
Tool-Based Performance Evaluation of the
BlackBoard Communication System

Volker Remuss
Technische Universität Berlin

Real-Time System and Robotics
Einsteinufer 17, 10587 Berlin

++49 (30) 314-79336

remuss@cs.tu-berlin.de

Armin Zimmermann
Technische Universität Berlin

Real-Time System and Robotics
Einsteinufer 17, 10587 Berlin

++49 (30) 314-73110

zimmermann@cs.tu-berlin.de

ABSTRACT
This paper presents the integration of an existing real-world, real-
time, ad-hoc communication system code into a discrete event
simulation (DES). This embedded simulation environment can be
used to analyze the communication system’s behavior in regard to
throughput, delay, dynamic network reconfiguration and more.
The system in question is the blackboard communication system
(BBCS). It is a development of the group for real-time systems
and robotics of the Technische Universität Berlin (TUB). It was
used in the European Project COMETS which integrated several
unmanned aerial vehicles (UAVs) in cooperative fleet and is still
used in several mobile systems within European robotics groups.
The DES framework of choice is OMNeT++. This paper shows
how the integration of the existing BBCS code into OMNeT++ is
done and how it can be used to validate the BBCS. The
underlying simulation model and the specific integration solutions
are pointed out. The paper presents furthermore a multi UAV
scenario that was analyzed in regard to the delay distribution and
reliability in a dynamic reconfigured wireless network.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Distributed
Networks, I.6.5 [Model Development]: Modeling methodologies.

General Terms
Algorithms, Performance, Design, Reliability, Experimentation.

Keywords
Communication system, Simulation testbed, ad-hoc networking,
embedded system, real-time system

1. INTRODUCTION
The communication between mobile systems such as robots and
their base stations, but also between different subsystems of a
single machine is an important part. Often, it is not treated as
such. Especially in academic environments it is not uncommon to
use very basic communication means while starting with a new
system and then cope with emerging difficulties and oddities
while the system grows. To overcome this, the blackboard
communication system (BBCS) was developed at the real-time
systems and robotics group at the TUB.

Development started in 1999 during the project MARVIN (multi-
purpose aerial robot vehicle with intelligent navigation) [8] as a
specific solution to the demands of a system that has to
communicate internally between embedded devices and
externally with and between usual workstation. The development
continued during the European project COMETS where the
BBCS was used for a fleet of heterogeneous UAVs and a network
of ground station computers [5].

The system incorporates a set of functionalities that suits
especially robotic environments. It is designed as reliable and
robust communication system typically used to transmit
telemetry, sensor data, video streams and commands that are
usually produced just-in-time.

The BBCS is designed as distributed system namely as multi-hop
ad-hoc network with automatic routing [10]. It contains a real-
time aware protocol and bandwidth management to distribute data
within the network. It features flow control, out-of-order
reception, lost package, and error detection. In regards to the OSI
layers the BBCS implements 6 to 2 [12]. Virtually every byte
transmitting link can be used as connection between two nodes.

Since long range wireless data links are slow, link aggregation can
be used to combine several links transparently to a single logical
connection with higher bandwidth. A link failure is detected either
by transmission timeouts or by means of the underlying link if
available. A connection only fails if all of its links have failed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Due to its number of features the BBCS has also a number of
parameters that can be used to optimize the system for different
scenarios. For this purpose and to be able to validate the BBCS’
real code the decision was taken to integrate the code into an
artificial environment like a simulator.

Valuetools '07, October 23-25, 2007, Nantes, France.
Copyright 2007 ICST 978-963-9799-00-4

2. The BBCS
In the following section the BBCS design will be presented at the
level needed to understand the later simulation system.

2.1 Network Organization of the BBCS
As usual in a communication network there are data sources and
data sinks. A network node is a data-accessing entity that
produces data, consumes data or both. A network is built of a
number of network nodes that are communicating via a number of
data transmitting connections.

