
Optimal routing for end-to-end guarantees:
the price of multiplexing

Anne Bouillard
ENS Cachan / IRISA
Campus de Beaulieu

35000 Rennes, France
Anne.Bouillard@irisa.fr

Bruno Gaujal
INRIA / LIG

51, Av Jean Kuntzmann
38330 Montbonnot, France
Bruno.Gaujal@inria.fr

Sébastien Lagrange
INRIA / LISA

62, Av Notre Dame du Lac
49000 Angers, France

Sebastien.Lagrange@istia.univ-
angers.fr

Eric Thierry
ENS Lyon / IXXI
46 Allée d’ Italie

69007 Lyon, France
Eric.Thierry@ens-lyon.fr

ABSTRACT
In this paper we show how Network Calculus can be used
to compute the optimal route for a flow (w.r.t. end-to-end
guarantees on the delay or the backlog) in a network in the
presence of cross-traffic. When cross-traffic is independent,
the computation is shown to boild down to a functional
shortest path problem. When cross-traffic perturbates the
main flow over more than one node, then the “Pay Mul-
tiplexing Only Once” phenomenon makes the computation
more involved. We provide an efficient algorithm to com-
pute the service curve available for the main flow and show
how to adapt the shortest path algorithm in this case.

General Terms
Network Calculus, (min,+) algebra, shortest path, multi-
plexing

1. INTRODUCTION
Optimizing the route of a flow of packets through a net-

work has been investigated in many directions and using
many approaches depending on the assumptions made on
the system as well as the performance objectives. When one
wants to maximize the throughput of one connection, most
recent results in deterministic contexts use multi-flow or LP
techniques [3, 4], or optimal control and/or game theory in
a stochastic one as for example in [1].

When the maximal delay over all packets in the flow is the
performance index, fewer results are available in the littera-
ture. Under static assumptions on the flows and the network
ressources, optimal bandwidth allocation has been investi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Valuetools ’07, October 23-25, 2007, Nantes, France
Copyright 2007 ICST 978-963-9799-00-4.

gated in [7]. However, when the flows and the ressources
have dynamic features, most focus is on simple systems such
as single nodes where the issue becomes optimal scheduling.

Here we consider the problem of computing the route of
a flow that provides the best delay guarantee Dmax (no
packet of the flow will ever spend more than Dmax seconds
in the system) or backlog guarantee Bmax (the number of
packets of the flow inside the network never tops Bmax), in
the presence of cross-traffic. Network Calculus [6, 11] is a
framework that allows us to formulate this problem as a
mathematical program.

In the first part of this paper, we show how to compute
the best route for one flow from source to destination over an
arbitrary network when the cross-traffic in each node is in-
dependent. Using the network calculus framework, we show
that this boils down to solving a classical shortest path prob-
lem using appropriate costs at each node, as soon as the
service curves are convex (resp. affine) and arrival curves
are affine (resp. concave), which are classical assumptions
in Network Calculus.

The second part of the paper considers the more realis-
tic case where cross-traffic in each node is not independent.
This happens when several flows follow the same sub-paths
over more than two nodes or when the main flow crosses the
same cross-traffic several times. This case is much harder to
solve because of the“Pay Multiplexing Only Once”(PMOO)
phenomenon, which was first identified in [10]. When the
main flow merges with a cross-traffic, its service might be
strongly reduced in the first node. However, in the following
nodes, the interference due to the cross-traffic cannot be as
severe since the competition for the ressource has already
been partially resolved in the previous ones. The PMOO
phenomenon can be quantified in the Network Calculus con-
text. It does provide tighter bounds on performance guar-
antees but this comes with a price:

• In that case we only tackle efficiently networks with a
strong acyclicity property (introduced in this paper).
In fact, computing tight guarantees in cyclic networks
is still open (the simpler problem of stability is also
open [2]).

• The algorithms involved have much higher complexi-

ties.

For single paths, the approach in [13] provides an exam-
ple showing how to compute the global service curve for
a single path with 2 cross-traffic flows. When the service
curve in each node is piecewise affine, then the algorithm
provided in [13] is based on a decompostion in affine func-
tions. The complexity grows exponentially with the number
of cross-traffic flows and the number of nodes in the path.
Here, we provide an explicit general formula for the PMOO
phenomenon for arbitrary cross-traffic. The global service
curve is written under the form of a multi-dimensional con-
volution which helps designing an algorithm to compute it
with a sub-quadratic complexity. For routing problems, this
single path computation can be applied to find the best
route in an acyclic network, taking into account PMOO.
Under stronger assumptions (affine functions, concentration
of the cross-traffic), we show how to speed up the best route
computation by reducing the problem once more to classical
shortest path algorithms.

2. PERFORMANCES GUARANTEES
In this section, we recall the main definitions and the main

properties of the Network Calculus functions and operations.
More precise insights can be found in [6, 11].

2.1 Network Calculus functions
Network Calculus is based on the (min,+) algebra and

models flows and services in a network with non-decreasing
functions taking their values in the (min,+) semiring.

Formally, the (min,+) semiring, denoted by (Rmin,⊕,⊗)
is defined on Rmin = R ∪ {+∞}, and is equipped with two
internal operations: ⊕, the minimum, and ⊗, the addition.
The zero element is +∞, the unitary element is 0. The ⊕
and ⊗ operators are commutative and associative. Moreover
⊗ is distributive over ⊕.

Consider the set F = {f : R+ → Rmin | f continuous}.
One can define as follows two operators on F , the minimum,
denoted by ⊕ and the (min,+) convolution, denoted by ∗:
for all f, g in F , ∀t ∈ R+,

• f ⊕ g(t) = f(t)⊕ g(t) and

• f ∗ g(t) = inf0≤s≤t(f(s) + g(t− s)).

The triple (F ,⊕, ∗) is also a semiring and the convolution
can be seen as an analogue to the classical (+,×) convo-
lution of filtering theory, transposed in the (min,+) alge-
bra. Another important operator for Network Calculus is
the (max,plus) deconvolution, denoted by ⊘: let f, g ∈ F ,
∀t ≥ 0,

• f ⊘ g(t) = supu≥0 f(t + u)− g(u).

2.2 Arrival and service curves
Given a data flow traversing a system, let A be its ar-

rival function (i.e. A(t) is the number of packets that have
arrived until time t). We say that α is an arrival curve
for A (or that A is upper-constrained by α) if ∀s, t ∈ R+,
A(t + s) − A(s) ≤ α(t). This means that the number of
packets arriving between time s and t + s is never larger
than α(t). An important particular case of arrival curve is
the affine functions: α(t) = σ + ρt. Then σ represents the
maximal number of packets that can arrive simultaneously

(the maximal burst) and ρ the maximal long-term rate of
arrivals.

