

max
0i

oy
Qi(s)(1 — Fy(s))ds
(14)

0;Q:(0;) fi(0:)dO; — /

min
0 i

min
07;

15)

) appearing
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while satisfying Zi\il q(8) < W as well as the conditions of
Theorem 1 will be a revenue-maximizing, incentive compati-
ble and individually rational mechanism.

C. Regularity Condition and A Candidate Solution

We impose the following assumption on the virtual type

of each buyer which is often called regularity condition.
01 _ lfFi (01)

Assumption: For each buyer i, ( JACH)

) is increasing

in 92‘.
We can now propose a candidate solution for the seller.

Theorem 2: For each 0 € ©, let ¢;(0), i = 1,2,...,
the solution of the following optimization problem:

- {oin (n- 55

N be

arg max
N
subject to D a < W (18)
i=1
and let ¢;(0), i =1,2,..., N be given as:
0;
ti(0) = 0ibi(q:i(0)) — - Yi(qi(s, 0-i))ds 19)

Then, (g, t) is an incentive compatible and individually rational
mechanism that maximizes the seller’s expected revenue.

Proof: By definition, ¢;(0), i = 1,2,..., N achieves
the maximum value of Zfil i (q;(0)) (gi — 1}:?29(1‘9)))] for

each 0. Hence it maximizes the integral in (17).

We will now show that (g, t) satisfies the characterization of
incentive compatibility and individual rationality in Theorem 1
with K; = 0.

= [t (1"2,9 1)]
79/ i (s, 0_3)) f—s(0

_/‘ amm%‘(%’(S,Q_i))dsf_i(g_i)do_i

2)do_;

0;
=0;Qi(ri) — [ Qi(s)ds (20)
gmin
Thus, T;(-) satisfies (11) of Theorem 1 with K; = 0.
We will now show that for each 6_;, ¥;(¢;(0;,6—;)) is non-

decreasing in ;. This, when averaged over 6_;, will imply
monotonicity of @Q;().

Consider any value of 6_;. Let w;(6;) := (9 Nl 2102 )>.

f’L 0 )

By assumption, w;(6;) is increasing in 6;. Let a, b(e O;
with @ < b. Let (z¢,2%,...,2%) and (xl,arg,...,x?\,) be
the solutions for the optimization problem (18) with §; = a
and b respectively. Then, we must have,

Vi@ )wi(a) + 325 ¥ (f)w; (6;)

> () wi(a) + Dt Z/Jj(x?)wj(ﬁj) (2D

Similarly,
Yi(a?)wi(b) + 34 ¥ (x5)w;(05)
> i )wi(b) + 32, ¥i(xf)w;(6;) (22)
Summing (21) and (22) gives
bi(a) (wi(b) —wi(a)) = wi(xf) (wi(b) —wi(a))  (23)
Since, (w;(b) — w;(a)) > 0, (23) implies ;(z?) > v;(z?).
This establishes the monotonicity of ©;(q;(6;,0_;)) in 6;. ®

Theorem 2 thus identifies a mechanism that solves the
seller’s optimization problem. Note that for each 6, finding
the allocated spectrum for each user involves solving the opti-
mization problem in (18). We now show that this optimization
is a convex optimization problem.

Lemma 2: The optimization problem in (18) is a convex-
optimization problem.

Proof: We know from Lemma 1 that ¢;(z;) is a concave
function of z;. However, the objective in the (18) may not
be concave since for some i, 1;(x;) may be weighted by
a negative multiplier w;(6;) = (6; — 1}§9(1§)) If this
multiplier is negative, then the objective function is maximized
by choosing x; = 0 since 9;(0) = 0. Thus, the objective
function in (18) can be replaced by

> vimiwi(0:)

i:w;(60;)>0

This is now a concave function of x;,7 = 1,2,..., N. Hence,
the maximization in (18) is equivalent to a convex optimization
problem. [ ]

D. Interpretation/Discussion of the Mechanism

An omniscient seller who knew buyers’ type could have
charged each buyer the maximum price it was willing to pay.
Thus, given an allocation rule ¢, an omniscient observer could
have obtained a tax amount equal to 6;1;(¢;(6)) from user
7 when the type realization was 6. Our less informed seller,
however, has to provide a subsidy of fomm Vi (qi(s,0-;))ds
to buyer 4, i € A to ensure that buyer 7 reveals its true type.