The name blackboard communication system stems from a
distributed shared memory (DSM) approach (see Figure 1).
Nodes are accessing this DSM called blackboard by using read
and write operations on dedicated data-sets called slots or directly
by mapping slots in their memory space. The communication is
all about slots. They are the only addressable entities. Slots are
addressed with a numeric identifier, have a fixed maximum size
and are treated as atomic data by the BBCS. There are basically
two types of slots. Secure slots are used to transmit series of data
that is expected to be received completely. A typical example
would be a progressive transfer of an image, which is sent while
being produced. Insecure slots contain atomic data, where newer
will always overwrite older data. A typical example would be a
sensor measurement in a real-time system, where newer data
should never be delayed in favor of unsent expired data.

Figure 1: Blackboard as distributed shared memory

The BBCS takes care of the DSM’s coherency throughout the
entire (reachable) network, which is organized as a multi-hop ad-
hoc network using virtually any kind of data link as connections
between adjacent nodes. The system is fully distributed and free
of any central entity. There is only one type of node.

A node is a process running on an operating system or as part of
the single-task system in a small embedded system such as a
microcontroller. It becomes a producer for a slot by writing to it
and a consumer by reading it. The BBCS surveys in a distributed
manner that there is only one producer to each slot. It is the idea
to assign a slot to each specific purpose such as an individual
sensor output. Therefore the producers are usually not changing
during system operation. The design is somewhat similar to a
fusion of the topic-based publish/subscriber-approach and shared
spaces, but beside some other differences the BBCS has no
central entity like a broker [4].

The network is organized as multi-hop ad-hoc network using
distance vector routing [10][9]. Request for data as well as the
data itself is sent from hop to hop. Each node can store and
forward data. Every node is aware if there is a producer for a
specific slot and if so, how the costs are to get it. The cost metric
is usually given by the number of hops. If a source starts to
produce data for a slot, it informs all its adjacent nodes that this
specific slot is available at zero cost. These nodes then tell their
adjacent nodes that the slot is available at one hop’s cost and so
on. Information about the availability will thus distribute through
the network. Any data sink requests the data to be sent by its
adjacent node with the lowest cost for this slot which then does
the same. The path to the source is established with minimal
overhead. Since there is no central entity, there must be a common
knowledge about the identifiers and contents of slots in the
network. It is important to note that the routing is done slot-wise
and every slot has its own decentralized routing trees. The system
generates one tree for every pair of source and sink for every slot.

The BBCS uses the message replication while routing (MRWR)
approach for multicasting [2]. Even if there are several data sinks
for a single data source in a network, data will only be transmitted
once between hops as long as the routing trees are matching. Data
multiplication for n data sinks will always occur in the node that
is closest to the sink and present in each of the n routing trees. As
a result, the same data is only transferred once on a single channel
which is a necessity for the BBCS’s bandwidth management
approach.

Node C

Node B Node D

Node A

Blackboard

The BBCS requires the assignment of a minimum bandwidth
individual to each slot and a bandwidth to each data channel that
is never exceeded and shall be guaranteed by the underlying
hardware. Using these parameters as input, the system is able to
guarantee a maximum delay for each slot and path.

The combination of user-mapped memory and bandwidth
assignment is a key feature of the BBCS. It allows a user to setup
a data transmission only once with an adequate bandwidth and the
BBCS will automatically transmit the data with the maximum
update rate that matches the bandwidth. This is a valuable feature
for any real measurement like sensors data, trajectory telemetry or
even series of pictures taken by a camera because usually the
available bandwidth is the limiting factor.

2.2 Data Transmission
The connection between two adjacent nodes of the BBCS is
organized hierarchically. The logical connection to another node
is a bidirectional port. A port consists of at least one bidirectional
channel. A channel consists of exactly one bidirectional or two
unidirectional physical links. A physical link is some kind of byte-
transmitting link. A port can contain virtually any number of
channels to aggregate their bandwidth and become more robust.
All links associated with a port have to connect the same node.
Figure 2 depicts a pair of nodes connected by two channels with
different bandwidths and a port with the combined bandwidth.

Figure 2: Channel aggregation

Data transmission over each port is done in stripes. Stripes are
atomic data packages of a fixed maximum size. The maximum
stripe size will typically range from 64 to 512 bytes and is a
global parameter. Stripes are invisible to the user.