Consider D the departure function of the flow, defined
similarly by the number D(t) of packets that have left the
system until time t. The system provides a (minimum) ser-
vice curve β if D ≥ A ∗ β. Particular cases of service curves
are the peak rate functions with rate r (the system can serve
r packets per unit of time and β(t) = rt) and the pure delay
service curves with delay d: β(t) = 0 if t < d and β(t) = +∞
otherwise. The combination of those two service curves gives
a rate-latency function β : t 7→ R(t− T)+ where a+ denotes
max(a, 0). A strict service curve β is a service curve such
that for all t ∈ R+, let u be the last instant before t when
there is no packet in the system, then D(t) ≥ A(u)+β(t−u).
This enforcement of the service curve notion is necessary to
have refined bounds (e.g.Âă positiveness of output service
curves in Lemma 2 and Theorem 3). This condition will
be often fullfilled in the paper, since we will mainly work
with convex service curves which are always strict service
curves [11].

2.3 Performance characteristics and bounds
The worst case backlog and the delay can be characterized

easily with Network Calculus.

Definition 1. Let A be the arrival function of a flow
through a system and D be its corresponding departure func-
tion. Then the backlog of the flow at time t is

b(t) = A(t)−D(t)

and the delay (assuming FIFO order for serving packets of
the flow) at time t is

d(t) = inf{s ≥ 0 | A(t) ≤ D(t + s)}.

Given an arrival curve and a service curve, it is possible
to compute with the Network Calculus operations the maxi-
mal backlog and delay. Moreover, one can also compute the
arrival curve of the departure process.

Theorem 1 ([6, 11]). Let A be the arrival function with
an arrival curve α for a flow entering a system with service
curve β. Let D be the departure function. Then,

1. D has an arrival curve α′ = α⊘ β.

2. b(t) ≤ Bmax = sup{α(t)− β(t) | t ≥ 0} = α⊘ β(0).

3. d(t) ≤ Dmax = inf{d ≥ 0 | ∀t ≥ 0, α(t) ≤ β(t + d)}
= inf{d ≥ 0 | (−β)⊘ (−α)(d) ≤ 0}

The maximal backlog is the maximal vertical distance be-
tween α and β while the maximal delay is given by the
maximal horizontal distance between those two functions.
Figure 1 illustrates this fact.

In this paper, we are interested in computing bounds for
end-to-end guarantees in networks of servers, where several
flows can interfere. A network can be modeled, with no
loss of generality, by a directed graph where the flows must
follow the arcs and the servers (commuters, transmission
links, routers...) are represented by the vertices.

The two following lemmas are very useful for computing
service curves for concatenation of servers and for blind mul-
tiplexing of flows.

Dmax

Bmax

α

β

Figure 1: Guarantee bounds on backlog and delay.

Lemma 1 ([6, 11]). Consider two servers in tandem
with respective service curves β1 and β2. Then the concate-
nation of the two servers offers a minimum service curve
β1 ∗ β2 to the flow.

Lemma 2 ([6, 11]). Consider a server offering a strict
service curve β and two flows entering that server, with re-
spective arrival curves α1 and α2. Then a service curve for
flow 1 is β1 = (β − α2)+.

The next example illustrates some Network Calculus com-
putations for usual input functions. We will make an inten-
sive use of those elementary results throughout the paper.

Example 1 ([11]). Let α(t) = σ+ρt, β(t) = R(t−T)+
where σ, ρ, R, T ≥ 0. Then (α⊘β)(t) = (σ+ρT)+ρt if ρ ≤ R
and = +∞ everywhere if ρ > R. And (α − β)+(t) = (R −
ρ)(t− T ′)+ where T ′ is σ+ρT

R−ρ
if ρ < R and = 0 everywhere

if ρ ≥ R. Let βi(t) = Ri(t − Ti)+, i ∈ {1, 2}. Then (β1 ∗
β2)(t) = min(R1, R2)(t− (T1 + T2))+.

2.4 Representation of the functions
Our main objective is to find algorithms that enable to

do some computations in Network Calculus. Then, we have
to consider the implementability of the Network Calculus
operations and functions. This question is addressed in [5]
where it is shown that Network Calculus operations can be
performed efficiently on a good class of functions with a fi-
nite representation: the piecewise affine functions that are
ultimately pseudo-periodic. Here, we will make some fur-
ther assumptions: our functions are continuous and piece-
wise affine with a finite number of segments. Such a function
can be represented by a linked list of triples, each triple rep-
resenting a segment, e.g. a triple (x, y, ρ) can represent the
coordinates (x, y) of the beginning of the segment, and ρ its
slope. The end of the segment is given by the next triple and
the last triple represents the last segment which is of infinite
length. Let f be such a continuous piecewise affine function,
|f | denotes the size of f , i.e. its number of segments. The
complexity of the algorithms will strongly depend on the
size of the functions.

In all the following, the functions we consider are always
continuous and piecewise affine with a finite number of seg-
ments, even if not stated.

We will also always suppose that the networks are stable,
that is the total number of packets in the servers never grows
to infinite. For the class of functions we use as arrival and

service curves, checking the stability of a network is easy if
the directed graph is acyclic [11]: at each vertex, the long-
term rate of arrivals must be less than the long-term service
rate, i.e. the sum over the flows entering the vertex of the
ultimate slopes of their arrival curves must be less than the
ultimate slope of the service curve. For general digraphs,
the complexity of this decision problem is open [2].

3. OPTIMAL ROUTING WITH INDEPEN-
DENT CROSS-TRAFFIC

In this section, we wish to route one flow over an arbitrary
network. Each vertex may or may not be subject to interfer-
ence due to independent cross-traffic: the cross-traffic in any
two vertices are not correlated. We want to find a path from
the source x of the flow to its destination y, that optimizes
the end-to-end performance guarantees for that flow, given
the service curves at each vertex and the arrival of that flow
and of the cross-traffic.

Here, every function is continuous and non-decreasing.
Moreover, we consider that the service curves are convex
and take into account the cross-traffic with blind multiplex-
ing: if vertex v offers a service curve β0

v and the cross-
traffic in vertex v has arrival curve αv, then we will use
βv = (β0

v − αv)+ as the service curve for the main flow, as
shown in Lemma 2. Such a reduction is totally appropriate
for independent cross-traffic. Once this is done, no mention
of the cross-traffic is necessary anymore in this section.

We also suppose that the arrival curves are concave, which
occurs in most classical cases. Note that given an arrival
curve for a flow, its concave envelope remains an arrival
curve, it provides concavity at the price of loosening the
bounds. The service curves will be supposed convex. More-
over, the interferences with other cross-traffic flows with con-
cave arrival curves, captured by Lemma 2, leave the service
curves convex.