The tax paid by a user can be more intuitively explained
using the following function:

Zi(y,0-;) == inf{s € ©;]1i(qi(s,0-3)) > y}

Thus, Z;(y,0_;) is the minimum willingness to pay that buyer
1 should report in order to get at least y amount of rate when
other buyers type is §_;. We also define the bandwidth that
buyer 4 will obtain by reporting his type to be " as

g (0-) = qi (07", 0-)

Note that if v;(¢;(s,0_;)) is a one to one function of s, then
for y in the range of this function, Z;(y,0_,;) = s if and only
if 1;(q;(s,0_;)) = y. The tax function for user i is given as:

ti(0) = 0;vi(q:(0)) —

min
ei

0;

¢i(qi(8,9,i))d8 (24)

Figure 1 shows the variation of buyer ¢’s expected rate as a
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} ;

Expected Rate
for buyer i

Buyer i’s type

Fig. 1. Expected rate for buyer ¢ vs. buyer ¢’s type for a fixed 6_;

function of its type for a given 6_;. The tax paid by user @
is equal to the area bounded by vertical lines at 0 and 6; and
horizontal lines at 0 and );(g;(6;,0—;)) minus the area under
the expected rate-type curve. An alternative evaluation of this
area can be obtained by the following expression:

$i(g:(0))
Zi(y,0_;)dy.

(25)

(0) = 07 0-) + [

Yi (g™ (0-4))

Thus, each buyer pays a base amount of 671, (¢ (6_;)).
In addition, for each infinitesimal increment in rate from y to
y + dy, the buyer is charged the minimum price that would

obtain the rate y when other buyers have types 0_;.

E. Computational Aspects

On receiving the types from the buyers, the seller needs to
solve a convex optimization problem to find the optimal allo-
cations according to the mechanism in Theorem 2. Efficient
computational methods are well-known for such computational
problems. The computational bottleneck in the mechanism of
Theorem 2 comes from the tax equation. In order to evaluate
the tax for the buyer ¢, th seller needs to evaluate the integral
f(f;m i (qi(s,0_;))ds. To evaluate the integral, we need to
know the allocation qi(s,0_;) for all 9?”” < s < 6. Thus, the
seller has to solve a series of convex optimization problems. In
practice, the integral may be approximated by a Riemann sum,
so that the seller has to solve a finite number of optimization
problems.

A consequence of approximating the tax function is that the
seller can only guarantee approximate incentive compatibility
and approximate individual rationality. In other words, if the
seller calculates an under-approximation of the tax to within
e of the correct value, it can guarantee that users cannot
increasing their utility by more than e if they misreport their
type or choose not to participate in the spectrum allocation
process.

IV. CONCLUSIONS

We derived a revenue maximizing mechanism for a spec-
trum owner that can divide its spectrum into sub-bands and
lease them to secondary users for a fee. We assumed a fre-
quency division method of spectrum sharing, that is, different
secondary users use different parts of the spectrum and do
not interfere with each other. We derived our results under
the assumptions that users’ types are independent random
variables with densities that are common knowledge among
the users and the seller. We assumed that only user ¢ observes
his type. We also assumed that all buyers and the seller have
probabilistic information about the channel gains.

The linear relationship between a buyer’s utility and the
expected rate it can achieve is a critical assumption of our
analysis. This allowed us to completely characterize a buyer’s
private information by a single parameter ;. The charac-
terization of incentive compatible and individually rational
mechanism obtained in Theorem 1 is is critically dependent
on the uni-dimensionality of each buyer’s private information
as captured by its type 6;. Revenue maximizing mechanisms
with general models of buyers’ utilities and multi-dimensional
private information remain an open problem.