Error detection codes are used to assure the integrity of stripes. A
sequence-numbering scheme is used to identify stripes and permit
the reordering after out-of-order reception of stripes. Slot data is
segmented into stripes which are multiplexed in byte stream(s) to
be sent over a port’s channel(s). The multiplexing uses a stripe-
scheduling algorithm that takes into account the bandwidth
fraction attached to every slot. The BBCS uses a very efficient
binary-tree approach to calculate the schedule [7], which is
beyond the scope of this document. The schedule only changes in
case of a rerouting event and is then newly calculated just before
it restarts.

In regards to the OSI layers [12], the BBCS implements 6 to 2.
Nevertheless, during system design it became clear that it is a
more practical approach in many cases to overlay the BBCS on a
higher layer level to use existing infrastructure. The decision was
taken to implement the BBCS also on top of existing layers such
as the transportation layer.

2.3 The Platform Abstraction Layer
The adaptation between the BBCS and the underlying link uses a
platform abstraction layer (PAL). There are PALs for different
hard- and software architectures as well as link types. It is fully
transparent for the user. A network node can have channels using
different link types, thus allowing to bridge transparently between
incompatible types of hardware.

Since the BBCS is running in user mode and is not integrated into
operating systems, the communication core has to be executed
periodically by the node’s user code. This has to be done by
calling a synchronization operation (sync-op). During this sync-
op, the BBCS updates all received data in the node’s DSM and
sends the correct amount of new data according to the schedule
and the assigned bandwidth using the PAL to access the
underlying system. The platform has to have enough buffers in
soft- or hardware to take in all data that is sent during the sync-op
and received between two sync-ops. Therefore, the maximum
feasible time between to sync-ops depends on these buffers’ sizes
and the assigned bandwidth.
In real systems, the sync-op is usually called with a fixed period
of several milliseconds. The node’s user code can randomly
access slots at any time between two sync-ops, since the data is
only changed during a synchronization. The synchronization
operation and therefore the PAL have to be non-blocking.
The PAL implements functions for memory allocation, global
time and read/write access.

2.4 BBCS in Current Systems
In current systems like the MARVIN UAV, the BBCS is used on
bare serial wired and wireless RS232 links where it incorporates
OSI layer 6 to 2 as well as over wired and wireless UDP and TCP
connections where it resembles OSI layers 6 to 4. The benefit of
using existing layers 3 to 1 is the opportunity to use all standard
hardware and the possibility to test the communication even over
long-distance internet links.

The BBCS has already been used in larger systems with multiple
UAVs. A typical setup is shown in Figure 3. The BBCS would
also be beneficial in the area of small sensor networks and smart
dust.

2.5 BBCS in a Simulated Environment
During the use of the BBCS, the idea of having a simulation
environment to test and validate rerouting capabilities, bandwidth
observance and delays got tempting. These tests could be easier
and with more accuracy executed in a simulation environment
(SE). Since it was desired to test for real systems and to benefit
directly from the results, the decision was taken to integrate the
existing code into the SE instead of modeling on a more abstract
layer. This SE needs to simulate at the underlying physical layer.
The minimal simulation environment would provide links of
variable attributes, a simulated time and means to establish
multiple nodes and networks. Primarily, it had to be able to
exchange real data. Therefore, Petri-net based TUB’s TimeNet
tool [4] or queuing network tools could not be used.

Figure 3: Typical network setup in an aerial robotic scenario

Since the BBCS at the lowest level transmits stripes and uses the
store-and-forward principle, sending and reception of a stripe or
several stripes can be modeled as an event without any restriction
to the simulation possibilities. Therefore a discrete event network
simulation is a matching simulator type as long as a simulated
message can carry any real data as payload. OMNeT++ fulfils the
specification. Moreover, integration of real code had been done
for other applications before [3].

3. INTEGRATION OF BBCS IN OMNeT++
In the following, a brief overview of the relevant features of
OMNeT++ is given and explained how the integration of the
BBCS into the OMNeT++ simulation has been conducted.