The general routing problem we consider in this section
is:

Given an directed graph G = (V, A) with a service
curve βv for all v ∈ V and some flow specifications,
namely its source x ∈ V , its destination y ∈ V and an
arrival curve α, compute a path from x to y such that
the worst case backlog/delay for the flow is minimal.

In graph theory, one can mention two classical versions
of optimal routing. With arcs and/or vertices weighted by
numbers, the first one consists in finding the shortest path
from one source to one destination, and the latter one is to
find a path with maximum bottleneck capacity. Those two
problems can be seen as special cases of our problem, when
respectively the service curves βv are all pure delays or are
all peak rates.

We will present some special cases of our general problem.
Let first state some general lemmas about computing the
maximal backlog and delay.

Let f be a piecewise affine function. We define rf (t) as

limu>t,u→t
f(u)−f(t)

u−t
, the slope of f at the right of t.

Lemma 3. Let A be an arrival flow with a concave con-
tinuous and piecewise affine arrival curve α and S be a sys-
tem with a convex continuous and piecewise affine service
curve β. Then, the maximal backlog for the system crossed
by A is

Bmax = α(t0)− β(t0),

where t0 = min{t ∈ R+ | rα(t) ≤ rβ(t)}.

Before proving that lemma, let first notice that t0 is a
point of change of slope of α or of β and can be computed
in linear time in the number of slopes of the functions.

Proof. As α is concave, continuous and piecewise affine
and β is convex, continuous and piecewise affine, γ = β − α
is also convex, continuous and piecewise affine. Then, γ has
at most one local maximum (that can be an interval).

For every t ≤ t0, rγ(t) = rβ(t) − rα(t) ≥ 0, and then
γ is non-decreasing on [0, t0]. For every t ≥ t0, rγ(t) =
rβ(t) − rα(t) ≤ 0 (by convexity of β and concavity of α),
and then γ is non-increasing on [t0, +∞[. The maximum of
γ is then obtained at t0.

Lemma 4. Let A be an arrival process with a concave con-
tinuous and piecewise affine arrival curve α and S be a sys-
tem with a convex continuous and piecewise affine service
curve β. Then, the maximal delay for packets of A through
S is

Dmax =

(

β−1(α(0)) if rβ(β−1(α(0))) ≥ rα(0)

β−1(α(t0))− t0 otherwise,

where t0 = min{t | rβ(β−1(α(t))) ≥ rα(t)}.

Proof. The horizontal distance between α and β at or-
dinate y is β−1(y)− α−1(y), with α−1(y) = 0 if α(0) < y).
As α and β are increasing, α−1 and β−1 are well-defined and
are piecewise affine. Moreover, α−1 is convex, and continu-
ous and β−1 is concave and continuous, so Lemma 3 can be
applied to those two functions.

Here again, to compute t0, one only has to look among
the points where α or β have a change of slope. That can
be done in linear time.

3.1 Concave arrival curve / rate-latency ser-
vice curves

We consider here concave arrival curves, and service curves
that are the combination of a pure delay and a conservative
link : ∀v ∈ V , βv(t) = rv(t− Tv)+.

Lemma 5. Let β : t 7→ r(t−T)+ be a service curve for an
arrival curve α (concave, piecewise-affine and continuous).
Let t0 = min{t | rα(t) ≤ r} be the point where the slope
of α becomes less than r. The maximum delay is Dmax =
T − α(t0)/r − t0 and the maximum backlog is Bmax = α(T)
if t0 ≤ T and Bmax = α(t0)− β(t0) otherwise.

Proof. It is a direct consequence of Lemmas 3 and 4.

Consider a simple path v1, . . . , vℓ in the graph. The con-
catenation of the servers of those vertices is β = βv1

∗· · ·∗βvℓ

and for all t ∈ R+, we have β(t) = (mini∈{1,...,ℓ} rvi
)(t −

Pℓ
i=1 Tvi

). Then the previous lemma can apply to the con-
catenation of servers. If mini∈{1,...,ℓ} rvi

is fixed and only
the Ti’s make β vary, then t0 is also fixed and the maxi-
mum delay is given by Dmax = α(t0)/r− t0 +

Pℓ
i=1 Tvi

. The
computation of the maximum delay over simple paths can
be reduced to the addition of delays Tvi

on the vertices of
the paths, plus a constant. As for paths containing cycles,
the maximal delay cannot be computed the same way, but is
always larger than the maximum delay over the simple path
obtained by removing all the cycles. Therefore, they can be

discarded in our optimization problem. One can use a short-
est path algorithm to compute the path that minimizes the
maximal delay.

The basic idea is to consider one by one every vertex of
the graph, and for each vertex v0 compute the shortest path
from x to y, with weights on vertex v being Tv or +∞ if
rv < r. The weight of the path plus α(t0)/rv0

− t0 gives the
maximal delay for a fixed service rate. The minimal worst-
case delay is then the minimum of all the computed delays.
Algorithm 1 uses the same principle, but automatically elim-
inates vertices that cannot lead to better performances on
the delay. Shortest-path(G, x, y, w) computes the short-
est path in G from x to y with weights on the vertices w(v),
v ∈ V . This can be done using Dijkstra’a algorithm, which
can be implemented with complexity O(|A|+ |V | log |V |) [9].
If the graph is acyclic, it can be done in O(|A|+ |V |). The
overall complexity of Algorithm 1 is O(|V |(|A|+|V | log |V |)).

Algorithm 1: Min worst case delay (rate-latency ser-
vices)

Data: G = (V, A) a directed graph, (T (v))v∈V weights
on the vertices, x, y ∈ V .

Result: Path from x to y minimizing Dmax

begin
d1 ← +∞ ;
while x and y are connected do

p← Shortest-path(G, x, y, T);
d2 ← weight of p;
r ← the minimum service rate of the vertices of
p ;
Compute t0;
d1 ← min(d1, d2 + α(t0)/r − t0) ;
V ′ ← {v ∈ V | rv ≤ r};
G← (V − V ′, A|V −V ′);

return d1;
end

The same algorithm can be used for computing the best
path regarding the backlog. The main difference is that the
backlog is not exactly additive, depending on the comparison
between t0 and

Pℓ
i=1 Tvi

on a path. But the smallest T is,
the smallest the backlog is. One only has to replace the
command d1 ← min(d1, d2 + α(t0)/r − t0) by Algorithm 2.

Algorithm 2:Min worst case backlog (rate-latency ser-
vices)

begin

if t0 ≤ d2 then d3 ← α(d2) else
d3 ← α(t0)− r(t0 −D);

d1 ← min(d1, d3);
end

3.2 Affine arrival curve / convex service curves
We now consider the dual case, where the service curves

are quite general (convex, piecewise affine and continuous)
and the arrival curves are affine functions. We will see that it
is easier to compute the maximal backlog, as a single short-
est path computing is enough, but for the delay, we show
that sub-paths may not be optimal in some cases, which

makes the shortest path problem very tricky since up to our
knowledge no shortest path algorithm exists in that case.

