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ABSTRACT
This paper proposes a new numerically stable method for
evaluating the first K moments (K ≥ 1) of the interval
availability for repairable systems. Its time complexity is
O(|S|KdNmax), where |S| is the cardinality of the Markov
model state space; d is the average degree of connectivity of
the Markov chain states; and Nmax represents the number os
transition of the Markov chain in [0, t]). This time comple-
xity is O(L|S|) times faster than the best existing method,
without extra memory requirements, where L is the num-
ber of different time intervals for which the moments are
evaluated.

Keywords
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1. INTRODUCTION
Systems that can recover from failure during their utiliza-

tion period are known as repairable systems. Thus, during
the utilization period [0, t] a repairable system alternates
between situations in which it is in operational state (i.e.
a situation considered to be satisfactory according to user-
defined criteria) and others in which it is non-operational
state (that is, in a failed state).

One of performance metrics which most impact the qua-
lity of the service offered by repairable systems is O(t), the
stochastic process corresponding to the accumulated opera-
tional time of the system during the utilization period [0, t].
An equivalent metric to O(t) is the interval availability A(t),
defined by O(t)/t, that is, the amount of time the system is
in operational condition per time unit.

One method to characterize a stochastic process is by eva-
luating its moments, see for example [1], [6]. Therefore,
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several previous works aiming to evaluate the interval avai-
lability of repairable systems have focused on the evaluation
of the first K moments of O(t) (or A(t)) ([2], [3], [4], [5],
[6]). The asymptotic costs (complexity) of the methods pro-
posed to date [[2], [3], [4], [5], [6]] are summarized in Table 1.

In Table 1, S is the state space of the Markov chain that
models the system under analysis; T is the set of transitions
between states; |S| and |T | are the cardinality of S and T ,
respectively; d is the average degree of connectivity of the
Markov chain states (1 ≤ d ≤ |S|); Nmax is the maximum
number of transitions made by the Markov chain in [0, t] and
K is the number of the highest-order moment evaluated.

The method proposed in [2] aimed to find the distribu-
tion of O(t), including the calculation of its first moment.
The factor C′(1 ≤ C′ ≤ Nmax) in the temporal complexity
(Table 1) is evaluated taking into account the probability
of the paths traveled by the stochastic process. No method
is proposed to evaluate higher order moments of O(t). In
[3],[5], the kth moment of R(t), the total cumulative reward
of a Markov chain, is calculated using a numerical convo-
lution technique. O(t) is evaluated as the special case of
R(t) in which the rewards associated with the chain states
must be either 0 or 1. In [5] a symbolic expression for the
first Kth moments of RTA(t) was also given. In [4], the
distribution and first moment of O(t) were evaluated using
the uniformization method (first employed in [2]). The algo-
rithm proposed in [4] improves on the efficiency of the other
methods [2], [3], [5] for the cases where the Markov chain
enters into a stationary state within the [0, t] time interval.
The parameter H in the time cost of this method is the ite-
ration in which the stationary state is reached. Finally, in
[6], the kth, 1 ≤ k ≤ K, moment of R(t) was calculated by
using the Laplace transform after randomizating the Mar-
kov chain. This is the most efficient method to date.

In this paper a new numerically stable method for eva-
luating the first K moments of O(t) is proposed, where K
is an arbitrary natural number. The proposed method is
O(L|S|) times faster than the best existing method, without
extra memory requirements, where L is the number of time
intervals for which the moments are evaluated. This gain
in processing speed is specially significant in large Markov
models, where |S| can exceed 106 states. In this case, the
method proposed in this paper is about six orders of mag-
nitude faster than the one of [6].



Table 1: Complexity of methods for evaluating the

first k moments of O(t), 1 ≤ k ≤ K

Method Measure evaluated Time cost Spatial cost

De Souza e Silva and Gail [2] E(O1(t)) O(|S|C′(Nmax − C′)) O(|S|Nmax)

Iyer, Donatiello and Heidelberger [3] E(Ok(t)) O(|S|4 · K2) O(|T | + |S|K)

Sericola [4] E(O1(t)) O(|T | · min(H,Nmax)) O(|T |)

Telek and Rácz [6] E(Ok(t)) O(|T | · |S|KNmax) O(|T | + |S|K))

Method proposed in this paper E(Ok(t)) O(|T |KNmax) O(|T | + |S|K))

The remainder of this paper is organized as follows: Sec-
tion 2 describes the system’s model and derives the met-
hod for evaluating the first K moments of operational time
E[Ok(t)] and E[Ak(t)], 1 ≤ k ≤ K; Section 3 illustrates
the method feasibility throughout a numerical example; and
finally, Section 4 concludes the paper.