3.1 The OMNeT++ DES
OMNeT++ is the acronym of object-oriented modular discrete
event network simulator [11]. OMNeT++ is a DES especially
designed for simulation of networks. It is written in C++,
available for Unix and Windows and it comes with a runtime
graphical user interface if wished. It is free for academic and non-
profit use and an open-source project.
Its basic feature is the setup of hierarchical modules connected by
unidirectional gates. Messages are sent from gates to gates.
Modules can implement any kind of behavior that consumes and
produces messages. Modules are implemented as classes. Hence
they can be instantiated to create networks. Links between gates
can have an error rate, data rate and fixed delay. Messages are
sent and received between modules via gates. All message
transfers are administered in a global event list and have an arrival
time on which the receiving module is invoked to handle the
message. Any module-internal timers have also to be handled by
messages. Messages can be freely extended to carry any
additional user data by means of a configuration file.

Figure 4: OMNeT++ Simulation Environment

Since OMNeT++ is using the features of C++ to generate
simulation entities, the behavior of the modeled system has to be
programmed in C++ as well and needs to be linked with the
simulation kernel. The simulation is running as a single process in
a single context. OMNeT++ adds flexibility to programming
modules by having a network description language (NED) that is
interpreted during the start of the simulation. NED can be used to
setup a network for testing. It allows to instantiate modules and
connects gates with specified attributes without the need to
recompile.
Beside this, OMNeT++ offers random number generators and
tools for data logging and statistical analysis. For severe statistical
evaluation and parallel simulation execution it can be combined
with Akaroa [6].

3.2 Real BBCS Code Integration
The existing BBCS code is written in plain C and, as stated
before, uses a distributed shared memory approach. In a real
network, every node of the BBCS network has a private copy of
the DSM to work on. Since in OMNeT++ the simulation is
running in a single process, the BBCS could not be integrated as
plain C code, since then only one DSM area would exist in the
simulation code. This could only be solved cleanly by converting

the complete BBCS into a C++ class that can safely be
instantiated by every network node module in the simulation. The
DSM, all global variables and BBCS functions had to be part of
that class.
Since the simulation was designed to test the real-world code in
the first place it was also necessary to find a solution that could be
integrated in the existing source tree without loosing
compatibility with plain C. This goal was achieved by using some
encapsulation code and preprocessor macros.
On the other side, the BBCS needed to interface OMNeT++
functionality. For this purpose the platform abstraction layer is
used.
In Figure 4 a simple example for a simulation with two single
port, single channel nodes is shown. The BBCS code is
encapsulated in an OMNeT++ module and a special version of the
PAL is used to send and receive messages via gates.

3.3 Adaptation to OMNeT++
A dedicated PAL was developed to interface the OMNeT++ API.
To let the BBCS work, real data transfer is needed. Since the
default OMNeT++ message cannot carry payload, a message
extension had to be defined. Instead of encapsulating exactly one
stripe in each message, the decision was taken to encapsulate the
byte stream in messages of variable but restricted length. Larger
messages led to fewer events at the same throughput which results
in a simulation speed-up. Additionally, it can be used as simple
link model. A message size of 1 byte would resemble a basic
serial link, while using the upper bound of 1500 bytes would be
similar to the usual maximum transmission unit (MTU) in
Ethernet systems [1]. By using the link error rate model of
OMNeT++, which marks messages as being broken only or by
using time-outs, messages can be corrupted or dropped in the PAL
to simulated erroneous connections. A BBCS channel has to be
bidirectional and is set-up by using a pair of OMNeT++’s
unidirectional gates.
OMNeT++ has two mutually exclusive ways to implement user
code reactions to simulated events: Either by calling a handle
method for every message received or by having the simulation
code poll a read method. In the latter case, queuing of incoming
events is supported. The design of the BBCS with the periodically
called sync-op would match the second variant. However, since
the first approach is superior in speed, the handle-implementation
was chosen. Because BBCS’ sync-op is designed to be called
regularly and to pull all data from the link received since the last
call, it was necessary to implement a reception queue in the
simulation code. The BBCS is accessing the queue through the
PAL. A benefit of this design is the possibility to instrument the
queue or restrict its size.
Sending of messages is done directly to the OMNeT++ simulation
kernel where all simulation events are queued.
To test the routing functionality it is necessary to simulate
breaking up of links between nodes. Since such dynamic network
capabilities of OMNeT++ are very limited, this has also been
integrated in the PAL.
A problem when simulating a distributed network in a single
simulation environment is the globally synchronized time. A fully
synchronized net is too deterministic and covers only a subset of
all possible states. In the BBCS simulation this is solved by

invoking the sync-op operation with a random jitter or by using
individual periods for each node.