3.2.1 Minimizing the maximal backlog

Proposition 1. Let β be a non-decreasing, piecewise af-
fine convex service curve for a server S and a flow entering
S that has an affine arrival curve α, α(t) = σ + ρt. Let
t0 = min{t ∈ R+ | β(t) ≥ ρ}. Then, Bmax = σ +ρt0−f(t0).

Proof. This is a direct consequence of Lemma 3.

We now give the key theorem of the paragraph, that is the
optimality of the sub-paths, regarding the backlog. More
precisely, if there exist two paths from u to x, p1 and p2 and
a path p3 from x to v, then if p1 offers a better guarantee
than p2 then p1p3 offers a better guarantee than p2p3.

Theorem 2. Let β1, β2, β3 be three non-decreasing con-
vex functions in F and α : t 7→ σ + ρt. Set bi = maxt[σ +
ρt − βi(t)] and b′i = maxt[σ + ρt− βi ∗ β3(t)], i ∈ {1, 2}. If
b1 ≤ b2, then = b′1 ≤ b′2.

Proof. Let ti = min{t ∈ R+ | rβi
≥ ρ}, i ∈ {1, 2, 3}.

As β1 and β3 are convex, β1 ∗ β3 is also convex, and it is
a well-known fact that the convolution of such piecewise
affine functions is the concatenation of the segments of the
functions in the increasing order of the slopes, starting from
β1 ∗ β3(0) = β1(0) + β3(0). Then, the backlog for the con-
catenation of β1 and β3 is obtained as

b′1 = α(t1 + t3)− β1 ∗ β3(t1 + t3)

= α(t1 + t3)− β1(t1)− β3(t3)

= b1 + ρt3 − β3(t3).

The same holds for β2 and β3. Then b′1 − b′2 = b1 − b2.

The proof of the theorem gives a method, shown in Al-
gorithm 3, to minimize the maximal backlog of the system
only computing a shortest path in a graph, with the ade-
quate weighting.

Algorithm 3: Min worst case backlog (affine arrivals).

Data: A directed graph G = (V, A), βv, v ∈ V , the
service curve for the servers for each vertex,
x, y ∈ V , (σ, ρ) the arrival curve.

Result: Path from x to y minimizing the maximal
backlog of the system

begin

foreach v ∈ V do
tv ← min{t | rβv (t) ≥ ρ};
w(v)← ρtv − βv(tv);

p←Shortest-path(G, x, y,w);
Bmax ← w(p) + σ;

end

3.2.2 Maximal delay of a packet

Proposition 2. Let β be a continuous, convex, piecewise
affine service curve for a server S and a flow entering S
that has an affine arrival curve α, α(t) = σ + ρt. Let t0 =
min{t | rβ(t) ≥ ρ}. Then

dmax =



β−1(σ) if t0 ≤ σ

t0 −
β(t0)−σ

ρ
if t0 ≥ σ.

Proof. This is a direct consequence of Lemma 4.

The fact that there are two different possible values for the
maximum delay prevents from adapting any simple shortest
algorithm: the property that an optimal path is also locally
optimal cannot be applied anymore. Indeed, let define β1 :
t 7→ max(0, 2t− 10), β2 : t 7→ max(t/3, 2t− 20) and β3 : t 7→
max(0, t/3−2, 2x−22), and an arrival flow α : t 7→ 2+1/2t.
Those function are represented on Figure 2. The maximal
delay for β1 is d1 = 6, and for β2, d2 = 8. Now, look
at the delay for the β1 ∗ β3 and β2 ∗ β3-servers (d′

1 and d′
2

respectively). We have d′
1 = 17 and d′

2 = 16. Then the sub-
path optimality is violated in that case, jeopardizing the
shortest path algorithms.

β3

d′1

d′2

β2 ∗ β3

β2

d1

d2

α

α
β1 ∗ β3

β1

Figure 2:No subpath optimality property for delays.

4. OPTIMAL ROUTING WITH GENERAL
CROSS-TRAFFIC

When the cross-traffic is not independent, the previous
approach collapses. The first issue comes from the computa-
tion of the service curve over a single path which is addressed
in the next subsection while the problem of optimization is
addressed in Section 4.4.

The algorithms described in the previous section only deal
with independent flows. In the general case, there are several
flows interfering. In that case, the Pay Multiplexing Only
Once (PMOO) phenomenon has to be taken into account to
have tighter bounds. In all the section, we make a strong
assumption: we focus on a single flow that crosses several
interfering traffic flows over sets of consecutive vertices.

As in [12], we assume here that we have blind multiplexing
of the flows (there are no priority / FIFO policy) and make
a worst case analysis. We generalize the bounds in [12] and
give an efficient algorithm to compute the minimal service
curve for one flow interfering with several other flows under
blind multiplexing.

4.1 PMOO for one interfering flow
Let A1 and A2 be two arrival processes with respective ar-

rival curves α1 and α2, that cross two concatenated servers
with strict service curves β1 and β2. Let us compute the
overall service curve for A1 under blind multiplexing. Lem-
ma 2 and Theorem 1 ensure that the service curve for A1

is (β1 − α2)+ at server 1 and (β2 − α2 ⊘ β1) at servier 2.
Lemma 1 then states that the service curve for the two con-
catenated servers is β = (β1 − α2)+ ∗ (β2 − α2 ⊘ β1)+. On
the other hand, if one sees the two servers as one server
(their concatenation) and then compute the service for A1

under blind multiplexing, then the service curve for A1 is
β′ = ((β1 ∗ β2)− α2)+. We have ∀t ∈ R+,

(β1 − α2)+ ∗ (β2 − α2 ⊘ β1)+

≤ (β1 − α2)+ ∗ (β2 − α2)+

= inf
s∈[0,t]

(β1 − α2)+(s) + (β2 − α2)+(t− s)

≤
“

inf
s∈[0,t]

(β1(s) + β2(t− s))− α2(t)
”

+

≤
“

(β1 ∗ β2)− α2

”

+
(t).

So β′ ≥ β and the second service curve is better than the
first one. This illustrates the PMOO phenomenon: consider-
ing the multiplexing only once with the concatenation of the
servers gives better results. Things become more complex
when there are several interfering flows. An example of over-
lapping flows is given in Figure 3, where PMOO cannot be
analysed using only the simple convolution and multiplexing
operations described in Lemmas 1 and 2.

α2 α3

α1

β2β1 β3

Figure 3: Overlapping flows.