2. EVALUATION OF THE KTH MOMENT OF
THE OPERATIONAL TIME

Consider a repairable system whose behavior may be mo-
deled by a continuous time Markov chain {X(t), t ≥ 0}
with a finite state space S and a transition rate matrix
Q. S is divided into two disjoint sets denominated SO and
SF . SO = {si : si is an operational state}, contains all
the states considered by the user to be operational, while
SF = {si : si is a failed state}, contains those considered to
be non-operational (failed states).

Let |S| and |SO| be the cardinality of the sets S and SO,
respectively (|S| > |SO|) and let I(c) be an indicator func-
tion defined as follows:

I(c) =



1, if condition c is true
0, otherwise

Let:

• a(τ ) be the point availability of the system evaluated
at time instant τ . That is:

a(τ ) = I(X(τ ) ∈ SO) (1)

• O(t) be the cumulative operational time of the system
during the observation period [0,t], defined by:

O(t) =

Z t

0

a(τ )dτ (2)

Note that (2) implies that 0 ≤ O(t) ≤ t.

• A(t) be the interval availability of the system evaluated
in the interval [0, t]. A(t) is defined as

A(t) =
O(t)

t
, t > 0 (3)

• E[Ok(t)], E[Ak(t)]; k ≥ 1, be the kth moment of O(t)
and A(t), respectively.

To evaluate E[Ok(t)], we begin in similar fashion to the
procedure used in [2],[4], and [6], among others. First, the
uniformization technique is applied to matrix Q, thus ob-
taining the transition matrix P and a Poisson process N(t)
whose parameter is Λt, where Λ is the uniformization rate
of Q. We then condition on n, the number of transitions
made by the Poisson process N(t) in [0,t] and apply the
total probabilities theorem. The same theorem is applied
again, this time conditioning on the sample path ~e(n) =
˙

e(1), e(2), . . . , e(n), e(n+1)

¸

traveled by the uniformized Mar-

kov chain, where e(l) is the lth state the chain visits. This
procedure allow us to conclude that:

E[Ok(t)] =

∞
X

n=0

e−Λt (Λt)n

n!

X

∀~e(n)

P (~e(n))E

»

Ok(t)|~e(n)

–

(4)

where P (~e(n)) is the probability that the Markov chain tran-
sit the sample path ~e(n).

Now consider Figure 1. The top graph exemplifies a pos-
sible sample path ~e(n) followed by the uniformized Markov
chain, given that N(t) = n. On the other hand, the bottom
graph shows the instantaneous availability associated with
that path. To simplify the example it was assumed that
SO = {s0, s1, . . . , s|SO|−1} and
SF = {s|SO|, s|SO|+1, . . . , s|S|−1}.

Note also that the area under the curve of the bottom
graph corresponds to [O(t)/~e(n)]. This illustrates the well-
established result [2]:



[O(t)|~e(n)] =

n+1
X

l=1

Vl(n, t)·I

„

e(l) ∈ SO

«

(5)

where Vl(n, t) = τl − τl−1 and τl (1 ≤ l ≤ n) is the instant
when the uniformized Markov chain makes the lth transi-
tion. To complete the definition of Vl(n, t) for the cases
where l = 1 and l = n + 1, we add the definitions: τ0 = 0
and τn+1 = t.

Figure 1: Upper graph: example of a path ~e(n).
Lower graph: a(τ ) associated to ~e(n)

From now on, the paper describes a new derivation of
E[Ok(t)].
Substituting (5) into (4), we obtain

E[Ok(t)] =

∞
X

n=0

e−Λt (Λt)n

n!

X

∀~e(n)

P (~e(n))

·E

»„n+1
X

l=1

Vl(n, t) · I(e(l)∈SO)

«k–

(6)

To evaluate P (~e(n)) recurrently, we separate the set of
possible sample path according to its last visited state. To

this end we use the fact that
X

∀~e(n)

=
X

∀si∈S

X

∀ ~e(n) |
e(n+1) = si

,

where “|” stands for “such that”, and “~e(n) | e(n+1) = si”
is a sample path traveled by the uniformized Markov chain
that ends in the state si (that is: e(n+1) = si). This equality
allows us to rewrite (6) as:

E[Ok(t)] =

∞
X

n=0

e−Λt (Λt)n

n!