3.4 Measurement and Evaluation Possibilities
In the simulation environment as described, two different kinds of
observations are currently measured.
Transmission delays between pairs of nodes can be exactly
measured since unlike in real a network, a global reference time is
available. Since the BBCS itself is in the focus of attention, the
delay times are preferably measured at the user side. For a
realistic examination the BBCS itself can be used to transmit time
stamp data. Measurements of the underlying OMNeT++ message
transfer times are of no significance here.
Data throughput is interesting at two different levels. Firstly, the
throughput for user data can be measured at the user side of the
BBCS for real data transmissions. Secondly, the throughput that
the BBCS generates and sends through the underlying link may
be of interest. By doing so it is possible to inspect if the BBCS is
acting as designed and fulfills the user’s bandwidth request
without exceeding the specified bandwidth capability of the
underlying link.
These measurements can be taken on every network node and are
sufficient to analyze the BBCS’ performance in regard to routing
capabilities, load scenarios and overall data transmission
performance.

4. SIMULATION
In the following, simulation results for a dynamic network setup
will be presented. The scenario was chosen because the authors
have experience with real-life setups of this kind and the goal was
to verify the correct function of the simulation and test BBCS’
dynamic routing capabilities.

Figure 5: Initial UAV Scenario

4.1 Simulation Scenario
The simulated network as shown in Figure 5 resembles a typical
UAV setup and is a slightly reduced version of the system shown
in Figure 3. A ground system controls two UAVs using three

computers. There is the base station Base for mission control and
the laptops Radio1 and Radio2 that can be used for additional
mission-specific tasks. They are also equipped with some radio
links to the UAVs. The ground segment is fully connected using
some wired network.
Each UAV can communicate with its ground station and with the
other UAV, whichever is in reach.

Figure 6: Scenario after 180 s of flight

The scenario simulated starts as shown in Figure 5 that displays
the network as it is presented in the OMNeT++ simulator GUI.
UAV2 has a connection to Radio2 but not to UAV1. UAV2 then
recedes from Radio1 and approaches UAV2. At 90 seconds
simulated time, the connection to UAV2 is established and at 180
seconds the connection to Radio2 is lost as shown in Figure 6.
The radio link will give no feedback about the connection
situation. All links have the same cost and the same bandwidth of
1 MByte/s.
The data flow between UAV2 and Base is analyzed.

4.2 BBCS Behavior
The BBCS is designed to use the least expensive path between
two nodes, which in the given scenario is the shortest path. The
BBCS is also expected to reconfigure the route according to
changes in the network structure. The shortest path between
UAV2 and Base at the beginning of the scenario is two hops long.
Data travels from UAV2 to Base using Radio2 as intermediate
hop. At 90 seconds a new connection is established, UAV2 and
UAV1 are starting to communicate. Since the newly available
path for the data flow of interest is longer than the one in use, the
observed transmission is not influenced. At 180 seconds the initial
path breaks down and the BBCS has to reconfigure. A timeout
feature is used to detect breakdown of links.

4.3 Simulation Setup and Measurements
During the above scenario, the synchronization interval of the
BBCS was set to 10 ms plus a uniformly distributed jitter of +/-2
ms. The simulation environment was used to simulate
establishment and destruction of communication lines. The BBCS

has to sense the lost connectivity by detecting line inactivity using
a timeout of 200 ms.
User data transferred from every node to every node were
timestamps using an insecure slot (see section 2.1). This allows
measurement of user data delay times and update rates for every
possible communication path in the graph.
In Figure 7, a histogram of delay times measured in milliseconds
is depicted. It presents the times for the path from UAV2 to Base
during the first part of the experiment with the link between
UAV2 and Radio2 still being intact.