4.2 PMOO with several interfering flows
Now, consider a flow F1 with an arrival curve α1, crossing

servers S1, . . . , Sn in that order. A strict service curve for
Sj , j ∈ {1, . . . , n} is βj . Let (Fi)i∈{2,...,k} be the flows that
interfere with F1, with respective arrival curves αi. Suppose
that flow Fi interfere with F1 only on a connected subpath
(consecutive servers in the same order). Let us denote by Ssi

the server where the interference between F1 and Fi starts
and by Sei

the server where it ends (in particular, we have

Ss1
= S1 and Se1

= Sn). We denote by A
(j)
i (t) the number

of packets of flow Fi served by server Sj at time t and by

A
(si−1)
i the number of packets for flow Fi arrived at time t.

Lemma 6. With the notations and assumptions above, ∀t ∈

R+, ∃u1, . . . , un ∈ R+ such that

A
(n)
1 (t)−A

(0)
1 (t−

n
X

j=1

uj) ≥ 0, and

A
(n)
1 (t)− A

(0)
1 (t−

n
X

j=1

uj) ≥

n
X

j=1

βj(uj)−

“

k
X

i=2

A
(ei)
i (t−

n
X

j=ei+1

uj)− A
(si−1)
i (t−

n
X

j=si

uj)
”

.

Proof. The proof is done by induction on the number of
servers.

For n = 0, nothing needs to be done : A
(0)
1 (t)−A

(0)
1 (t) ≥

0 = e(0), where e is the unit element of F (e(0) = 0 and
e(t) = +∞ otherwise). Now, suppose that the lemma holds
for n − 1 servers. In particular, it holds for the n − 1 first
servers of a system of n servers, with the restriction of the
interfering flows to S1, . . . , Sn−1.

Consider the n-th server and denote by B the set of flows
beginning their interaction with F1 at server Sn and C the
flows that have an interaction continuing to server Sn.

For every t ∈ R+, there exists un such that

A
(n)
1 (t) +

X

i∈B∪C

A
(n)
i (t) ≥ βn(un) + A

(n−1)
1 (t− un)+

X

i∈B∪C

A
(n−1)
i (t− un),

and t − un is the start of the last backlog period at server
n. This gives

A
(n)
1 (t)−A

(n−1)
1 (t− un) ≥ 0 and ≥ βn(un)−

X

i∈B∪C

“

A
(n)
i (t)− A

(n−1)
i (t− un)

”

, (1)

Note that for every flow i in B, si = n and for every flow in
B ∪ C, ei = n.

Now, we are ready to combine Eq. (1) and the induction
hypothesis applied to t− un: there exists of u1, . . . , un−1 ∈
R+ such that

A
(n)
1 (t)−A

(0)
1 (t−

n
X

j=1

uj) ≥
n

X

j=1

βj(uj)

−
“

X

i/∈B∪C

A
(ei)
i (t−

n
X

j=ei+1

uj)− A
(si−1)
i (t−

n
X

j=si

uj)
”

−
“

X

i∈C

A
(n−1)
i (t− un)−A

(si−1)
i (t−

n
X

j=si

uj)
”

−
“

X

i∈C

A
(n)
i (t)− A

(n−1)
i (t− un)

”

−
“

X

i∈B

A
(n)
i (t)− A

(n−1)
i (t− un)

”

.

The above remarks and straightforward simplifications for
flows in C lead to the result for n servers, and in the same
way this difference is proved to be non-negative.

Theorem 3. With the same assumptions and notations
as above, if for each i ∈ {1, . . . , k}, αi is concave, then a
service curve for F1 of the servers S1, . . . , Sn under blind

multiplexing is

φ(t) =
“

inf
u1, . . . , un ≥ 0

u1 + · · · + un = t

n
X

j=1

βj(uj)−

k
X

i=1

αi(

ei
X

j=si

ui)
”

+
.

Proof. Take the formula of the previous lemma. By
causality of the system, we have ∀i ∈ {1 . . . , k},

∀j ∈ {si, . . . , ei}, ∀t ∈ R+ A
(j)
i (t) ≤ A

(si−1)
i (t). Then,

A
(ei)
i (t−

n
X

j=ei+1

uj)− A
(si−1)
i (t−

n
X

j=si

uj) ≤

A
(si−1)
i (t−

n
X

j=ei+1

uj)−A
(si−1)
i (t−

n
X

j=si

uj) ≤ αi(

ei
X

j=si

uj)

and

A
(n)
1 (t)− A

(0)
1 (t−

n
X

j=1

uj) ≥

n
X

j=1

βj(uj)−

k
X

i=1

αi(

ei
X

j=si

uj).

Moreover A
(n)
1 (t)− A

(0)
1 (t−

Pn
j=1 uj) ≥ 0.

This result introduces a new multi-dimensional operator
for network calculus. It can be seen as a general formulation
for the service curve on a path in presence of cross-traffic,
while all cross-traffic flows intersect the path on connected
subpaths. It naturally generalizes Lemma 2. This formula is
also coherent with the formula presented in [12] with 2 cross-
traffic flows and 3 nodes. In the following we will show how
to make it effective.

Example 2. To illustrate the formula, consider the sys-
tem of Figure 3. The service curve given by Theorem 3 is φ
with

φ(t)=(min
u1, u2, u3 ≥ 0

u1 + u2 + u3 = t

β1(u1)+β2(u2)+β3(u3)−α2(u1+u2)−α3(u2+u3))+

The formula for φ is not easy to simplify, using only the
network calculus operators. Here is one possible simplifica-
tion, bounding φ by a convolution.

Consider server Sj and let Bj = {i ∈ {2, . . . , k} | si = j}
be the set of flows that begin their interaction with F1 at
server j and Cj = {i ∈ {2, . . . , k} | si < j ≤ ei} be the set
of flows that continue their interaction with F1 at server j.

For every i ∈ {2, . . . , k}, since αi ⊘ αi is a subadditive
arrival curve for αi [11],

αi

`

ei
X

j=si

uj

´

= αi(usi
) +

“

αi

`

ei
X

j=si

uj

´

− αi(usi
)
”

≤ αi(usi
)+αi⊘αi

`

ei
X

j=si+1

uj

´

≤ αi(usi
)+

ei
X

j=si+1

αi⊘αi(uj).

As a consequence,

φ(t) ≤
“

inf
u1, . . . , un ≥ 0

u1 + · · · + un = t

n
X

j=1

β′
j(uj)

”

+
= (β′

1 ∗ · · · ∗β
′
n)+(t)

with β′
j = βj −

P

i∈Bj
αi −

P

i∈Cj
αi ⊘ αi.