X

∀si∈S

X

∀ ~e(n) |
e(n+1) = si

P (~e(n))

·E

»„n+1
X

l=1

Vl(n, t) · I(e(l)∈SO)

«k–

(7)

Let |~e(n)| be the number of operational states visited by
the path ~e(n) during the interval [0, t], that is:

|~e(n)| =

n+1
X

l=1

I(e(l)∈SO) (8)

Note that for any sample path ~e(n), 0 ≤ |~e(n)| ≤ n + 1.

It is well known that

n+1
X

l=1

Vl(n, t)I(e(l)∈SO) [8] has the

same distribution of the |~e(n)| − th order statistic of n in-
dependent random variables, uniformly distributed over the
interval [0, t]. Let fU(h)(n,t)(τ ) be the probability density

function of the hth order statistic of n (≥ 1) independent
uniform random variables on the interval [0, t]. Exploiting

the fact that fU(h)(n,t)(τ ) = h

 

n

h

!

τh−1(t − τ )n−h

tn
[7] an ap-

plying the definition of the kth moment, we can then write:

E

»„n+1
X

l=1

Vl(n, t) · I(e(l)∈SO)

«k–

= |~e(n)|

 

n

|~e(n)|

!

1

tn

·

Z t

0

τk+|~e(n)|−1(t − τ )n−|~e(n)|dτ

Upon solving the integral we have:

E

»„n+1
X

l=1

Vl(n, t)·I(e(l)∈SO)

«k–

= tk

 

|~e(n)| − 1 + k

|~e(n)| − 1

!

 

n + k

n

! ; n ≥ 1

(9)
Substituting (9) into (8), we then obtain:

E

»

Ok(t)

–

=
∞
X

n=0

e−Λt (Λt)n

n!

X

∀si∈S

X

∀ ~e(n) |
e(n+1) = si

P (~e(n))tk

·

 

|~e(n)| − 1 + k

|~e(n)| − 1

!

 

n + k

n

! (10)

Equation (10) constitutes a new method of evaluating
E[Ok(t)]. This solution displays a desirable feature: each of
its terms has a simple probabilistic interpretation, meaning
that the entire right-hand expression has a simple interpreta-
tion as well. However, it also exhibits a high computational
cost and may have numerical stability problems due to the
binomial coefficients.

To overcome these drawbacks, a new method which allows
the evaluation of the right-hand side of equation (10) in an
efficient and stable manner will be derived in the following.

First, given that E[O(t)] = tE[A(t)] it is also true that

E[Ok(t)] = tkE[Ak(t)] (11)



Equations (10) and (11) imply that:

E[Ak(t)] =
∞
X

n=0

e−Λt (Λt)n

n!

X

∀si∈S

·
X

∀ ~e(n) |
e(n+1)=si

P (~e(n))

 

|~e(n)| − 1 + k

|~e(n)| − 1

!

 

n + k

n

! (12)

Since 0 ≤ E[A(t)] ≤ 1, the kth moment of interval avai-
lability satisfies 0 ≤ E[Ak(t)] ≤ 1. Analogously, because
0 ≤ E[O(t)] ≤ t, the kth moment of cumulative operational
time satisfies 0 ≤ E[Ok(t)] ≤ tk. This implies that from
a numerical point of view it is more convenient to evaluate
equation (12) than (10). In what follows, therefore, we shall
concentrate on the evaluation of E[Ak(t)].

2.1 Evaluation of E[Ak(t)]

We begin defining:

Ak
i (n) =

X

∀ ~e(n) |
e(n+1) = si

P (~e(n))

 

|~e(n)| − 1 + k

|~e(n)| − 1

!

 

n + k

n

! (13)

0 ≤ i ≤ |S|; k ≥ 1; n ≥ 0

The advantage to defining the Ak
i (n) terms is that they

can be evaluated efficiently using a set of recurrent equa-
tions. To accomplish this we first apply the Chapman-
Kolmogorov equation, which gives us

Ak
i (n) =

X

∀sj |
Pj,i 6=0

Pj,i

X

∀~e(n−1)|
e(n)=sj

P (~e(n − 1))

 

|~e(n)| − 1 + k

|~e(n)| − 1

!