Figure 7: Delay of user data from UAV2 to Base 0-180 s

The path has a length of 2 hops. Since the data (timestamp) is
small enough to be sent in a single stripe and the chosen
bandwidth permits to send at least one timestamp per sync-op it is
clear that the timestamp will be received with a maximum delay
of 2 maximum sync-op cycle times once sent. This equals 24 ms
plus some time for data transmission. The minimum delay
measured is very close to 0 ms. This happens when all
participating nodes are called in the optimal order and with low
delay. All measured data lies in this boundary. The distribution is
the result of the sync-op jitter and therefore the randomized order
of invocations of the BBCS code in the three hops. The average
delay in this particular experiment was 9.8 ms.

Figure 8: Time between updates of user data 0-180 s

Another interesting timing is the update rate of user data. This is
measured as the time difference between two received time

stamps. The histogram in Figure 8 shows the measurement at
node Base. In most cases the update rate is similar to the sync-op
period, meaning that in every cycle an update is received. In some
cases, the update interval is about twice the sync-op period. In
these cases there was no update available during a sync-op period
and during the next period a newer time stamp was already
available. This can happen because of the desynchronized
operation of the individual nodes. In some cases the timing is such
that a newer time stamp can catch up with an older time stamp.
Newer time stamps will replace older ones because this scenario
uses insecure slots which allow exactly this behavior to favor
newer data. 16.3% of time stamps have been updated before their
reception.

Figure 9: Delay of user data from UAV2 to Base 180-360 s

In the second part of the experiment the link between Radio2 and
UAV2 breaks down after the first 180 seconds and a rerouting
occurs. The new path has a length of three hops using UAV1 as
relay station to UAV2. In Figure 9 again the delay time and Figure
10 the time between updates is depicted.

Figure 10: Time between updates of user data 180-360 s

It can bee seen that the delay time is longer due to the longer path
and is still bound by the theoretical maximum of about 36 ms.
The average delay for this part of the experiment is 15 ms. Figure
10 shows that the amount of messages that are being updated
before reception at the base station has increased slightly to
23.5%.

Another interesting observation is the time needed by the BBCS
to reconfigure the network. Figure 11 plots Base’s time stamps as
they are received in UAV2. At 180 second, that is when the
existing connection between UAV2 and Radio2 vanishes, the
update of Base’s time stamps stops. It takes the system 200 ms to
detect the link failure, because this is the chosen timeout
parameter. 29 ms later the system has reconfigured and time
stamp updates are resumed. Hence, the reconfiguration took only
the time of 2 sync-ops, which is a good result.

Figure 11: Rerouting Time for path UAV2 and Base

The fast reconfiguration is due to the BBCS’ design. UAV2
already consumed the data from Base when it got UAV2’s request
for forwarding it. Therefore, the data could be made available
during a single sync-op. The data origin Base is not involved in
this reconfiguration process.

4.4 Simulation Conclusion
These first test results are quite promising. The original code has
been integrated successfully and the chosen simulation model has
already turned out to be a useful tool for the analysis of the
BBCS. It is possible to analyze network scenarios in dynamic
topologies. Measurement of reconfiguration and delay times is a
profitable result.
The simulation in the current version can already be used to test
scenarios without the need to set up a real network. It helps to
make decision about useful real setups and their parameters. The
fully implemented BBCS could also be used to test application
code on a simulated network.
During the described simulation experiment, 397.000 OMNeT++
messages have produced and consumed. On a basic workstation
(AMD Athlon64 x2 2.2 GHz, 2 GB RAM) the presented scenario
was executed at about 27 times the original speed including
intensive logging. The current simulation has no multi-processor
support.

5. SUMMARY
In this paper, the integration of an existing communication system
into a discrete-event simulator was presented. After a short
introduction of the blackboard communication system and the
simulator OMNeT++ it was explained what was needed to adapt
the code to be able to simulate multi-node and -hop networks and
how the underlying network and its dynamic reconfiguration was
modeled.