Unfortunately, this formula is not very tight as soon as
the functions αi are composed of many affine pieces with
different values at time 0. Another method de compute φ

has been suggested in [12] to deal with the system of Fig-
ure 3 when arrival curves are concave and service curves are
convex: the idea is to decompose each αi as a minimum of
affine functions, then use Theorem 3 to compute a service
curve of the path for each of these affine arrival curves and
finally recompose φ by taking the maximum of all those ser-
vice curve. But the main drawback of this method is that it
leads to very long computations, as one has to compute the
maximum of many piecewise affine functions. If one decom-
poses the arrival curves and the service curves as a minimum
and maximum of affine functions, one has to compute at
the end the maximum of N = |α1| · · · |αk|.|β1| · · · |βn| affine
functions. The complexity of this is at least in O(N log N),
which becomes huge very fast as one increases the number
of servers or interfering flows.

Theorem 3 applies for general arrival curves αi and strict
service curves βi. In case all αi are concave and all βj are
convex, there is another way to compute the service curve φ
by taking advantage of the convexity and the concavity of
the curves. It directly uses an algorithmic approach which
is is detailed in the next section, and it outperforms the
algorithm in [12].

4.3 Computation of the service curve of a path
Set J = {1, . . . , n} and I = {1, . . . , k}. Here we state a

more general problem : let {fi}i∈I be a finite set of convex,
continuous and piecewise affine functions on R+ and for each
i ∈ I , define Ji ⊆ J . One wants to compute φ defined on
R+ as

φ(t) = min
u1, . . . , un ≥ 0

u1 + · · · + un = t

X

i∈I

fi

`

X

j∈Ji

uj

´

.

Lemma 7. The function φ is convex, continuous and piece-
wise affine.

Proof sketch. For all i ∈ I , the function fi(
P

j∈Ji
uj)

is convex because it is a maximum of affine functions. There-
fore,

P

i∈I fi(
P

j∈Ji
uj)is also convex over the compact do-

main {u1, . . . , un ≥ 0,
P

j∈J uj = t}. The minimum over

{u1, . . . , un ≥ 0,
P

j∈J uj = t} is also convex because
P

j∈J uj = t is a linear constraint over R
n.

Secondly, the functions fi(
P

j∈Ji
uj) are piecewise affine

so that
P

i∈I fi(
P

j∈Ji
uj) is piecewise affine as well as

min
u1, . . . , un ≥ 0

u1 + · · · + un = t

P

i∈I fi(
P

j∈Ji
uj).

Now, let compute φ on an interval [0, a], a > 0, and a
small enough so that φ|[0,a] is affine. Pose

F (u1, . . . , un) =
X

i∈I

fi

`

X

j∈Ji

uj

´

.

For every j ∈ J , let Ij = {i ∈ I | j ∈ Ji} be the set of
functions where uj appears in the expression of φ and let
ρj =

P

i∈Ij
rfi

(0) be the slope of F when only uj varies

around 0. Let ρ = minj∈{1,...,n}(ρj) be the minimal slope
and suppose, without loss of generality that ρ1 = ρ. Then,
on an interval [0, a], we have φ(t) = F (t, 0, . . . , 0). As ev-
ery function fi is convex, the slopes are increasing and that
equality holds for a being the first point of change of slope
of a function fi, i ∈ I1.

Let t ≥ a. Suppose that φ(t) = F (u1, . . . , un) with u1 <
a. We show that there exists another decomposition φ(t) =
F (u′

1, . . . , u
′
n) where u′

1 = a.
Set b = a − u1, v1 = a and consider a decomposition of

t− a in t− a =
P

j∈J−{1} vj with vj ≤ uj ∀j ∈ J −{1}. We
have

F (u1, . . . , un)−F (v1, . . . , vn) =
X

i∈I

fi

`

X

j∈Ji

ui

´

−fi

`

X

j∈Ji

vj

´

=
X

i∈I−I1

h

fi(
X

j∈Ji

uj)−fi(
X

j∈Ji

vj)
i

+
X

i∈I1

h

fi(
X

j∈Ji

uj)−fi(
X

j∈Ji

vj)
i

=
X

i∈I−I1

h

fi

`

X

j∈Ji

uj

´

− fi

`

X

j∈Ji

vi

´

i

+
X

i∈I1

h

fi(u1)− fi(a)
i

+

X

i∈I1

h

(fi

`

X

j∈Ji

ui

´

− fi(u1))− (fi

`

X

j∈Ji

vj

´

− fi(v1))
i

.

For i ∈ I−I1, let us define hi by fi(
P

j∈Ji
uj)−fi(

P

j∈Ji
vj) =

hi

P

j∈Ji
(uj − vj), the average slope for fi being hi over

I − I1 and for i ∈ I1, define hi by (fi(
P

j∈Ji
uj)− fi(u1))−

(fi(
P

j∈Ji
vj)− fi(v1)) = hi

P

j∈Ji−{1}(uj − vj).
The equation above can be rewritten as

X

i∈I

hi

X

j∈Ji−{1}

(uj−vj)−ρb =
X

j∈J−{1}

`

X

i∈Ji

hi

´

(uj−vj)−ρb.

But, because of the convexity of the functions and because ρ
is the minimum of the slopes around 0, we have

P

i∈Ij
hi ≥

ρ. Then F (u1, . . . , un)− F (v1, . . . , vn) ≥ 0 and a decompo-
sition for φ(t) can be found where u1 ≥ a.

Set f ′
i(t) = fi(t+a)−fi(a) if i ∈ I1 and f ′

i = f1 for i /∈ I1.
For every t ≥ a, there exists u1, . . . , un ≥ 0 with u1 ≥ a such
that

φ(t) =
k

X

i=1

fi(
X

j∈Ji

uj) =
X

i∈I1

f1(a) +
k

X

i=1

f ′
i(

X

j∈Ji

u′
j),

with u′
1 = u1 − a and u′

j = uj for j ≥ 2. The functions f ′
i

are still convex, continuous and piecewise affine. So one can
compute φ on an interval [a, b] using the f ′

i . Remark also
that the total size of the functions f ′

i is strictly less than
that of the fi, because a corresponds to a change of slope of
a function (so the first segment of that function disappears
in at least on of the f ′

i , i ∈ I1). The function φ can then be
computed in finite time, repeating the computations above
at most as many times as the total number of segments of
the functions fi.

Algorithm 4 gives the computation of φ. The functions are
represented as described in Paragraph 2.4. Operator Next.f
points on the next triple of f and AddSegment construct
φ adding the last three parameters as the last segment of
φ. Moreover φ.x, φ.y and φ.ρ represent the triple of the
last constructed segment. In the outside loop, ρ can be
found in time n, ℓ0 in time at most k. The inside loop has
a constant execution time if the total length remains the
same, and has a complexity at most n if the total size of
the fi’s decreased by one. The overall complexity is then in
O((

Pk
i=1 |fi|)(k + n)).

Applying Algorithm 4 to the functions βj and−αi outputs
a function φ, and then removing the negative part by taking
φ+ gives the computation of the service curve of Theorem 3.