 

n + k

n

!

(14)

0 ≤ i ≤ |S|; k ≥ 1; n ≥ 0;

where Pj,i is the probability that the uniformized Mar-
kov chain changes its state in one step from, sj to si, and
~e(n − 1) is obtained from the vector ~e(n) by extracting the
e(n+1) component, in this case si.

To recurrently evaluate the right-hand side of equation
(13) we must express the second summation of (14) in a
convenient form. Taking into account that the path ~e(n)
has n transition associated to it while path ~e(n−1) has only
(n−1), and that if si∈SO then |~e(n)| = |~e(n−1)|+1 whereas
if si ∈ SF , then |~e(n)| = |~e(n− 1)|, we rewrite equation (14)
as follows:

Ak
i (n) = I(si ∈ SF )

X

∀sj |
Pj,i 6=0

Pj,i

X

∀~e(n−1)|
e(n)=sj

P (~e(n − 1))
n

n + k

·

 

|~e(n − 1)| − 1 + k

|~e(n − 1)| − 1

!

 

n − 1 + k

n − 1

!

+I(si ∈ SO)
X

∀sj |
Pj,i 6=0

Pj,i

X

∀~e(n−1)|
e(n)=sj

P (~e(n − 1))

·

2

6

6

6

6

4

n

n + k

 

|~e(n)| − 2 + k

|~e(n)| − 2

!

 

n − 1 + k

n − 1

!

+
k

n + k

 

|~e(n)| − 1 + (k − 1)

|~e(n)| − 1

!

 

n + (k − 1)

n

!

3

7

7

7

7

5

(15)

Equation (15) is in turn rewritten so that the class of terms
defined in equation (13) is easily recognizable:

Ak
i (n) = I(si ∈ SF )

X

∀sj |
Pj,i 6=0

Pj,i
n

n + k

·
X

∀~e(n−1)|
e(n)=sj

P (~e(n − 1))

 

|~e(n − 1)| − 1 + k

|~e(n − 1)| − 1

!

 

n − 1 + k

n − 1

!

+I(si ∈ SO)
X

∀sj |
Pj,i 6=0

Pj,i
n

n + k

·
X

∀~e(n−1)|
e(n)=sj

P (~e(n − 1)

 

|~e(n − 1)| − 2 + k

|~e(n − 1)| − 2

!

 

n − 1 + k

n − 1

!

+I(si ∈ SO)
k

n + k

·

8

>

>

<

>

>

:

X

∀sj |
Pj,i 6=0

Pj,i

X

∀~e(n−1)|
e(n)=sj

P (~e(n − 1))

9

>

>

=

>

>

;

·

 

|~e(n)| − 1 + (k − 1)

|~e(n)| − 1

!

 

n + (k − 1)

n

! (16)

Notice that the second summation in both the first and
second terms of equation (16) equals Ak

j (n−1) (see equation
(13)). Also, the factor between braces in the last term of (16)



is equal to
X

∀~e(n)

P (~e(n)), which implies that the expression

following the open brace of the same term equals Ak−1
i (n).

These equivalencies allow us to reexpress equation (16) in
the following manner:

Ak
i (n) =

X

∀sj∈S

Pj,i



I(si ∈ SF )
n

n + k
Ak

j (n − 1)

+I(si ∈ SO)
n

n + k
Ak

j (n − 1)

ff

+ I(si ∈ SO)
k

n + k
Ak−1

i (n) (17)

0 ≤ i ≤ |S| − 1 ; k ≥ 1 ; 1 ≤ n

Since I(si ∈ SF ) + I(si ∈ SO) = 1, equation (17) can also
be rewritten as

Ak
i (n) = I(si ∈ SO)

k

(n + k)
Ak−1

i (n)

+
n

(n + k)

X

∀sj∈S

Pj,iA
k
j (n − 1) (18)

0 ≤ i ≤ |S| − 1; k ≥ 1; n ≥ 1

Equation (15) allow a recurrent evaluation of the terms
Ak

i (n) as a function of the parameters h and k.
The inicial conditions of the recurrence of equation (18)

are determined by the definition of the recurrence given in
equation (13). Then: A0

i (n) =
P

~e(n)|
e(n+1)=si

P (~e(n)). Which

in turn equals πi(n), the probability that the Markov chain
enters state si immediately after performing the nth transi-
tion. These equivalencies may be summed up in the equa-
tion:

A0
i (n) = πi(n); 0 ≤ i ≤ |S| − 1; n ≥ 0 (19)

where πi(n) is evaluated recurrently using the Chapman-
Kolmogorov equation, so that

πi(n) =
X

∀sj |Pj,i 6=0

Pj,iπj(n − 1); 0 ≤ i, j ≤ |S| − 1; n ≥ 1

(20)

Analogously, it is easy to conclude that:

Ak
i (0) = πi(0)I(si ∈ SO); 0 ≤ i ≤ |S| − 1; k ≥ 1 (21)

Equations (19) and (21) are the initial conditions of the
recurrent equation (18).

Returning to our main problem, which is the evaluation
of E[Ak(t)], we define Ak(n) as:

Ak(n) =
X

∀si∈S

Ak
i (n) (22)

Then substituting (22) into (12), we obtain:

E[Ak(t)] =
∞
X

n=0

e−Λt (Λt)n

n!
Ak(n) (23)

As usual when applying the uniformization technique, in
order to actually evaluate (22) the first summation is limited
to a maximum of Nmax terms, where Nmax is a previously
evaluated number that limits the error to a predetermined
maximum ε(Nmax) [4]. With this modification we arrive at
our final solution, which is:

E[Ak(t)] =

Nmax
X

n=0

e−Λt (Λt)n

n!
Ak(n) + ε(Nmax) (24)

Table 2 brings together the equations comprising the met-
hod just outlined for evaluating the first K moments of the
internal availability and the cumulative operational time.

Table 2: Summary of the proposed method.

Equation (21)
Ak

i (0) = πi(0)I(si ∈ S0);
0 ≤ i ≤ |S| − 1; k ≥ 1

Equation (20)

πi(n) =
X

∀sj |Pj,i 6=0

Pj,iπj(n − 1);

0 ≤ i ≤ |S| − 1; n ≥ 1

Equation (19)

A0
i (n) = πi(n);

0 ≤ i ≤ |S| − 1; n ≥ 0

Equation (18)

Ak
i (n) = I(si ∈ SO)

k

(n + k)
Ak−1

i (n)

+ n
n+k

X

∀sj |
Pj,i 6=0

Pj,iA
k
j (n − 1);

0 ≤ i ≤ |S| − 1; k ≥ 1; n ≥ 1

Equation (22)

Ak(n) =
X

∀si∈S

Ak
i (n)

Equation (24)
For each different value of t compute:

E[Ak(t)] =

Nmax
X

n=0

e−Λt (Λt)n

n!
Ak(n) + ε(Nmax)

Equation (11)

E[Ok(t)] = tk[Ak(t)]

The method summarized in Table 2 possesses certain highly
desirable characteristics, which are:

Probabilistic Interpretation

As shown in equations (9), (10), (11) and (13), the Ak
i (n)

(k ≥ 1) terms correspond to the kth moment of transient
availability for the special case in which the uniformized



Markov chain performs n transitions and the last state visi-
ted is si. Additionaly, as stated in equation (20), A0

i (n) is
equal to πi(n). This means that each term that form part
of the final method to evaluate E[Ak(t)] has its own proba-
bilistic interpretation.

Numerical Stability

As noted in the discussion following equation (12), the kth

moment of interval availability is a value bounded between
0 and 1. Also, since the Ak

i (n) terms are positive values (see
equation (13)) and are components of E[Ak(t)], each of them
is necessarily bounded by 0 and 1 as well. Furthermore, we
observe in equation (18) that they are all obtained by sum-
ming two terms that in turn are the product of two values
bounded by 0 and 1. These characteristics demonstrate that
E[Ak(t)] is obtained solely by summing or multiplying va-
lues bounded between 0 and 1, thereby ruling out numerical
stability problems in the use of the proposed method.

Spatial Cost

For each step in the algorithm (a given value of n), the
main memory cost is the need to store the Ak

i (n) terms,
with 0 ≤ i ≤ |S|− 1 and 0 ≤ k ≤ K, which require O(|S|K)
memory locations. The stochastic matrix P that models the
system must also be stored. Since matrix P is normally a
sparse matrix, the use of sparse matrix techniques ensures
that only O(|S|d) memory locations are needed, where d is
the mean number of states adjacent to a state in P. The
algorithm thus requires O(|S|(d + K)) memory locations in
all. Using the fact that |T | = |S|d, this complexity reduces
to O(|T | + |S|K).