APPENDIX A
PROOF OF LEMMA 1

V(x) = /{log(l-y%)
B %}g(hu)dhm (26)
V'(x) = /[—%
’ %W%)dhw @7)
.. 2
- / [m}g(hn)dhii
< 0 28)

Equation (28) establishes the concavity of ¢(x). Further, by
(26), ¥;(0) = 400 and lim, o, ¥’'(x) = 0. This combined
with the fact that ¢'(z) is a non-increasing function (because
of ¥"(x) < 0), implies that ¢)'(z) > 0, for z > 0. Thus,
¥ (x) is a non-decreasing function of .

APPENDIX B
PROOF OF THEOREM 1

Sufficiency: First assume that (¢,t) is a mechanism for
which Q;(r;) is non-decreasing in r; and equation (11) is
true. We will show that (g,¢) is incentive compatible and
individually rational for buyer . For any ; € ©,, we have

Ui(05,0;) = 0:Q:(6;) — T3(60:)
0;
= Qi(s)ds — K
G;nin

>0,

(29)

(30)
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where we used (11) in (29) and the non-negativity of @); and
of (—K;) in (30). Thus, (g, t) is individually rational for buyer
1. Further,

Ui(05,0;) — Us(0:,74)
0;

= Qi(s)ds — 0;Q(r;) +r;Q(r;)

min
67
T

— Qi(s)ds

min
ai

€1V

Consider the case when r; < 6;. Then, the right hand side of
(31) can be written as

0;
/ © Qu()ds — (0~ r)Q()
>10 (32)

where we used the non-decreasing nature of ; in (32).
Similarly, if r; > 6;, the right hand side of (31) can be written
as

- /9’“ Qi(s)ds + (ri — 0;)Q(r4)

=0, (33)

which again follows from the non-decreasing nature of Q).
Thus, we have that

Ui(6;,6;) > U (0;,7;),

for all 0;,r; € ©;, which establishes incentive compatibility
for buyer 1.

Necessity: Let (g, t) be an incentive compatible and individ-
ually rational mechanism. Let a,b € O, with a < b. Incentive
compatibility implies that:

aQi(a) = Ti(a) > aQ;(b) — T;(b) (34)
and
bQi(b) = T;(b) > bQi(a) — T;(a) 35)
Adding (34) and (35) gives
Qi(b)(b—a) = Qi(a)(b — a) (36)

Since (b — a) > 0, we must have Q;(b) > Q;(a)-which
establishes monotonicity of @;.

We define V;(0;) := U;(0;,0;). That is, V;(6;) is the
expected utility of buyer ¢ with type 6; under truthful reporting.
Because of incentive compatibility, we have

Vi(#) = Ui(6;, 7

(05) = max Ui(0s,7:)
= 0;Qi(ri

max 0;Qi(r:)

ri€0;

- ,‘Ti(ri)7

which implies that V;(6;) is the maximum of a family of
affine functions of 6;. Thus, V;(0;) is a convex function and is
differentiable everywhere except for at most countably many
points.

Consider the following limit
L Vil +8) — Vi()
6—0 1)
> lim Ui (0; +6,0;) — Vi(6;)
§—0 1)
— (0; +0)Qi(0;) — Ti(0;) — 0:;Q4(6;) + T;(6;)
= lim
§—0 1)
=Qi(9)
Similarly, we have
lim Vi(0;) — Vi(0; — 6)
6—0 )
< lim Vi(0;) — Ui (0; —
§—0 1)
Y 0:Qi(0:) — Ti(0:) — (0; — 0)Qi(0;) + Ti(0:)
= 11m
6—0 )

= Qi(6;) (38)

Equations (37) and (38) imply that V/(6;) = Q;(6;). Thus,
for any r; € O,

(37

5,6;)

T4

Vi(ri) = Vi(07""™) + Qi(s)ds
einin
= 1iQi(ri) = Ti(ri) = 07" Qi (07"") — Ti(67"")
+ [ Qi(s)ds (39)
gmin

Rearranging (39) gives
Ti(r:) =(Ti(07"™) — 0" Qs(0;""™))
+7riQi(ri) — Qi(s)ds

min
Gi

(40)

Defining K; = (T;(07") — 0nQ, (), we get (11) of
Theorem 1 from (40). Note that individual rationality at 9{’””
implies that

o7 Qi (07)

which implies that K; < 0.

- T;(67"") > 0,
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