When all βj are rate-latency functions and all αi are affine,
φ+ is also a rate-latency function and its computation can

Algorithm 4: Computation of φ.

Data: I , J two finite sets, fi, i ∈ I convex continuous
piecewise affine functions, Ji ⊆ J , Ij ⊆ I such
that i ∈ Ij ⇔ j ∈ Ji.

Result: φ : t 7→
min(uj)j∈J ≥0,

P

j∈J uj=t

P

i∈I fi(
P

j∈Ji
uj).

begin
φ← nil; x←

P

i∈I fi.x; y ←
P

i∈I fi.y;
foreach j ∈ J do ρ[j]←

P

i∈Ij
fi.ρ;

foreach i ∈ I do ℓi ←Next.fi.x− fi.x;
repeat

Find j0 such that ρ[j0] = min{ρ[j], j ∈ J};
ρ← ρ[j0]; AddSegment(φ,x, y, ρ);
ℓ0 ← min{ℓi | i ∈ Ij0};
x← φ.x + ℓ0; y ← φ.y + ρ0.ℓ0;
foreach i ∈ Ij0 do

ℓi ← ℓi − ℓ0;
if ℓi = 0 then

ρ′ ← fi.ρ;
fi ← Next.fi;
ℓi ←Next.fi.x− fi.x;
foreach j ∈ Ji do ρ[j]← ρ[j]− ρ′ + fi.ρ;

until ℓ0 = +∞;

end

be done in linear time due to simplifications as shown in the
next section.

4.4 Adaptation of the algorithms to the PMOO
In this section, we consider only the most simple case:

arrival curves are affine and service curves are rate-latency
curves.

4.4.1 General acyclic graphs
Also, we consider an acyclic graph G = (V, A). Each

vertex v is a server with a minimal service curve βv : t 7→
Rv(t−Tv)+. In that graph, there are some cross-traffic flows
Fi, i ∈ {1, . . . , k} = I which respectively follow paths pi and
have respective arrival curves αi. Consider that the main
flow F0 follows a path p of the graph. Since the network is
acyclic, the vertices are sorted according to the topological
order. If vertex v ∈ pi, one computes the service curve φi

v(t)
of the cross-traffic Fi just after v. Its arrival curve in the
following node will then be αi ⊘ φi

v. Using Theorem 3, the
service curves φi

v(t) are defined by the following inductive
formula, where v1, . . . vm are the vertices over path pi up to
node v (included) and Fh1

, . . . , Fhr are all the flows inter-
fering with flow Fi up to vertex v. vh(ℓ) is the vertex on ph

just before flows Fi and Fh meet for the ℓth time (they meet
w time in total) and p(ℓ) is the ℓth commun sub-path for the
flows Fi and Fh after node vh(ℓ):

φi
v(t) =

`

min
P

m
j=1

uj=t

m
X

j=1

βvj
(uj)−

r
X

h=1

w
X

ℓ=1

αh⊘φh
vh(ℓ)(

X

vj∈p(ℓ)

uj)
´

+
.

Using these notations, the end-to-end service curve of the
main flow over path p is φ0

y(t).

Note that all the functions φi
v depend on p, the path cho-

sen for the main flow from x to y.
Now the algorithm for finding the best route is:

for all path p from x to y compute φ0
y and choose the best

one w.r.t. the performance measure (delay or backlog).

4.4.2 Strongly acyclic graphs
The main drawback of the previous approach is that one

needs to compute the service curve φ for each path p from
x to y (which can be exponentially many). This is because
the arrival curve of the cross-traffic in each node depends on
the path p chosen for the main flow. Here, we characterize
networks for which this is not the case and where the arrival
curve of the cross-traffic at each node can be precomputed
by the classic use of the deconvolution formula as explained
e.g. in [11]. Moreover the computation of the best route for
the main flow can be carried without computing the service
curve on each path.

An acyclic network with cross-traffic is strongly acyclic if
for any pair of vertices in a connected component of the
subgraph obtained by keeping only the arcs used by the
cross-traffic, they are connected by at most one path in the
initial graph which necessarily belongs to the subgraph.

Assuming that all αi are affine with rate-latency service
curves on each node, and using the formula of φ in Theo-
rem 3, the service curve on a path p = v1, . . . , vm can be
written as

φ(t) =
“

−
X

i∈I

σi + min
u1+···+um=t

m
X

j=1

(βvj
(uj)− (

X

i∈Ivj

ρi)uj)
”

+

where I is the set of the flows crossing path p.
Then, the key idea to model this is to weight the graph

with service curves on the vertices and on the arcs:

• Vertex v is weighted with β′
v : t 7→ βv(t)− (

P

i∈Iv
ρi)t.

• Arc e = (u, v) is weighted with β′
e with

β′
e(0) =

P

i∈Iv−Iu
σi and ∀t ∈ R+ − {0}, β′

e = +∞.

On path p = v1, . . . , vm, the service curve is φ = (β′
v1
∗

β′
(v1,v2) ∗ βv2

∗ . . . ∗ β′
(vn−1,vn) ∗ β′

vm
)+. With the hypothesis

on the arrival and service curves, such a service curve is the
composition of a pure delay and a conservative link φ : t 7→
R(t− T)+.

For a flow F on that path, with an affine arrival curve
α(t) = σ + ρt, the maximal backlog is α(T) = σ + ρT and
the maximal delay is φ−1(σ) = T +σ/R. Due to the special
shape of input functions, both R and T can be easily com-
puted. The rate R is the smallest number among the rates
of the β′

v: R = minv∈p(Rv − (
P

i∈Iv
ρi)). Then T can be

deduced:

T =
X

v∈p

Tv

“

1 +
X

i∈Iv

ρi

R

”

+
X

e∈p

β′
e(0)

R
.

The maximal delay and backlog strongly depend on R,
and if R is fixed, the same kind of algorithm as Algorithm 1
can be applied. In order to compute the maximal delay, for
fixed R, the weight of a vertex v is Tv(1+

P

i∈Iv

ρi

R
) and the

weight of an arc e = (u, v) is
P

i∈Iv−Iu
σi/R. The maximal

delay on a path is the sum of the weights on that path plus
σ/R.

In order to compute the maximal backlog, for fixed R, the
weight of a vertex v is ρTv and the weight of an arc e = (u, v)
is ρ

P

i∈Iv−Iu
σi/R. The maximal backlog on a path is the

sum of the weights on that path plus σ.

Following the scheme of Algorithm 1, in the worst case,
one has to execute one shortest path algorithm per vertex
(it covers all the possible rates R). All this is summarized
in the following proposition.