Time Cost

According to (18) the evaluation of each of the Ak
i (n) terms

(0 ≤ i ≤ |S| − 1; 0 ≤ n ≤ Nmax and 0 ≤ k ≤ K) requi-
res |S| multiplication or addition operations. Again, howe-
ver, by resorting to sparse matrix techniques the evalua-
tion of each of these terms will require only d operations.
The foregoing leads us to conclude that the method uses
O(|S|dKNmax) = O(|T |KNmax) multiplication or addition
operations. In addition, it should be noticed that the evalua-
tion of the Ak

i (n) terms does not depend on the length of the
utilization time. Thus, the time complexity of the proposed
method depends only on the value of the longest utilization
time (represented by the value of Nmax) for which [Ak(t)]
is evaluated and not L, the number of different utilization
intervals for which the interval availability is evaluated. The
existing methods instead, need to be executed once for each
of the L different values. As a result, the temporal cost of
all the methods listed in Table 1 must be multiplied by the
factor L.

This fact implies that the proposed method is O(L|S|)
times faster than the best current method ([6]), without any
extra memory requirement.

3. NUMERICAL EXAMPLE
As a way of example, the proposed method was applied

to a multiprocessor system made of C identical processors,
M identical memory units and B identical buses. The mul-
tiprocessor system is in operational state as long as at least
1 processor, 1 memory unit and 1 bus are working. The fai-
lure and reparation rate of each system component (under
non-operational states it is assumed that components do not

fail) are as follows:

Failure rate Reparation rate

Processor µC = 1/2 year−1 λC = 1/20 min−1

Memory unit µM = 1/3 year−1 λM = 1/10 min−1

Bus µB = 1/3 year−1 λB = 1/60 min−1

Model. The duration of the reparation and failure times
are assumed to be governed by an exponential distribution.
Thus, the multiprocessor system can be modelled by a Mar-
kov chain whose states are given by the triplet (c,m,b) where
c, m and b represent the number of operational CPUs (pro-
cessors), the number of operational memory units and the
number of operational buses, respectively. The operational
states with the lowest and highest number of operative com-
ponents are the states (1,1,1) and (C,M,B), respectively. For
this example C=36, M=144 and B=72. This model of the
system has 391.392 states and 2.630.880 transitions between
states.

Model Solution. A system like the one described in
this section is normally used for several years. Therefore,
an utilization period of approximately 2 years (t = 106 mi-
nutes, to be precise) was used in this numerical example.
The uniformization rate was Λ ≈ 0.17 (then Λt = 1.7 · 105).
Figure 2 and Table 3 show the interval availability for dif-
ferent utilization periods, shorter or equal to 2 years. It
should be noticed that, due to the efficiency of the propo-
sed method, these results were obtained in a few hours in a
personal computer, in spite of the large Markov chain utili-
zed (in the order of 105 states and 106 transitions) and the
long utilization period (in the order of 106 units of time).
>From Figure 2 it can be seen that the interval availability
of the system decreases as the utilization period increases.
When the utilization period is close to 2 years, the inter-
val availability tends to stabilize because the length of the
failure-reparation cycle is in the order of the utilization pe-
riod. For utilization periods shorter than 2 years instead,
the interval availability is significantly higher because du-
ring such utilization periods failures barely occur.

Figure 2: Interval availability for different utiliza-

tion time intervals



Utilization Mean Operational Mean Interval
time [min] time [min] availability

40000 39999,9615 0,999999037
200000 199999,8039 0,999999019
400000 399999,6048 0,999999012
600000 599999,4048 0,999999008
800000 799999,2033 0,999999004
1000000 999998,9992 0,999998999

Table 3: Operational time and interval availability for

different values of the utilization time

4. CONCLUDING REMARKS
A new method was presented for evaluating the first K

moments of the interval availability for repairable systems.
The proposed solution is O(L|S|) times faster than the best
existing algorithm without any extra memory cost and it is
numerically stable. The time-domain approach of this new
solution is based on the uniformization technique and allows
all of its terms to be given a probabilistic interpretation.

This new method, with its low computational cost, allows
that problems with large Markov model space can be solved
in a matter of few minutes on a standard current-model PC.
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