The integrated simulation tool was then used to evaluate the
behavior of the communication system. A real-life simulation
scenario was chosen that resembles an existing aerial robotic
system well known to the authors. The scenario includes a
dynamic change in the network topology and was analyzed in
regard to its timing performance.
The results show that the simulation is working properly and is
already a useful tool to evaluate the behavior of the
communication system. It is planned to be used to test future
extensions of BBCS and application scenarios.

6. OUTLOOK
From the engineering point of view, the BBCS simulation will be
used to design and analyze network setups for upcoming robotic
systems. The simulation will also be used to analyze – and if
necessary – to improve the behavior of the BBCS during different
load conditions, larger networks, isochronous transfers and
multimedia traffic. It is also possible to test the performance on all
underlying layers that are available for OMNeT++.
The main point of interest is the robustness of the system.

7. REFERENCES
[1] The Ethernet: a local area network: data link layer and

physical layer specifications. SIGCOMM Computer
Communication Review 11, USA, 1981, 20-66

[2] Bhattacharya, S., Elsesser, G., Tsai, W., and Du, D. 1994.
Multicasting in generalized multistage interconnection
networks. J. Parallel Distrib. Comput. 22, 1 (Jul. 1994), P.
80-95

[3] Bless R., Doll M., Integration of the freebsd TCP/IP-stack
into the discrete event simulator OMNET++ Simulation
Conference, 2004. Proceedings of the 2004 Winter Volume 2,
2004, P. 1556 - 1561

[4] Eugster, P. T., Felber, P. A., Guerraoui, R., and Kermarrec,
A., The many faces of publish/subscribe. ACM Computing
Surveys 35, 2 (Jun. 2003), P. 114-131

[5] Ollero, A. et al. Multiple eyes in the skies: architecture and
perception issues in the COMETS unmanned air vehicles
project, Robotics & Automation Magazine, IEEE Volume 12,
Issue 2, June 2005, P 46 – 57

[6] Pawlikowski, K., Yau, V. W. C., and McNickle, D.,
Distributed stochastic discrete-event simulation in parallel
time streams, Proceedings of the 1994 Winter Simulation
Conference; 1994, P. 723-730

[7] Remuss, V., Musial, M., Communication System for
Cooperative Mobile Robots using Ad-hoc Networks, IFAC
Symposium on Intelligent Autonomous Vehicles, Portugal,
2004

[8] Remuss, V., MARVIN mark II, pdv.cs.tu-
berlin.de/MARVIN/index.html, Germany, 2005

[9] Tanenbaum, A. S., Computer Networks, 3rd ed., Prentice
Hall, Upper Saddle River, New Jersey, 1996, P. 355-358,

[10] Tutsch, D., Performance Analysis of Network Architectures,
Springer 2006, Germany, P. 55

[11] Varga, A., OMNeT++ Community Site, www.omnetpp.org,
2007

[12] Zimmermann, A., Knoke, M., Huck, A., Hommel, G.,
Towards Version 4.0 of TimeNET. Proc.13th Conf. on
Measurement, Modeling, and Evaluation of Computer and
Communication Systems, 2006, P. 477 – 480.

[13] Zimmermann, H., OSI Reference Model — The ISO Model of
Architecture for Open Systems, IEEE Transactions on
Communications, vol. 28, no. 4, April 1980, P. 425 – 434

	1. INTRODUCTION
	2. The BBCS
	2.1 Network Organization of the BBCS
	2.2 Data Transmission
	2.3 The Platform Abstraction Layer
	2.4 BBCS in Current Systems
	2.5 BBCS in a Simulated Environment

	3. INTEGRATION OF BBCS IN OMNeT++
	3.1 The OMNeT++ DES
	3.2 Real BBCS Code Integration
	3.3 Adaptation to OMNeT++
	3.4 Measurement and Evaluation Possibilities

	4. SIMULATION
	4.1 Simulation Scenario
	4.2 BBCS Behavior
	4.3 Simulation Setup and Measurements
	4.4 Simulation Conclusion

	5. SUMMARY
	6. OUTLOOK
	7. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 8418.897]
>> setpagedevice