Proposition 3. For a strongly acyclic network (V, A),
with affine arrival curves and rate-latency service curves,
the optimal end-to-end service curve is a rate-latency service
curve that can be computed using a shortest path algorithm
with an overall complexity in O(|V |(|V |+ |A|)).

Like in the case without the interfering flows in Section 3.1,
α could be any concave function. However, if the αi were
not affine, the computation of φ on a path would not be
based on these simple convolutions, but on the more com-
plex operations explained in Section 4.3, preventing us from
using the preceding reduction to a shortest path problem.

4.5 Implementation work
Following the algorithmic framework of [5], a software for

worst case performance evaluation with Network Calculus
is currently under development. The main Network Calcu-
lus operations have been implemented for a large class of
piecewise affine functions including the classical arrival and
service curves of network calculus. A first version should be
released soon for downloads (COINC Project [8]).

The new multi-dimensional operator, described in Algo-
rithm 4 and corresponding to the service curve φ on a path
with cross-traffic has been incorporated to the software. Rout-
ing algorithms presented in this paper have also been imple-
mented.

These implementations are now tested on the example of
Figure 4, which a strongly acyclic graph.

Figure 4: An example of a strongly acyclic network.

The routing problem has been solved for a main flow with
arrival curve α that enters the network at vertex β0 and
leaves at vertex β5. The arrival curves are affine: α(t) =
σ +ρt and for cross traffic αi(t) = σi +ρit, i ∈ {8, 9, 10, 11}.
The service curves are rate-latency functions in all nodes:
βi(t) = Ri(t − Ti)+, i ∈ {0, 1, . . . , 7}. The numerical values
used for the example are given below.

β0 β1 β2 β3 β4 β5 β6 β7 α α8 α9 α10 α11

T 1 1 3 3 2 1 2 8 σ 25 8 1 10 8

R 21 22 20 18 22 24 26 22 ρ 3 2 4 2 4

In the example, the main flow may take three different
paths: Path 1 is β0, β1, β2, β3, β4, β5, Path 2 is β0, β6, β7, β5

and Path 3 is β0, β1, β7, β5. It can be easily checked that
this network with its cross-traffic is strongly acyclic.

By applying the routing algorithm sketched in Section 4.4.2,
the worst case backlog Bmax is minimal over Path 1 and
it guarantees a worst case backlog Bmax = 70.51. As for
the delay, the best maximal delay is reached over Path 3:
Dmax = 17.1875.

In order to check the results and to point out the benefits
of taking into account PMOO compared to the classical ap-
proach [11] treating the cross-traffic as independent in each
node, we have also computed for each path:
- the service curve φi

PMOO for the path i when taking into
account PMOO, thanks to Algorithm 4,
- and the service curve φi

classic for the path i computed in
the classical way.
These two service curves are (e.g. on Path 1):

φ1
PMOO(t) =

`

min
P

ui=t
β0(u0) + β1(u1) + β2(u2) + β3(u3)

+β4(u4)+β5(u5)−α8(u2 +u3)−α9(u3 +u4)−α10(u1)
´

+

φ1
classic(t) = β0 ∗ (β1 − α10)+ ∗ (β2 − α8)+

∗ (β3 − α8 ⊘ β2 − α9)+ ∗ (β4 − α9 ⊘ β3)+ ∗ β5

The six curves are pictured on Figure 5 and their parame-
ters are listed below. One can measure the gain of φPMOO

over φclassic and note that with φclassic, Path 3 would have
been wrongly chosen as the best for the backlog.

φ1
PMOO φ1

classic φ2
PMOO φ2

classic φ3
PMOO φ3

classic
T 15.17 17.17 16.75 17.75 15.625 16.5

R 12 12 16 16 16 16

 0

 5

 10

 15

 20

 25

 30

 35

 40

 15 16 17 18 19 20

Φ
1
PMOO Φ1

classic

Φ
3
PMOO

Φ
3
classic

Φ2
PMOO

Φ2
classic

Figure 5: Service curves of paths.

5. CONCLUSION
Network Calculus does lend itself well to routing problems

optimizing performance guarantees. We have shown how to
solve them efficiently in some usual cases for an indepen-
dent cross-traffic where extensions to more general arrival
and service curves are under study. Then we have provided
a new multi-dimensional operator quantifying the PMOO
phenomenon for interfering flows, generalizing results of [12],
and we have shown how to use it in routing problems for
more general cross-traffic. Our results give insights into the
benefit, but also the cost, of taking into account PMOO.
These are some new steps in the construction of efficient
software tools for the analysis and the control of complex
networks, based on Network Calculus.

6. ACKNOWLEDGEMENTS
This work was supported by the ARC Coinc of INRIA.

7. REFERENCES
[1] E. Altman, T. Basar, and R. Srikant. Nash equilibria

for combined flow control and routing in networks:
Asymptotic behavior for a large number of users.
IEEE Transctions on Automatic Control,
47(6):917–930, 2002.

[2] M. Andrews. Instability of FIFO in the permanent
sessions model at arbitrarily small network loads. In
Proceedings of SODA’07, 2007.

[3] B. Awerbuch and T. Leighton. A simple local-control
approximation algorithm for multicommodity flow. In
Proceedings of FOCS’93, pages 459–468, 1993.

[4] D. Bertsimas and D. Gamarnik. Asymptotically
optimal algorithm for job shop scheduling and packet
routing. Journal of Algorithms, 33(2):296–318, 1999.

[5] A. Bouillard and E. Thierry. An algorithmic toolbox
for network calculus. Technical Report 6094, INRIA,
2007.

[6] C. S. Chang. Performance Guarantees in
Communication Networks. TNCS, 2000.

[7] J. Cohen, E. Jeannot, N. Padoy, and F. Wagner.
Messages scheduling for parallel data redistribution
between clusters. IEEE Trans. Parallel Distrib. Syst.,
17(10):1163–1175, 2006.

[8] COINC. Computational issues in network calculus.
http://perso.bretagne.ens-cachan.fr/∼bouillar/coinc.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. MIT Press, 2001.

[10] M. Fidler. Extending the network calculus pay bursts
only once principle to aggregate scheduling. In
QoS-IP, pages 19–34, 2003.

[11] J.-Y. Le Boudec and P. Thiran. Network Calculus: A
Theory of Deterministic Queuing Systems for the
Internet, volume LNCS 2050. Springer-Verlag, 2001.

[12] J. B. Schmitt and F. A. Zdarsky. The disco network
calculator: a toolbox for worst case analysis. In
Valuetools ’06: Proceedings of the 1st international
conference on Performance evaluation methodolgies
and tools. ACM Press, 2006.

[13] J. B. Schmitt, F. A. Zdarsky, and I. Martinovic.
Performance Bounds in Feed-Forward Networks under
Blind Multiplexing. Technical Report 349/06,
University of Kaiserslautern, Germany, April 2006.

